THE EXPERT’S VOICE® IN WEB DEVELOPMENT

‘f\l

£ 2, { !
- kA i T "
o - Pt L o -4
i g L By fode',
! Iy Nl 355 LA 3
£ g Mg S 1
u L ool SN * G o ¥ 2wl
VR i,y ST A i
p chrn 0T WP
3 irei e, SRR v "
St

CakePHP

From Novice to Professional

Learn where to begin, what tools Cake provides, and how
to rapidly write methods into your Web applications

David Golding

Apress

Beginning CakePHP

From Novice to Professional

David Golding

Apress’

Beginning CakePHP: From Novice to Professional
Copyright © 2008 by David Golding

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-0977-5
ISBN-13 (electronic): 978-1-4302-0978-2
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Steve Anglin, Tom Welsh

Technical Reviewer: Richard K. Miller

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant

Copy Editor: Kim Wimpsett

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Nancy Sixsmith, ConText Editorial Services, Inc.

Indexer: Becky Hornyak

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To Camille and Kenny—
your sacrifices, above all,
make this all possible.

Contents at a Glance

Aboutthe AUThOr Xvii
About the Technical Reviewer Xviii
Acknowledgments Xix
CHAPTER 1 Introduction 1
PART 1 Getting Started
CHAPTER 2 Installing and Running CakePHP 9
CHAPTER 3 Creating a To-Do List Application............................... 17
PART 2 Developing CakePHP Applications
CHAPTER 4 Naming Files and Designing the Database...................... 29
CHAPTER 5 Creating Simple Views and Baking in the Console 55
CHAPTER 6 CustomizingViews 73
CHAPTER 7 Working with Controllers and Models........................... 89
CHAPTER 8 Implementing Ajax Features 113
PART 3 Advanced CakePHP
CHAPTER 9 Helpers............... . 137
CHAPTER 10 Routes 175
CHAPTER 11 Components and Utilities 187
CHAPTER 12 Vendors..............coiiiii e 207
CHAPTER 13 Plugins........... ... 219
CHAPTER 14 DataSources and Behaviors................................... 241
CHAPTER 15 Wrapping Up the Application.................................. 273

PART 4 Appendixes

APPENDIX A Installationlssuesl
APPENDIX B How CakePHP Compares with Other Frameworks

Contents

Aboutthe AUThOr Xvii
About the Technical Reviewer Xviii
Acknowledgments Xix

CHAPTER 1 Introduction 1

From Novice to Professional 2
Why CaKe? ... 2

Rapid Development.......... 3
Model-View-Controller, 3
CRUD Operations and the Bake Script.......................... 5
Scaffolding ... 5
Helpers ... 5
Customizable Elements, 6
Large Communityo. 6
More Features i 6

PART 1 Getting Started

CHAPTER 2 Installing and Running CakePHP............................ 9
A Simple Start: Running Cake on a Localhost Environment. 9
GettingCake. ... 10
LaunchingCake................ 10
Running the Setup Routines 13
Preparing the tmp Folder for Cake to Read and
Write TempFiles. ... 13
Changing the Security.saltValue 13
Entering MySQL Connection Settings.......................... 14
Designing Your Database Schema............................ 15
SUMMArY ... 16

CONTENTS

CHAPTER 3

PART 2

CHAPTER 4

Creating a To-Do List Application.......................... 17
Exploring the MVC Structure 17
The To-Do List's MVC Layoutcoiiiiiinn.. 19
Designing and Creating the Database 19
Creating Models.o i 20
What’s Happening in ThisModel.............................. 21
Model Possibilities. L 21
Creating Controllers ... 21
What’s Happening in This Controller 22
Controller Possibilities. 22
Launching the Application.................... ... i 22
How Cake ResolveSURLS. ..ot 23
Creating the Scaffolding. i 23
SUMMANY. .. 25

Developing CakePHP Applications

Naming Files and Designing the Database................ 29
Convention Over Configuration.................................... 29
Intercepting Cake. 29
Starting with the Database. 30
MVC Default Behaviors. i 30
Naming Conventions.o 31
Naming Controllers ...ttt 31
NamingModels i 32
Naming VIewsS.o 33
More Than One WordintheName 33
Naming Other Cake Resources............................... 34
Best Practices. 37
Poorly Designed Databases.ccoiiiiiiii .. 39
Why Good Database Design Matters 39

Feature Creepand Cake.................... ...t 40

CHAPTER 5

CHAPTER 6

CONTENTS

Table Associations. i 40
The Database Design ..., 40
“Belongs TO” ... 4
Has ONB” .. 43
“Has Many” 44
Testing the Associations.ooiiiiiint 45
Conventions for Establishing Table Associations................ 47
“Has and Belongsto Many”.................. 48

Beyond the Scaffold 52

SUMMAY. ... 53

Creating Simple Views and Baking in the Console 55

Introducing Layouts. 55
Writing the default.ctpFile................................... 56

Creating Individual Views. i 59
Adding Actions to the Controller 59

Using Bake to Create Views. ..., 61
Configuring the Console’s Profile to RunBake.................. 62
LaunchingBake............. 63
Using Bake to Generate CRUD Views.......................... 64

Editing Baked Views 68
Considering Internationalization 70

Using Commands for Faster Baking................................ 70

Customizing Views oo 70

SUMMArY. ... Al

Customizing Views.. 73

Handling User Interactions. 73
ASimple Page Request.l 73
A Form Submission Sequence. 75
Filling Form Fields for Editing or Updating. 78
An Asynchronous Sequencel 79

Writing Individual View Files i 80
Using the Debug Function 82
Customizing the View File from Scratch 83
Customizingan HTML Form......................ooiiiinas. 84

Using Other Helpers 86

SUMMArY ... 87

ix

CONTENTS

CHAPTER 7

CHAPTER 8

Working with Controllers and Models 89
Building an Extensive Blog.l 89
Working with Actions 90
Using Variables in Actions 90
Requesting Actions 91
How Callback Actions Work in the Controller 92
Customizing the Controller forthe Blog. 92
RECUISIVE. 93
Pagination........ 93
The find() Function.l 93
Displaying the Most RecentPosts. 96
TheView Action........... 97
Theread() Function............... L 97
The setFlash() Function. 98
Theredirect() Function 99
Creating a Model fortheBlog 100
The Add Action. ... 101
The save() Function........... 101
ValidatingData.................... 102
Writing Custom Model Functions 106
Trimming Results 109
The unbindModel() Function 109
The bindModel() Function................... 110
SUMMAY. . .. 111
Implementing Ajax Features 113
How Ajax Works. 113
Working with Ajax Frameworks. 114
Usingthe AjaxHelper 115
Preparing the Ajax Helper, 116
Installing Prototype 116
Including the JavaScript Helper in the App Controller File 116
Making Helpers Available for the Whole Application............ 117
Adding CommentstotheBlog.................. 117
Working Ajax intothe View 118
Displaying Comments.................., 118

UsinganAjax Form i 120

PART 3

CHAPTER 9

CONTENTS

Working Ajax into the Controller.................................. 121
Rendering for Ajax. ... 122
Using Other Ajax Helper Functions................................ 123
The submit() Function............ 124
The link() Function............ i 124
Doing More with the Ajax Helper 129
Passing JavaScript with the Options Array 130
Prototype vs. jQuery 130
Uploading Files with jQuery.................t 131
Installing jQuery and the Form Plugin 131
Creating the Posts Add Action............................ ... 131
Creating the Posts Controller Text Action 132
Writing the Text View 133
More Ajax Features.............co o 134
SUMMANY. .. 134
Advanced CakePHP
Helpers................................. ... 137
Installing Helpers. ... i 137
Using Cake’s Built-inHelpers, 138
Explain Every Helper Function?.............................. 138
Working with the HTML Helper 139
Using the HTML Helper in the Default Layout.................. 149
Working with the Form Helper............................... 150
Using Other Built-in Helpers il 157
The Ajax Helper 157
The JavaScriptHelper. 157
The Number Helper................ . i 158
The Paginator Helper............... 158
The RSSHelper 159
The Session Helperoo i 160
The TextHelper ... 160
The Time Helper............. .. 161
The XML Helperc i 162

xi

x

CONTENTS

Creating Custom Helpers............ooo i
Usingthe App Helper.

Creatingthe HelperFile 163

Using Outside Helper Functions

CHAPTER 10 Routes

TheBasicRouUte.
ArQUMENTS ...
Reverse Routing........... ... o
LOOKUPS. . .ot
Rewriting URLs inthe Router................................
AdminRouting
Choosing an Admin Prefix,
Linking Admin Actionsand Views............................
Baking AdminRoutes
Route Parameters
Magic Variables
Custom EXpressions
The PassKey ...
Parsing Files with Extensions Other Than .php
The Process ...

CHAPTER 11 Components and Utilities.................................. 187

Using Components.,
Using Built-in Componentscc i,

Authentication 189
SBSSION .. 194

CONTENTS Xiii

Utility ClasSSesS.ot 198
Configure. 199
Fileand Folder...............c 199
HTTP Socket...o 201
Localization and Internationalization 202
Sanitize ... 204

Third-Party Components i 204

Creating Custom Components.................................... 205
Using the Initialize and Startup Functions..................... 205
Writing Vendor Files Instead of Components 206

SUMMArY. 206

CHAPTER 12 Vendors................ i i, 207

UsSiNgVendors 207
Dealing with FileNames. 209
Dealing with Nested Folders 209

Making No Assumptions for Third-Party Scripts 209
Unidirectional Scripting. L. 210

Installing a Third-Party Script 210
Including Textile. 210
Instantiating and Running Textile 211
Writing Posts with Textile. 211

Using Other Frameworks with CakePHP 211
Zend Framework 212

SUMMArY. 217

CHAPTER 13 Plugins................ 219

Installing a Third-Party Plugin.................................... 219

Creating Custom Plugins 221
Naming Convention for Plugin Elements...................... 221
Running Plugin Actions............ 223
Using PluginLayouts. ..., 223

The Calendar Plugin o i 224
Setting Upthe Filesand Folders............................. 224
Createthe EventsTable 225
Createthe EventModel..................., 225
Create the Events Controller 225

SUMMArY ... 240

xiv

CONTENTS

CHAPTER 14

CHAPTER 15

PART 4

APPENDIX A

DataSources and Behaviors............................... 241
Extending the Model with DataSources and Behaviors 243
Working with DataSources. ... 243
Using Built-in DataSourcescooii. 244
Building a Custom DataSource 246
Working with Behaviors 254
Using the Tree Behavior to Categorize Blog Posts.............. 255
Using Other Tree Behavior Functions......................... 263
Using the ACL and Translate Behaviors....................... 265
Using the Containable Behavior 265
Attaching and Detaching Behaviors 267
Writing Custom Behaviorst 268
SUMMArY. 270
Wrapping Up the Application.............................. 273
Designingthe HomePage, 273
Using the Pages Controller to Produce a Single View 273
Making an Action the Starting Point.......................... 274
Generating Dynamic Navigation.................................. 275
Customizing the Overall Design 276
Debugging the Application..................l 276
Running the Applicationona Remote Host. 277
SUMMAY. . ..o e 278

Appendixes

InstallationlIssues .. 281
Developing in a Localhost Environment. 281
Using the Localhost First, Remote Last....................... 281
Why Doing It All RemotelyIsBad 282
SettingUpalocalhost..................ccoiii 282
SettingUponaMact 282
Setting UponWindows. 284
Running MySQL. 286
Where to Find Other MySQL TooISccoiniatt. 286

Typical Settings When Running MySQL....................... 287

CONTENTS

APPENDIX B How CakePHP Compares with Other Frameworks. 289
PHP Frameworks. 289

Using the Various Frameworks..................... 290

CakePHP 290

Codelgniter ... 291

SYMIONy. ... 292

Zend Framework 293

XV

About the Author

DAVID GOLDING began developing web sites in 1999 and first started
using CakePHP on a bet he couldn’t complete a web application
in five minutes. Golding has a degree in European Studies from
Brigham Young University and currently works in technology con-
sulting and freelance web development. He lives with his wife,
Camille, and his son, Kenny, in southern California and spends his
free time playing golf and studying history. His musings can be
found at www.davidgolding.net.

Xvii

http://www.davidgolding.net

About the Technical Reviewer

RICHARD K. MILLER is the executive vice president of a nonprofit
foundation in Utah. He graduated from Brigham Young University
with a bachelor’s degree in business management but has been inter-
ested in technology since he began computer programming at age 10.
His experience includes web programming, Internet marketing, and
new media strategies such as blogging, podcasting, social network-
ing, and online video. He is the developer of several MediaWiki
extensions and WordPress plugins, including the widely used What
Would Seth Godin Do plugin.

Xviii

Acknowledgments

I owe much to those who have contributed to this book, especially since CakePHP

is an improving framework and its online community is growing. Chris Nielsen and
Benjamin Swanson directed me in which web frameworks to consider and how to
build more robust web sites, for which I'm grateful. Steven Burton, Julie Cloward, and
Richard Culatta at Brigham Young University provided the opportunities and support
to explore web development and to teach others; your influence also contributed to my
personal skill set, for which I'll always be thankful. Spencer Fluhman, in so many ways,
has been a brilliant mentor and advisor; thank you for your professional counsel and
support. Richard Miller’s technical expertise and reviews made this book so much
more solid, not to mention the professional skills that helped tighten up the loose
ends. I wish to thank the Cake Software Foundation and other dedicated Cake develop-
ers for providing not only an exceptional framework but for taking the time to judi-
ciously design an effective paradigm for web development. Felix Geisendorfer, Daniel
Hofstetter, Tom O’Reilly, and Garrett J. Woodworth have all been especially helpful in
providing examples and documentation that facilitated the writing of this book. And,
most especially, the staff members at Apress have been remarkable; thank you for tak-
ing this book to the next level.

Xix

CHAPTER 1

Introduction

Programmers have used frameworks for years, though for web development the use of
frameworks has been more recent. Probably the main advantage of using a framework in any
project, be it web-related or not, is explained by the concept of “inversion of control.” Many
programs operate in such a way that the code is in control. In other words, the code decides
when one operation should appear, how it should handle the user’s response, and so forth.
Imagine if this order of control were inverted. Rather than have a script or library that contains
a series of operations, the program has a series of objects that can do nothing until you extend
them (even though they may contain tons of tools you could put to use). In this way, the
framework calls on you, not the other way around.

For example, let’s say you are looking for a way to install a voting program into your web
site. You browse the Internet and find a handful of useful PHP scripts that all promise to do
that for you. After plugging in some unique settings, you place one of these scripts onto your
server and launch the program. The program runs just fine, but if you wanted to change any-
thing, you would have to go into the script, locate where the operation occurs that you want to
change, and work the adjustment by hand. The script manages the flow of control in the sense
that all of its operations are executed when the program runs, and if you want to control the
program, you have to alter the script.

A framework, on the other hand, has an inverted flow of control. To produce a voting
application in a framework, you would have to add to the framework those objects that would
handle the voting. The framework would automatically pull together several resources to
make the voting process happen, and you would have to intercept those resources or extend
them to add your own functionality. A library will behave on its own, like the script example,
and any changes must be made directly in the code. A framework is different in that it will wait
for you to extend or add to it before it can really do anything for you. You will not need to go
directly to the framework’s code to make changes; instead, the framework will take your exten-
sions and use those instead of its own libraries.

CakePHP (or, for short, Cake) is a framework, not a set of libraries, even though it contains
dozens of functions and methods that simplify web development much like libraries do. As
such, Cake waits on you to extend its objects and add your own customized resources. With
Cake, gone are the days of individually scripting each and every function. Instead, developers
are using a bundled package of scripts, libraries, and conventions that are designed specifi-
cally for web development.

CHAPTER 1 © INTRODUCTION

From Novice to Professional

This guide is for beginners to CakePHP. Whether or not you have much experience with the
PHP scripting language, working in Cake will require some new methods you may or may not
have tried before. If you don’t know what a “has-and-belongs-to-many” relationship is, don’t
know how to build your own class object, or don’'t know how to parse an array, then this book
is a perfect place to start when getting into Cake.

Most of the available online resources require some sort of prior knowledge of web
development to get a grasp on how to install and work in Cake. If you're like me when I
started using Cake, you probably just want a handful of tutorials with code samples from
square one that can get you up and running quickly and lead you in the right direction for
more advanced techniques. In fact, when asking a question on forums or chat rooms, many
beginners get little help or confusing leads from the experts. Simple questions can get a
response like “Well, just read the online manual and APL.” Sometimes novices need a very
simple approach to the software, and this guide is just that. As you begin to master Cake, this
guide will also provide tips and a reference for helping you quickly add more features to your
projects and catch errors.

This book will start by showing how to install Cake on a server and your own computer
and will provide some detailed code samples and visual snapshots to walk you through the
process. In Chapter 2, I'll show how to build a simple Cake application. You'll get used to the
Model-View-Controller (MVC) structure and how to organize your Cake applications effec-
tively. In Part 2, you'll build more extensive web applications in Cake, and you'll explore Cake’s
built-in helpers, including the Ajax helper, and work with more advanced features. By the end
of the book, you will be able to create your own helpers, plugins, and other useful features that
will reduce the overall amount of code to run your applications, and you'll also have a solid
enough foundation to try other advanced features on your own.

Why Cake?

Ever since Ruby on Rails became a popular web-based framework, teams of developers have
been creating clones of Rails or Rails-like frameworks for various languages: TurboGears for
Python; Zend, Symfony, and many others for PHP; Catalyst for Perl; and on and on. With so
many options out there, why choose CakePHP for your web project?

It's PHP!

Many web developers complain about switching to Ruby on Rails simply because the frame-
work is built on the Ruby language. PHP, they say, is one of the more widely supported web
programming languages and is standard with most web services providers, so why give that
up for Ruby? For those who learned web development on PHP or those who have made PHP
their primary development tool, the idea of ditching PHP for something else may seem
daunting or time-consuming. For companies, switching to another language can require
reallocating resources, changing web service providers, or reworking an expensive server
configuration. Whatever the case, leaving PHP for another development framework can be
costly and time-consuming. With Cake, you can enjoy the benefits of framework-based
development without learning another language.

CHAPTER 1 © INTRODUCTION

One of the difficulties in using some PHP frameworks has been their compatibility with
PHP 4 and 5. Symfony, for example, requires PHP 5 and is not backward compatible with PHP
4. Cake, on the other hand, is compatible with both versions of PHP, a necessary feature for
many developers with long-term projects that go back a couple of years.

Many PHP developers overlook the benefits of a framework and simply look for premade
functions or classes to be used as includes in their scripts or, as with Perl, pullin modules that
chew up lots of time on the server and provide little customization. Cake, however, is thor-
oughly object-oriented in its scope. It supplies objects that can be implemented and modified
to your liking and is not just some module or set of includes that give you little control.

Rapid Development

Getting a web project off the ground can be cumbersome and technically demanding, espe-
cially when using older methods of development. Cake, however, makes the initial steps of
building a web application easy. Rather than run installation scripts from the command line,
Cake comes prepackaged as a folder you simply drop onto a server and is ready to run.

The command line does come in handy once you begin building onto the framework.
Later, I'll discuss Cake’s scaffolding features that cut down on routine development tasks.
With Cake, creating user flows in the application early on is simple and can improve com-
munication with clients. In some cases, a run-through of the application can be developed
in minutes, allowing the client to get an idea of the project’s architecture.

Once a project is fleshed out and launched, site maintenance is also improved thanks
to Cake. Because of its hierarchy and organization, as well as its effectiveness at limiting
redundancy, Cake helps developers adjust a web application on the fly. Cake also supports
test databases and URL routes for testing new features or versions of web applications on
the live setup.

Model-View-Controller

Cake enforces an MVC structure for your web applications. Basically, it effectively separates
typical operations into specific areas: models for all your database interaction, views for all
your output and displays, and controllers for all your commands/scripts for input and pro-
gram flow. The typical PHP application mixes each of these three functions in the same code,
making it difficult to maintain and debug.

This is the typical flow for PHP scripting (see Figure 1-1):

1. The client sends a request to a PHP script by typing a URL or clicking a link of some
kind.

2. The script processes the data and then sends the database requests directly to the
database.

3. The script receives any database output and processes the data.

4, The script generates output and forwards it to the client’s browser.

4

CHAPTER 1 © INTRODUCTION

-'.* T
=
R

Y -
< - ——
&/ Database
®

Figure 1-1. The typical flow for PHP scripting

In short, everything is contained in one PHP script. By using the include() function,
developers strip out common functions into other external files, which makes it possible to
reduce redundancy. The most complex PHP applications use objects that can be called any-
where in the application and modified depending on the variables and settings passed to
them. Developers, when using objects and classes, can structure the application in numer-
ous ways.

MVC improves upon the typical PHP flow and is an effective technique for making class
objects available over the whole application. The main goal behind MVC is to make sure that
each function of the application is written once and only once, thus streamlining code by
reducing redundancy. Cake accomplishes this goal by not only providing the resources to
make MVC possible but also by using a consistent method for where to store operations in the
application. Simply naming your own files a certain way allows Cake to piece together the var-
ious resources without using any code specifications.

MVC can vary depending on the framework with which you're working, but generally it
works as follows (see Figure 1-2):

1. The client sends a page request to the application, either by typing a URL or by clicking
a link of some kind. By convention, a typical URL is usually structured like this:

http://{Domain}.com/{Application}/{Controller}/{Action}/{Parameter 1, etc.}

2. The dispatcher script parses the URL structure and determines which controller to
execute. It also passes along any actions and parameters to the controller.

3. The function in the controller may need to handle more data than just the parameters
forwarded by the dispatcher. It will send database requests to the model script.

4. The model script determines how to interact with the database using the requests sub-
mitted by the controller. It may run queries with the database and do all sorts of handy
data-sorting instructions.

5. Once the model has pulled any data from or sent data to the database, it returns its
output to the controller.

6. The controller processes the data and outputs to the view file.

7. The view adds any design or display data to the controller output and sends its output
to the client’s browser.

CHAPTER 1 © INTRODUCTION

/_).',—-;.
- @ =

- -

— "
View Model d Database

A

—» Dispatcher — Controller

O) @

@

Figure 1-2. How Cake makes use of the MVC structure

The benefit of using MVC to develop web sites is that repeated functions or tasks can be
separated, thus allowing for quicker edits. It can even help in debugging. Say an error keeps
occurring during the interaction with the database. Usually the problem will be somewhere
in a model. Knowing that all database interactions occur in just one place makes it easier to
solve problems.

CRUD Operations and the Bake Script

Almost all web sites use CRUD operations: create, read, update, and delete. A blog, for exam-
ple, will need to create posts; users will need to be able to read each post; the author will likely
want the ability to edit the post in the future or update the post; and the author will also want
access for deleting posts.

Cake makes these operations a breeze with its automated CRUD functions. Instead of
writing each CRUD operation by hand, it has prebuilt classes that do it for you. Cake includes
the Bake script, a handy command-line tool that generates editable CRUD code based on your
database schema and customized parameters.

Scaffolding

Getting a web site off the ground is much easier with Cake’s scaffolding abilities. With just one
simple line of code, you can call out Cake’s prebuilt scaffold to render views based on the data-
base. In other words, it figures out how some standard interface views should work with your
database and outputs the HTML forms, all without you having to write one bit of HTML.
Although the scaffolding feature is not intended for full production views, it lets you begin
testing logic and functions without wasting time building views or HTML output.

Helpers

Cake comes with standard HTML, Ajax, and JavaScript helpers that make creating views much
easier. Your HTML output will be greatly facilitated by intuitive strings of helper code that render

CHAPTER 1 © INTRODUCTION

the markup for you. And getting Ajax to work, although a little tricky at first, is much easier and
far more efficient than if you had to worry about DOM peculiarities. What's more, you can down-
load other helpers written by fellow Cake developers to boost the strength of the framework or
even write your own to cut down on repetitive or clumsy markup.

Customizable Elements

You can customize each of Cake’s features to fit your application. For example, you can bring
FCKeditor, the popular WYSIWYG editor for web browsers, into Cake as a plugin. Using cus-
tomized helpers, you can bring all the functionality of FCKeditor into your Cake application
and actually trim out extra lines of PHP code to get it working. Later, I'll discuss other Cake
elements such as components, helpers, and plugins, all of which can be customized by you for
your specific needs or brought into your application as third-party resources from other
developers.

Large Community

Should you need help down the road, a massive online community exists to provide it. In real-
ity, the PHP community is the largest open source programming group on the Web, so if you
need a quick workaround for a problem in Cake, someone somewhere will have some help for
you, usually within minutes. Cake specialists have also established online forums, chat rooms,
and blogs to help others improve and learn the framework. Compared to other PHP frame-
works, this community is one of the largest on the Web.

Code samples are a must for anyone getting involved in web development. PHP domi-
nates this field, and Cake has a growing repository of code samples as well. If you are consid-
ering another framework, this fact just may tip the scales in favor of Cake if you are wanting
to piggyback on someone else’s work.

More Features

Cake aims to simplify the development process for building web applications by providing
an overall method for organizing the database and other resource files that cuts down on
code. Although this general approach to web programming is itself a major feature Cake
offers, its repository of other powerful resources such as built-in validation, access control
lists (ACLs), data sanitization, security and session handling components, and view caching
make Cake worth any serious developer’s time.

Summary

As a framework, Cake inverts the flow of control and provides you, the developer, with an
effective method for extending your web application in less time. Cake is built in PHP and
therefore allows you to take advantage of a web-based framework without having to learn or
use another programming language. Other benefits to using Cake include its MVC structure,
which separates resources and functions of the application; the Bake script, which automates
CRUD scripting; the scaffolding features, which reduce basic view rendering into one line of
code; the built-in helpers, which reduce HTML output operations into single-line call-outs;
and the large and still growing Cake community.

PART 1

Getting Started

CHAPTER 2

Installing and Running CakePHP

One of Cake’s selling points is its ease of installation. At this point I could add a long tutorial
explaining how to install Cake for every possible server configuration, but I won't. Cake should
be simple enough to install, and if you do experience trouble getting off the ground with it,
chances are the problem lies in a more unduly complex server configuration. Appendix A
addresses some of the choices beginners make in setting up a localhost environment in case
you run into installation questions during this chapter. By and large, any troubles getting Cake
to work are due to localhost issues, not enterprise server or web service provider setups.

Throughout this book, you will develop some Cake applications that I expect you to build
on your PC and not on a web server. All my instructions, therefore, will be for a localhost envi-
ronment, not a remote one, though the setup routines I discuss in this chapter apply to a
remote installation as well.

A Simple Start: Running Cake on a
Localhost Environment

Before you begin running Cake, you will need the following already working on your localhost
(see Appendix A for more details about installing these components):

* Apache server with mod_rewrite
e PHP 4.3.2 or greater

* MySQL (Cake does support PostgreSQL, Microsoft SQL Server 2000, Firebird, IBM DB2,
Oracle, SQLite, ODBC, and ADOdb, but I'll stick with MySQL in this book because it’s
the default database engine in Cake)

All three of these are easily installed with programs such as XAMPP by Apache Friends
(www.apachefriends.org) or MAMP by Living-e (www.mamp. info). Or if you prefer, you can
manage a custom HTTP server setup for each on Windows, Linux, and Mac operating sys-
tems manually. In your web browser, you should be able to access a root folder on your
localhost by entering http://localhost in the address field.

http://www.apachefriends.org
http://www.mamp.info
http://localhost

10

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

Getting Cake

The first step is to download the latest stable release of Cake version 1.2 from www. cakephp.org.
Once you've downloaded and extracted the Cake release file, you should end up with a folder
named something like cake 1.2.x.xxxx with a handful of folders inside it (see Figure 2-1).

|:| .htaccess
£ app
B cake
g docs
¢ index.php

g vendors

Figure 2-1. Contents of the main Cake install folder

The app folder is where almost everything happens in your application. It houses all the
controllers, models, views, layouts, and all other JavaScript, CSS, Flash, image, and other files.
Of course, if you take a peek inside the app folder, you'll notice that all these areas of the appli-
cation are organized into several subfolders.

The cake folder contains all of Cake’s libraries and scripts. You can replace this folder
with newer releases of Cake, and it should still work with the application. Inside, you will
find dozens of individual PHP files that contain all of the classes and scripts necessary for
Cake to run.

The docs folder holds change log information and other readme files.

Any other non-Cake PHP scripts you intend to work into your application are stored in
the last folder, vendors. Later in the book, you'll also use vendors to store some fancy PHP
scripts that work independently of Cake.

Launching Cake

Running Cake is really this simple: rename the main Cake folder to how you want the
application to be called in the browser and drop it into your localhost root. I have named
mine first_app and have placed the folder in my localhost root. This root folder will
depend on how your localhost is configured. It may be named webroot, www, or public_html
(these are some of the most common folder names for the server root directory). Be sure
to identify where your localhost root is and drop the renamed Cake folder into it. By typing
http://localhost/first_app in my web browser, I get the Cake welcome screen (see

Figure 2-2).

http://www.cakephp.org
http://localhost/first_app

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

CakePHP: the rapid develop php fr. rk: Home
i 3 http:/ flocalhost/first_app/

~ Q- Google

CakePHP: the rapid development php framework

Release Notes for CakePHP 1.2.0.6311 beta.

Read the release notes and get the latest version

Notice (1024): Please change the value of 'Security.salt' in app/config/core.php to a salt value

E] Talr

Your tmp directory is writable.

C

The FileEngine is being used for caching. To change the config edit APP/config/core.php

Your database configuration file is NOT present.
Rename config/database.php.default to configq/database.php

Editing this Page

To change the content of this page, edit: APP/views/pages/home.ctp.
To change its layout, edit: APP/views/layouts/default.ctp.

You can also add some CSS styles for your pages at: APP/webroot/css.

|

Figure 2-2. The Cake welcome screen

If you get a screen like this, congratulations—Cake is now running. If for some reason you
get this screen but it appears without any graphics or colors or (worse yet) if the screen is just
blank, you may be encountering one of the following errors.

Caution A lot of what is discussed in this chapter will depend on how you configure your web server. If
the localhost is accessed by typing http://localhost:8888 or some other address, make sure you substitute
my instructions with the appropriate settings. You should be versed in localhost setups before launching
Cake, especially since so many variations of localhost setups exist that | won’t discuss in detail here.

Permissions Error

There may not be the necessary file permissions in place. If this error occurs, you may see a
blank screen or a 403 error. The 403 HTTP server error occurs when the server denies access to
whatever is being requested by the user. Several settings, file permissions, or PHP configura-
tion bugs could trigger the 403 error. To fix this, set the first_app folder permissions to 0755

1

http://localhost:8888

12

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

with chmod in the command line, or use your operating system to give read, write, and execute
permissions to the user and read and execute permissions to the group:

chmod -R 0755 /path/to/cakephp/folder

Refresh the first _app URL; if you see the screenshot shown in Figure 2-2, the problem is
fixed.

USING THE COMMAND-LINE INTERFACE

Whether you are working in Windows, Mac 0S, or Linux, the command line will be necessary later to take
full advantage of Cake’s features. Mac and Linux users should have no problem running the command line
because it is built into these respective operating systems. Like the web server setup, running the command
line can take on multiple configurations that would be too exhaustive to cover here. Be sure to get the com-
mand line working in such a way that you can run standard Unix commands. Mac users should run the
Terminal application to run their commands. Linux users will undoubtedly be familiar with the Linux console
to run shell commands. Windows users may need to install a command-line interface (CLI) to run all the nec-
essary Unix commands. | recommend using Cygwin (www. cygwin.com) or MinGW (www.mingw.org) to
launch the command line in @ Windows environment.

Apache AllowOverride Error

This error occurs when you see the content, but it doesn’t appear like Figure 2-2; no color, no
styles, no layout, and no font changes appear—it’s just black text on a white background. If
you continue with the rest of the tutorials here, you'll be able to see Cake running, but some
things will not work properly or you may notice inconsistencies when you begin to expand
your Cake application, especially with the scaffolding and the styles. This is a little more com-
plicated to fix than the permissions error, but it’s not really difficult.

You'll need to find the httpd. conf file in your localhost setup. It’s usually stored in a folder
named conf, bin, 1ib, or var. You can edit the httpd. conf file with any plain-text editor.

Search for a chunk of code that looks something like this in the httpd.conf file:

<Directory />
Options Indexes FollowSymlLinks
AllowOverride None
</Directory>

A~ W NP

Don'tletline 1 throw you off. The slash after Directory is referring to the root folder. If you
need to apply these changes to the specific Cake application folder, then add the path to Cake
rather than the root folder:

<Directory /path/to/cake>

Change line 3 from AllowOverride None to AllowOverride All, and restart Apache. If
you see the regular Cake welcome screen (shown earlier in Figure 2-2) once you launch the
first_app URL, the problem is fixed.

http://www.cygwin.com
http://www.mingw.org

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

Running the Setup Routines

Every time you install a Cake application on your localhost, you'll follow these routine
procedures:

1. Prepare the tmp folder.
2. Change the Security.salt value in app/config/core.php.
3. Enter MySQL database connection settings.

4. Design your database schema (unless you are using an existing schema).

Preparing the tmp Folder for Cake to Read and Write Temp Files

The tmp folder is located in the app folder. By default, its permissions are set to 0777, but it is
possible for it to change to a server permissions default. The Cake welcome screen tells you
whether the tmp folder is writable. If this bar lights up green, then the tmp folder doesn’t need
to be adjusted. If not, run the following at the command line to change the tmp permissions
and its enclosures:

chmod -R 0777 tmp

Then refresh the startup screen. It should change to “Your tmp directory is writable” (see
Figure 2-3).

Your tmp directory is writable.

Figure 2-3. Cake tells you whether your tmp folder is writable.

Changing the Security.salt Value

When a session is initialized, the server groups a set of requests together using a session ID, a
database, or a cookie. Whatever the method, the idea behind the session is that the server can
maintain a pseudoconnection with the user, even though the communication could get inter-
rupted along the way. You've run into this when you've logged into your web-based e-mail
account or some similar web service. The site application knows that you're logged in and
maintains that status until you log out or a certain length of inactivity transpires.

Luckily, Cake makes session handling easy. But you need to make sure that its session
string is secure. You wouldn't want any users to toy with the session handling in an effort to
break into your applications.

To add some security to the session variables, open the app/config/core.php file, and
locate line 153, or thereabouts. You'll find a line that looks like this:

Configure::write('Security.salt', 'DYhG93boqyJfIxfs2guVoUubWwvniR2GoFgaComi');

This line is how Cake writes definitions. Rather than use the PHP define() function,
Cake’s core configuration uses the Configure: :write() function to better manage global

13

14

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

variables. Here, the Cake core uses the Security.salt definition for creating hashes and other
session variables.

Because that funky line of characters comes with Cake, everyone who uses Cake has the
same session string. Let’s change the second portion, the character string, to something
unique. Go ahead and fill in any alphanumeric string, about 40 characters in length, and paste
it here. I ended up with this:

Configure::write('Security.salt', 'mEayuDrXBhzZkdiEJgFzPXvbcBrmKo9CdVGtKyPBr');

Now Cake has a salt value for when it needs to run any security configurations and hash-
ing that aren’t the default value.

Entering MySQL Connection Settings

Cake needs to know where your databases are located to save and retrieve data. You do this
by editing the app/config/database.php.default file. You'll need to rename the file to
database.php (remove the .default from the end) and edit it in the plain-text editor of your
choice. However your localhost is set up, you will need to know the MySQL login and pass-
word for Cake to connect to the database. This is generally set to a default value unless you
configure the administrator’s account (for example, the login and password have default
values of root and so forth). In the database configuration, there will be a place for you to
enter the login and password values. Listing 2-1 shows the default DATABASE_CONFIG class in
the database configuration file.

Listing 2-1. The Database Configuration File

1 class DATABASE CONFIG {

2

3 var $default = array(

4 "driver' => 'mysql’,

5 'persistent’ => false,

6 "host' => 'localhost',

7 "port'=>"",

8 'login' => ‘'user',

9 "password' => 'password',
10 'database’ => 'project_name',
11 "schema'=>"",

12 "prefix' = "',

13 "encoding'=>""

14)5

15

16 var $test = array(

17 "driver' => 'mysql’,

18 'persistent’ => false,
19 "host' => 'localhost',

20 "port'=>"",

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

21 'login' => 'user’,

22 "password’ => 'password',

23 'database’ => 'project name-test’,
24 "schema'=>"",

25 "prefix' => "'

26 "encoding'=>""

27)5

28 }

In this class DATABASE_CONFIG, there are two databases it will connect with: default and
test. If you have no intention of creating a separate test database, you can delete lines 13-21.
Plop your database settings into the necessary lines, as shown in Listing 2-2.

Listing 2-2. Adding the Localhost Settings to Your Database Configuration

3 var $default = array(

4 "driver' => 'mysql’,
5 'persistent’ => false,
6 "host' => 'localhost',
7 "port'=>"",

8 "login' => 'root',

9 'password’ => 'root’,
10 'database'’ => 'cake',
11 "schema'=>"",

12 "prefix' = '',

13 "encoding'=>""

14)5

In this tutorial, you're creating a generic Cake application. Later in the book, you'll name
the database based on the application you're building, but for now, you'll just create a data-
base called cake. The settings shown in Listing 2-2 will tell Cake how to connect with this
database, but you aren’t done yet...you need to create the database!

Designing Your Database Schema

It’s best to know how the database design will work from the outset. So, take some time to get
at least a moderate idea of the program you're building first, and then build some tables and
fields to fit that design. Chapter 4 will walk you through a detailed tutorial on how to design
the schema to fit Cake applications. For now, just remember that building the structure of the
database naturally occurs here when installing a new Cake application.

This application is very simple with nothing really in the database. You just want to
connect Cake to the database. Fire up the MySQL application of your choice (I'm using
CocoaMySQL), and connect to MySQL. Create a database called cake.

Now that a database actually exists for Cake to connect with, you can go to
http://localhost/first_app in your browser, and it will display a new screen, as shown
in Figure 2-4.

15

http://localhost/first_app

16

CHAPTER 2 © INSTALLING AND RUNNING CAKEPHP

‘CakePHP: the rapid éevelqnpmen:k_"ghg fmmework: Il-llun'!_e\
- i £ http: //localhost/first_app/ Google

& CakePHP: the rapid development php framework

Release Notes for CakePHP 1.2.0.6311 beta.

Read the release notes and get the latest version

Your tmp directory is writable.

The FileEngine is being used for caching. To change the config edit
APP/config/core.php

Your database configuration file is present.

Cake is able to connect to the database.

Editing this Page

To change the content of this page, edit: APP/views/pages/home.ctp.
To change its layout, edit: APP/views/layouts/default.ctp.

You can also add some CSS styles for your pages at: APP/webroot/css.

vl

Figure 2-4. The welcome screen when everything is ready to go

Cake is now installed and working correctly. It’s time to dive in and start building web
apps!

Summary

Installing a new Cake application is simple and requires very little configuration to get up and
running fast. Just remember to unpack the main Cake install file and rename the resulting
folder to whatever you want your application to be titled. By checking the welcome screen,
you can determine whether Cake is running correctly or whether a localhost error is present.
Correcting errors is not too difficult. Just set the permissions correctly or adjust your Apache
server configuration to handle Cake, and those errors should, in most cases, disappear. Your
Cake application will require a few setup routines such as preparing the tmp folder, changing
the Security.salt value in the core configuration, and connecting Cake to a working data-
base. After these routines are complete, your application will be ready to be extended by
creating models, views, and controllers. The next chapter explains how to add to your new
application via a simple to-do list application using Cake’s built-in scaffolding feature.

CHAPTER 3

Creating a To-Do List
Application

Now that you've set up Cake on your own computer, it’s time to begin building applications.
In this chapter, you'll create a to-do list application in Cake using the built-in scaffold feature.
This is the simplest approach to application building in Cake. It will only require creating a
couple of plain-text files as well as a database with a couple of tables. You won't deal too much
with the design but rather let Cake generate all of your HTML output.

Exploring the MVC Structure

Cake is designed using the common MVC structure. What this means is that the framework
splits apart different processes into separate areas (see “Model-View-Controller” in Chapter
1). In the app folder, you will notice a folder for the program’s models, a folder for controllers,
and a folder for views. Right now the application is bare, so you won't find any files inside
these folders. As you build the application, you'll create the necessary models, views, and
controllers that correspond to the functions of the application.

In a way, these pieces of the framework talk to each other. Say, for example, that the
application needs to run a user login process. It takes the user to a screen that displays two
fields: a username field and a password field. This display, the actual HTML, would be con-
tained inside a view file stored somewhere in the app/views folder. When the user fills out the
login information and clicks Submit, the form gets processed in one of the controllers. At this
point, the controller needs to find out whether the given username and password match in
the database. So, the controller will talk to its corresponding model asking whether the sup-
plied values match a record in the database. The model replies with a true or false response,
and from there the controller decides either to return to the login screen and display an error
message or to allow the user access to another area of the site.

The following is the login process in the MVC structure (see Figure 3-1):

1. The client enters a username and password and then submits the form.
2. The view that contains the form passes the form data to the controller for processing.

3. The controller sends a find request to the model asking whether the submitted infor-
mation matches anything in the database.

4. The model generates the query and runs it through the database.
17

18

CHAPTER 3 = CREATING A TO-DO LIST APPLICATION

5. Based on the response in step 4, the model returns either a true result or a false result
to the controller.

6. The controller processes the result and fetches the appropriate view to be sent to the
client (either a success screen or an error message).

7. The final output view is displayed to the client.

Controller
Q — ———
Ul (Y/ ® @ /* -
- - ® H_D_ataba;
View @ Model

Figure 3-1. A flowchart of a login process in the MVC structure

MVC structures are useful because they allow you to separate the different processes of
the web site. When needing to change or add new form fields, for instance, you need only to
locate the appropriate view file and make the change. Instead of sifting through PHP output
functions or scripts, you know that all the views are contained in the views folder. The same is
true of controllers and models. Certain functions are available across the whole application
without requiring any includes. Managing all the paths for include files or libraries in a non-
MVC application can become difficult as the program grows; in this regard, the MVC
architecture helps keep the application more agile. Table 3-1 explains what the models, views,
and controllers handle; where these files are stored in Cake; and how the files are named.

Table 3-1. MVC Structure Areas

File Name and Location in

Area Type of Process Application

Model Handles all database functions app/models/{Model name}.php

View Handles the presentation layer and displays, app/views/{Controller
including Ajax output name}/{View name}.ctp

Controller Handles all logic and requests app/controllers/{Controller

name} controller.php

CHAPTER 3 © CREATING A TO-DO LIST APPLICATION

The To-Do List’s MVC Layout

The first order of business is to understand how the MVC structure will work with the specific
needs of the application. For the general to-do list application that you'll build, you will need
to arrange certain processes throughout the MVC structure.

The to-do list application will have items that the client will want to complete. For each
item there will be a description or title, a due date, a priority level, and a true/false field for
whether the item is completed. So, in the MVC structure, you will split the processes into their
respective elements. First, you'll create a controller for the items the client will want to save.
Second, you'll create a model that will fetch items from the database and manage any other
data-handling processes. Next, you will have Cake generate the views that will allow the client
to list, edit, delete, and create new items. That’s all there is to it.

Before you can begin saving items in the database, you must first create the database
tables and fields. In general, when designing an application, the order of creation goes some-
thing like this:

1. Design and create the database.
2. Create models.

3. Create controllers.

4, Create and adjust views.

You already have a folder in your localhost root named first_app that has Cake 1.2 run-
ning. Let’s rename this folder to todo and build the database. You should be able to launch the
to-do list application by typing http://localhost/todo.

Designing and Creating the Database

In thinking about how the database should be designed, first you need to know something
about the application you're building. Most programmers like to sketch use cases or flow-
charts that explain step-by-step how the user will interact with the program and how the
application will react to their inputs. I have already discussed how the application will work
under an MVC structure; translating this into the schema so that the database works correctly
with Cake is the next step.

Note If you haven't already done so, make sure you have created a database to be used with this
application and put the configuration parameters into the app/config/database.php file.

Create a table in the database and name it items (be sure to use lowercase). Then give the
table the fields shown in Table 3-2.

19

http://localhost/todo

20

CHAPTER 3 = CREATING A TO-DO LIST APPLICATION

Table 3-2. The To-Do List Application Table Structure

Field Name Field Type Length Other Parameters

id int 11 Set to unsigned; give it the primary key, and set it to
auto_increment.

name varchar 255

date datetime

priority int 2

completed tinyint 1

Giving each record a unique id value is essential for Cake to function without trouble.
This application is simple, so you may be able to get by without creating an id field set to
auto_increment. However, it's good practice to make sure that all your records in the database
can be identified by a unique value and that it's named id, because then Cake can generate
scaffolding around your table without any code on your part. Once you begin creating associ-
ated tables, then it will be mandatory to include an id field.

Note When specifying how to design the database schema, | will provide you with MySQL dump table
creation code rather than walk through each field and its types and values (for example, “id™ int(11)
unsigned NOT NULL auto_increment).

Creating Models

Now that you have a table in the database, Cake will need a model file to talk to that table and
fetch results for the application. In the app/models directory, create a new file named item. php.
This file name conforms with Cake’s naming conventions, and you will need to make sure
when creating models that you name the files correctly. Should you give this file a different
name, you would then have to specify the nonstandard file name in the controller and
(depending on what accesses the model) elsewhere too. Remember the inversion of control
structure of the framework—Cake will automatically look for a file named item.php in the
app/models folder, which saves you from writing unnecessary code.

In the item.php file, paste the code shown in Listing 3-1.

Listing 3-1. Contents of the app/models/item.php File

<?
class Item extends AppModel {
var $name = 'Item’;

}

>

[B S

CHAPTER 3 © CREATING A TO-DO LIST APPLICATION

Caution Depending on your localhost or remote hosting setup, you may need to change line 1. In all the
examples in this book, I'm using a type of PHP shorthand. In some setups, though, PHP shorthand is not
available. If this is the case, just use <?php on line 1 instead. Semantically, shorthand makes your code
cleaner and easier to read, so to improve the readability of this book, I'm going to stick with it. You will want
to double-check the examples if you have set up your localhost differently or if you're sure that PHP short-
hand is not available on your setup.

What’s Happening in This Model

All models will always contain some of the same header code. First you will notice on line 2
that you have created a PHP class named Item and that this class extends another class named
AppModel. Cake has already created the necessary PHP objects to connect to the database, so
in a way all you're doing is adding to that preconfigured object. For good measure, line 3 gives
an object variable named name the value of Item, which allows for backward compatibility with
PHP 4. Lines 4 and 5 close out the file.

Model Possibilities

Inside this class you can place model functions or specify table associations that directly

interact with the items table in the database and return results. Possible functions include

field validation, complex find queries and operations, and elaborate table design cleanup.
For now, the Item model is ready to go. Let’s make the controller.

Creating Controllers

In the app/controllers folder, create a new file for the items table in the database. Controllers,
by default, link up to the table after which they are named. In this case, you have created an
items table, so the convention in Cake is to name the controller file after this table, using an
underscore and the extension controller.php. So, name this new file items_controller.php,
and place it in the app/controllers folder. Paste the code shown in Listing 3-2 into this file.

Listing 3-2. Contents of app/controllers/items_controller.php

<?

class ItemsController extends AppController {
var $name = 'Items’;
var $scaffold;

oUW N

21

22

CHAPTER 3 = CREATING A TO-DO LIST APPLICATION

What'’s Happening in This Controller

Let me explain what’s happening in Listing 3-2.

Line 2 is necessary for Cake to run the controller. Just as it does with the model, Cake is
already starting some of its own PHP code in what it calls the controller. Next, it moves to any
objects that extend this parent class. These will include the application’s own controller, or
AppController, and any other controller files it finds in the app/controllers folder. All the way
down, you need to tell Cake whether you've inserted your own AppController or individual
controller file, and you do this by starting a class and extending the previous level of con-
troller. In this case, you created the ItemsController class, and it extends from the
AppController.

Line 3 names the controller Items for the same reasons the model also set the object vari-
able to $name earlier.

In line 4, you've called out one of Cake’s built-in features: the scaffold. You can include
this line in any controller, and Cake will build its own set of HTML forms and tables around
what it finds in the database table. In a second, you'll see how helpful this one little string of
code can be.

Controller Possibilities

Because the controller controls what happens in the application, it will likely be the most vari-
able of the other resources I've discussed to this point. In a sense, it behaves like the “brain” of
the application and coordinates the processes in the models and views. A good MVC applica-
tion’s controller will generally act in this role with most of the custom logic placed here. In
Cake, the controller contains a series of functions that are entered like normal PHP functions:

function foo() {
}
Cake’s helpers and components can be pulled into a controller and used in the application,

as well as third-party components, plugins, and helpers. Later you'll build more advanced con-
trollers that make use of all these possibilities.

Launching the Application

Launching Cake applications is always done by entering the appropriate URL in a web
browser. All URLs are sent to the dispatcher or Cake’s central routing engine that handles all
HTTP requests. The dispatcher parses the URL and resolves it. You can manipulate how the
dispatcher does this by changing routes, which is explained in Chapter 10.

CHAPTER 3 © CREATING A TO-DO LIST APPLICATION

How Cake Resolves URLSs

By default, the URL structure is delimited by slashes, not the typical messy characters such as
the question mark or ampersand that you have undoubtedly seen with many web sites using
PHP There is a growing trend for web sites to be optimized so that they show up as high as
possible on the result lists returned by search engines. This has led many developers to forego
the traditional way of passing URL routes to a PHP script, instead using slashes to separate
URL elements. Usually called friendly URLs, these paths are more easily understood by users
and search engines, which are themselves beneficial to your application. Friendly URLs also
allow Cake to better maintain a consistent reference system within the application, which ulti-
mately makes the programming aspect easier and cleaner for you, the developer.

Cake’s default routes follow this pattern:

http://localhost/{Application}/{Controller}/{Action}/{Parameter 1}/=
{Parameter 2, etc.}

So, following the Cake defaults, to launch the application, you enter the following in your
web browser:

http://localhost/todo

You should see the same Cake welcome screen that you got after installing Cake. You
haven'’t set up a default or base route for Cake, so it will continue to show the welcome screen
by default.

Since you have created the Items controller, to access that area of the application you
plug in items in the controller spot in the URL:

http://localhost/todo/items

Creating the Scaffolding

Here is where Cake’s scaffolding comes in. Recall that in Listing 3-2, line 4, you called the
object variable $scaffold. When the dispatcher receives the URL and finds that you are
requesting the Items controller, it looks for a default function named index(). First, how-
ever, it notices that you have told it to render the scaffolding (line 4), and since you haven’t
specified a function in the controller called index() yet, the dispatcher will fetch the built-in
views and render a standard list view for the items table in the database. After launching the
Items controller in the browser, you should get a screen like Figure 3-2.

23

http://localhost
http://localhost/todo
http://localhost/todo/items

24

CHAPTER 3 = CREATING A TO-DO LIST APPLICATION

206 CakePHP: the rapid development php framework: Scaffold :: Index :: Items
[£ | | ¥ http://localhost/todo/items Q' Google

& CakePHP: the rapid development php framework

Items

Page 0 of 1, showing 0 records out of 0 total, starting on record 0, ending on 0

Id Name Date Completed Actions
New Item
Num. Took|
Nr Query Error Affected owe ting)
1 SELECT COUNT(*) AS “count™ FROM ‘items™ AS “ltem™ WHERE 1 = 1 1 1 1
2 SELECT “ltem™.’id", “ltem . name”, “ltem". date”, "ltem’. completed” FROM 0 0 0
“items” AS “ltem” WHERE 1 = 1 LIMIT 20

Figure 3-2. Cake’s scaffolding feature rendering a list view of the items table

Notice that no items appear in this list view; you haven’t created any yet. Normally, you
would have to go into the Items controller, create a new function named add(), and then spec-
ify each operation for adding a new record in the items table. But Cake’s scaffolding will
handle all the CRUD operations for you. You can see the link on the screen named New Item.
Click it, and you will have a complete add view generated by the scaffold (see Figure 3-3).

Scaffolding is useful because in one line of code you can translate typical database-
handling methods into a web interface. In a short amount of time, you can interact with the
database through your Cake application and, consequently, the browser as well. Later, you'll
build more dynamic schemes that will use multiple tables simultaneously, and the scaffolding
will tell you quickly whether you've effectively linked the associations in the models.

Valuable as it is, Cake’s scaffolding does have some limitations. For example, you cannot
easily change the look or order of the fields in the forms. To do that, you need to generate a dif-
ferent view file separate from the scaffolding views, which would also require you to write the
whole add() and edit() functions in the Items controller. For this and other reasons, the scaf-
fold feature is not intended for production-level output. You will discover more about its
utility, however, as you create more elaborate skeletons from which to build more powerful
applications.

CHAPTER 3 © CREATING A TO-DO LIST APPLICATION 25

[sHeNa] CakePHP: the rapid development php framework: Scaffold : Add :: ltems
| E + [¥ http:/ /localhost/todo/items/add ‘(Q- Google

& CakePHP: the rapid development php framework

New Item

Name

Cet Chips & Dip for Bowl Game Party

Date

[January Fi«l‘r 1 B 2009%—-}-{ 8 I-H:'m[am I-i-!

] Completed

(Submit
List Items
Nr Query Error Affected Num. rows Took (ms)
1 DESCRIBE “items” 4 4 102

Figure 3-3. Adding a new item to the database using the scaffolding views and functions

Summary

In this chapter, you used the scaffolding feature to create a basic to-do list application in Cake.
The MVC architecture in Cake made it possible to use a minimal amount of code to get the
program running, and thanks to the scaffolding feature, you can even interact with the data-
base without writing any HTML or form processes. Next, you will expand on this application
and improve it using other tools, but for now it will be worth it to practice this routine of set-
ting up a quick Cake application with models, controllers, a database table, and a scaffold
until you can do this in about five minutes or less.

PART 2

Developing CakePHP
Applications

CHAPTER 4

Naming Files and
Designing the Database

In the previous chapter, I discussed how Cake was able to wrap some standard web function-
ality around the database structure to produce a to-do list application. Although you could
change some things in the application to improve the user experience, overall Cake handles
the typical operations of adding, deleting, editing, and viewing records in the database with-
out much code. This is possible because of an important aspect of Cake: convention. Because
you followed Cake’s conventions when naming and setting up the database table, when creat-
ing the model and controller files, and when entering the URL in the browser to run the appli-
cation, Cake was able to piece together your various operations and deliver a handy web
program in little time.

Convention Over Configuration

Cake’s developers adhered to “convention over configuration” when building the core, mean-
ing they intended not only to provide a framework chock-full of features and functions but to
develop an overall method for building web applications. In other words, their philosophy is
that how you go about developing web programs is just as important as what you are building.
For example, this is why the app folder is structured the way it is—to provide conventions for
dividing up the operations of the web application into more standardized areas and to provide
conventions for which parts of the application serve which functions. The conventions you
learn when using Cake can save you just as much time as the useful tools that come with Cake.

Intercepting Cake

An effective way of visualizing the “convention over configuration” idea is to imagine the
frame of a house. None of the appliances, wiring, walls, windows, or doors is present; only a
wood frame that delineates the structure of the house is present. If the construction crew was
to suddenly assemble the house without your input, they would naturally place doors in cer-
tain areas, place windows in other areas, and finish the walls with particular materials.
This is how Cake is assembled when the application launches. It has an overall conven-
tion for how it pieces together the application, and knowing that the main objective of the
framework is to produce a web-based application, it will automatically go about it in a certain
way. In dealing with the controllers, for example, Cake will render its own scaffold or look for
specific view files unless you intercept it and tell it otherwise. 29

30

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Other frameworks such as the Zend Framework and Struts go about building applications
in a different way. Imagine that the construction crew gave you a catalog of possibilities from
which to furnish the house, but in the end, they make you do the assembly work. Some frame-
works give you a large array of functions and tools to use in your application but leave the
configuration up to you. In a sense, you could use these frameworks in any previously built
PHP application because they aren’t there to supply you with a specific convention; they are
just nice collections of typical web application operations bundled together.

Cake, in a sense, is one large (rather blank) PHP object, and your job is to add, here and
there, your custom pieces to that object. This object has the capability of providing you with
many tools, like the many possible configurations of a house, but by default few of these tools
are executed. You draw on them as you extend objects with your own classes and functions.

Because of the convention the Cake developers used to build the framework, there is an
expected method by which you extend Cake’s objects. From naming tables in the database to
coding large chunks of operations, keep in mind that each time you stick to convention, you
avoid having to specify with lines of code where the different pieces of your application are
located and how they should be assembled.

Starting with the Database

Conventions in Cake begin with the database. If you start with designing how your application
will store and work with data, then the rest of the code can more easily fall into place. If you go
wrong, however, then you will most certainly discover bugs in the application that will need
adjustment to conform to Cake’s conventions. Before I show how to build more elaborate Cake
applications, I will take the time to nail down Cake’s MVC structure and other naming and
database conventions.

MVC Default Behaviors

When a Cake application launches, various PHP objects that are already assembled in the
Cake libraries are run. The advantage of the MVC structure is that models, views, and con-
trollers are specifically designed for specific operations. Thus, a model, by virtue of being a
model and not something else, is automatically expected to do some database operations.
These default operations could be mere placeholders, or they could have some default func-
tions, depending on how the framework operates when launched.

Cake automatically assembles an object for each part of the MVC structure. The
Controller object automatically behaves a certain way when called, the Model object does as
well, and so on. You extend objects in PHP when you create a new instance of a class object
and specify that this instance is an extension of an existing object. For example, you can create
your own AppController object as an extension of the Controller class object like this:

class AppController extends Controller {

PHP’s syntax is such that you add on extends and the name of the class object to be
extended, which in this case is the Controller object. Thus, when the AppController object
is called, everything contained in the Controller object is now called as well.

When the controller class object is called, it will automatically look for a model and a
view to do its work. You specifically choose the controller to launch by the URL you enter,

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

but you cannot enter a URL to call only a model or a view. Cake’s dispatcher will funnel all
requests through the Controller object, so you must place other objects in the way to inter-
cept the default actions that object will perform when called. If you enter a URL and the
dispatcher cannot find a controller object that matches the name in that URL, then the
Controller object, by default, is set to display an error message. Knowing these default
behaviors and knowing where you can intercept them and install your own methods are
what coding in Cake is all about.

In the model, for example, each time a record is saved to the database, certain functions
are executed. You can intercept this default behavior by entering the beforeSave() function in
the model with some of your own logic. This intercepts the default save() function the Model
object uses to insert records into the database and allows you to check the data against your
own custom parameters before saving them.

As the dispatcher resolves URLSs, it will look to files named appropriately, and otherwise
it will return errors. When controller actions are run, the Controller object looks for specific
view files stored in the appropriate area for the controller to execute properly. Throughout
the entire Cake application, certain conventions are at work. In a way, the main content of
this book is to spell out all these conventions and how to work with them to produce web
applications. First I'll describe how to name files and how to name class objects in these files
appropriately. By placing files in the correct areas with correct names and containing correct
class names, Cake will know that you are intercepting its default operations and will execute
your custom objects instead. The more objects you extend from Cake’s default objects, the
more elaborate the application.

Naming Conventions

Simply put, if you don’'t name your files correctly, Cake won't be able to piece the different
parts of the application together and will supply you with error messages. Each element of
the site must follow certain naming conventions so that when Cake looks for a needed
resource, it can find it and run it.

You probably noticed in Chapter 3 that you gave certain names to the model and con-
troller files to make the to-do list application work. I explained that these files have to match
up with the table in the database and contain some typical naming schemes when entering
PHP code. What if you needed some more elaborate naming schemes to meet the demands
of your project? The following are the basic rules for naming files in Cake and how to incor-
porate more complex names into your Cake application for more custom needs.

Naming Controllers

Each controller name must match a database table name. If you decide to create controllers
with names other than tables of the database, you should actually not create a controller but
use a component instead (you'll learn more about components in Chapter 11). The names of
database tables as well as controllers are lowercase and in plural form. For example, a table
containing records for orders in a shopping cart application would be named orders. The con-
troller file takes the name of the table it matches and appends an underscore and the word
controller, and it is a PHP file, so it will carry the .php extension. Thus, the Orders controller
would be named orders_controller.php and would be stored in the app/controllers folder.

31

32

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

In the controller file you will need to extend the AppController object already being
called by Cake when the application is launched. To do so, another important convention is
at work. Listing 4-1 shows how to name the controller class in the file and how to extend the
AppController object.

Listing 4-1. Inside the Controller

1 <?
2 class RecordsController extends AppController {
30}
4 2>

Notice that on line 2 in Listing 4-1 I've extended the AppController object by starting a
new class and naming the class RecordsController. The name of the class will always need to
match up to the file name of the controller and be camel case! with the word Controller. If,
for example, this controller were for the orders table, line 2 would contain the class name
OrdersController, and the file name would be orders_controller.php.

If you follow this convention, Cake will be able to dispatch the request to the correct
controller and run the correct action.

Naming Models

Models are named like controllers except they represent interacting with one instance of the
database table at a time, so they will take on a singular, not plural, form. Using the earlier
shopping cart example, the corresponding model for the orders table would be named
order.php and be stored in the app/models folder. Notice that for models, you do not append
an underscore plus model to the file name.

In Listing 4-2, you can see a similar beginning code structure for the model PHP file that
you use in the controller file; I've created a new class object that extends the AppModel object
created by Cake, and I've named it Record in conjunction with the naming convention that
model names be singular. In the Order model, line 2 would change to a class named Order,
thus linking it to the orders database table.

Listing 4-2. Inside the Model

1 <?
2 class Record extends AppModel {
30}
4 ?>

1. Camel case is used frequently in Cake as a convention for naming classes. Sometimes called medial
capitals, it is the practice of joining words or phrases without spaces and capitalizing them within the
compound. Think of the uppercase bumps in the word like humps of a camel.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Naming Views

When the controller renders views, Cake will automatically look for a file with the same
name as the action. Views correspond to actions contained in the controller script and are
housed in a folder named after the controller. The first step in creating a view to be used as
output for a controller script is to create the folder in app/views that matches with the name
of the controller.

View folders are lowercase and plural just like the naming convention for database tables.
For the orders_controller.php file, you would create the folder app/views/orders.

View files match actions in the controller, so they must be named accordingly. When a
controller action is called, Cake will automatically search for a corresponding view following a
specific naming scheme. Using the Orders example, let’s say you wanted the user to be able to
see the order before placing it. So, you create an action in the orders_controller.php file
called review. In this action (which is literally a PHP function in the controller script), you pull
some variables together and send them to the view following the MVC structure. Cake will
automatically search for a view called app/views/orders/review.ctp (.ctp is the common
extension for all Cake views, not .html or .php).

Table 4-1 contains a breakdown of the naming conventions for model, controller, and
view files. Notice that the view files are named after a matching action in the controller and
that the folder name containing the views matches the name of the controller.

Note The earliest versions of Cake used the file extension .thtml for view files, but this was changed to
.ctp for CakePHP 1.2. If you do come across older Cake applications, be sure to change these view files’
extensions to the now standardized . ctp extension.

Table 4-1. MVC Elements and Their Naming Conventions for the records Database Table

Type File Name Extension Class Name Directory Where Stored
Model record .php Record app/models

Controller records_controller .php RecordsController app/controllers

View {matches action .ctp app/views/records

name in controller}

More Than One Word in the Name

Perhaps you need to name a database table that uses more than one word. In short, you can
use more than one word by separating each word with an underscore. A table, then, contain-
ing special orders would be named something like special orders, not specialorders or
specialOrders. But, for Cake to link up to this table, the controllers, models, and views also
need to follow suit. Camel-cased titles for the words tell what Cake will seek out when run-
ning the controllers, models, and views. See Table 4-2 for an example of what the various
names would be for MVC elements matching up with the 1ist action for a database table
named special orders.

33

34

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Table 4-2. MVC Elements’ Names for the special orders Database Table

Type File Name Class Name Directory Where Stored
Model special_order.php SpecialOrder app/models
Controller special orders_ SpecialOrdersController app/controllers

controller.php

View list.ctp app/views/special orders

Naming Other Cake Resources

As another matter of convention over configuration, Cake divides up other important
resources in much the same way that it does with models, views, and controllers. For instance,
if more than one controller needed to use the same actions, then you could create a compo-
nent. The controllers could essentially run an include of the component and run the actions as
if they were individually contained in the controller. Other resources act in the same way.
A view to be used by multiple views is stored in what'’s called an element, and so on. Each of
these resources has its own naming conventions.

Later, you'll make full use of each of these resources. While I'm discussing naming
conventions in Cake, it’s worth familiarizing yourself with the conventions for other Cake
resources.

Components

Component files contain actions or functions that can be used across all the controllers. A
component typically aims to provide tools to accomplish a main objective. For example, you
may want to organize a set of functions that manage all the e-mail your application must
send. Various controllers may need to run an e-mail function here and there, so rather than
write the e-mail process into the individual controllers, it’s best to house all the e-mailing in
a component file. By doing so, you effectively keep all your e-mailing functions in one place
in the same manner that by using models you separate out all your database functions.

Components can be fully customized to meet your needs. In fact, a growing repository of
third-party components are available on the Web from other Cake developers, which proves
helpful in borrowing tasks from other projects and reducing the amount of code you assem-
ble yourself.

The file name of a component can be anything, but like models, views, and controllers,
more than one word in the name must be separated by underscores and camel case when
naming the class object.

Cake comes with a built-in e-mail component, but for the sake of the previous example,
if you were to create an e-mail component of your own, you could name the file email.php
and place it in the app/controllers/components directory.

In the file, you would need to create a new component class using the following syntax:

class EmailComponent extends Object {

Notice that the name of the class object is camel cased just as in the controller, and it
extends the class Object. Later, you'll assemble some customized components to be used in
more complex applications.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Helpers

Helpers provide functionality that is used across multiple views. Imagine creating functions

in a script that pertain only to final output. You could extend these functions to include vari-

ous settings that would make the process repeatable throughout the entire application.
Take an HTML link, for example. You could write the link in the view file manually:

Read Post 55

However, you may want the application to manage the links and dynamically generate
the paths. In this case, writing static HTML links would not work. Here’s where writing helpers
or using one of Cake’s built-in helpers can dramatically save you time and effort. A specific
link function inside a helper contains a set of parameters that can change depending on the
specific attributes of the view (like the text to be linked and the destination of the link). The
process of writing the <a> tag around a path, configuring a path to work with Cake’s system,
and outputting the text to be clicked does not change, so this can be repeated whenever a link
needs to be written. Using the HTML helper (which is a default helper in Cake) can accom-
plish this:

<?php echo $html->link('Read Post 55','/posts/view/55"');?>

Now, no matter where the Cake application is stored, links created by the $html->1ink()
function will not break because their paths are checked and routed by Cake. If you wanted to
alter the display of all links, you could go into the helper and rewrite the function once rather
than search for each instance of a link.

Helpers simplify HTML output in significant ways. Imagine reducing to one string of code
a complete set of radio buttons or check boxes for an HTML form or truncating news articles
with one line. For example, Cake’s Form helper can take an array of values (say, $data) and
turn out radio buttons ready to be used and submitted back to the controller with one line:

<?php echo $form->radio('data');?>

Because helpers are set apart for use in the views, they are stored in the
app/views/helpers directory. The file name convention is just like components, and they carry
the . php extension. When naming the helper class object, the following syntax is used:

class SpecialHelper extends Helper {

Like controllers and components, the name of the helper class is camel case and includes
the word Helper, and the class is an extension of the object class Helper. For example, if you
were to create a custom helper for e-mailing customers, you might create the app/views/
helpers/email.php file and name its class:

class EmailHelper extends Helper {

Elements

An element contains presentation output that can be pulled into multiple view files. Anything
contained in the element will be displayed in the view depending on where in the view’s
markup the element is called. Variables can be passed to elements and displayed like how the
controller sends variables to views.

35

36

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Elements are named like controller actions and view files and are stored in the app/views/
elements directory. For instance, a menu bar could be maintained in an element named
menu.ctp and called in any of the views. Then, should you need to change a menu item or a
link in the menu, rather than change it for every view in the application, you would need to
edit only the menu. ctp file.

Helpers and elements differ in that helpers work with view logic, whereas elements are
more like chunks of HTML that repeat throughout the views. A menu bar would likely require
less logic (maybe a couple of variables) and would not contain a series of functions to be ren-
dered. As an element, the menu bar would work well because multiple views would need to
use it. Creating pie charts or graphs, however, would require several processes and more logic
and therefore would be better suited as a helper than as an element.

Layouts

Many web sites maintain the same overall design from page to page with only specific areas
changing content depending on the page. Rather than store in each view file this overall
design, you can create a layout file to be used by the entire application or one controller
action at a time.

Layouts are stored in the app/views/layouts directory and contain presentation output
like views and elements. They perform minimal logic and mainly serve to wrap HTML around
changing views. A layout’s file name can be anything but must be lowercase and have the .ctp
extension.

Behaviors

When interacting with the database, sometimes the model will need to perform more com-
plex processes than simply adding, updating, or deleting records. In some applications,
deleting a record will require performing other manipulations to other tables and records,
and so on, with other database operations. Cake resolves this issue with behaviors, which
are classes that may be called by models when performing model functions.

Behaviors are stored in the app/models/behaviors directory and can be named anything
following the same rules for naming helper files and components. They must have the . php
extension. In the file, behavior class names are set with the following syntax:

class SpecialBehavior extends ModelBehavior {

By using behaviors to store complex or customized model operations, you give the
application’s models more consistency.

DataSource

In this book I've stuck with MySQL as the main choice for database handling because it is
often bundled with PHP. Many applications, however, need to store data in other sources.
From PostgreSQL to a customized database engine, Cake is fully capable of handling other
data sources. Even creating web services and talking with enterprise APIs such as Facebook
or eBay can be handled in Cake. These types of operations are handled with DataSources, or,
in other words, files that execute functions that talk with a source that stores or supplies data
to the application.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

The DataSource abstracts the sending, retrieving, saving, and deleting data to the model
so that the model really behaves the same regardless of what external source processes the
data. Cake comes preinstalled with the following datasources, so you won't have to write from
scratch your own if you intend to use one of these to handle your application’s data:

* MySQL

¢ PostgreSQL

e [BM DB2

¢ Microsoft SQL Server 2000
* Oracle 8

e SQLite

e ADOdb

When creating custom DataSource, make sure the file name is lowercase and has
_source.php appended. An XML DataSource could be named, for example, xml_source.php
and would be placed in the app/models/datasources directory. Naming the class object in the
DataSource file (in this case, for the XML DataSource) is done with the following syntax:

class XmlSource extends DataSource {

When retrieving or saving data to a source outside your main database configuration
source, DataSources can handle all the back-and-forth processing so that the model functions
don’t have to handle connection or request parameters unique to the DataSource.

Best Practices

Naming conventions in Cake do have specific rules that make it possible for Cake to assem-
ble the various pieces of the application without too much code. Remember the saying “Just
because you can doesn’t mean you should” when naming files and database tables. The fol-
lowing are some suggestions for best practices when trying to decide upon names for
elements of the application.

Keep File Names from Conflicting with Cake Resources

Avoid naming tables in the database that might conflict with a name of a Cake framework
element. An example might be naming a table views or controllers.

Other conflicting names include class objects in Cake’s libraries such as pages or files.
Find a suitable name that can mean something similar such as records or images, or use
underscores to add another word to the title such asweb_pages or plain_text files, and this
will spare you the trouble of confusing Cake’s dispatcher or confusing other developers who
might work with your application. Sometimes when looking for help in the Cake community,
it will be useful to give specifics. If your names overlap with other Cake objects, you may be
asked to clarify.

37

38

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Use Routes Rather Than Controllers

Some developers create a controller to handle logic alone without connecting it to a database
table. They might name a controller cart or blog to create a separate wing of the application.
Or they manipulate the names of their controllers for the sake of friendly URLs. In Cake, con-
trollers are best suited for linking up with specific database tables. For example, you may want
to build a blog that has a URL structure that goes something like this:

http://localhost/blog/view/5/sep/2008

So, how is this URL possible when there is no table named view in the database and the
controller must match up with a database table?

You can customize how the dispatcher handles all URLs by editing the app/config/
routes.php file. In this case, it would be best to build your database following convention and
then go into the routes.php file and create some URL aliases that point to the appropriate
controllers. You could create a table named posts in the database that stores all the blog posts
and write an action in the posts_controller.php file that pulls the date from the URL and ren-
ders a view for the retrieved post. Then, in routes.php, you could write in a route for all URL
strings that start with /view to point to the Posts controller and pass along the date parame-
ters. If this makes little sense now, don't worry—you’ll deal with Cake’s routing possibilities in
more detail in Chapter 10. Just make sure that you stick to convention first when thinking of
how to name your database tables and consequently the controllers and models. Later you
can work with routing to ensure that the URLs are structured to your liking.

Name Actions for People, Not Code

Actions appear in controllers and perform a set of operations that follow PHP syntax for
functions. They also will link up with a view file to render output to the browser. Knowing
how the action name might appear in a URL is important when deciding on how to name
functions in the controller. For web sites that aim to be user-friendly and optimized for
search engines, their action names might be more important than an internal reference
name for the application alone.

A good rule of thumb for naming controller actions is to write names as if you had to
spell it out over the phone. E-mail addresses with lots of nonalphanumeric characters (such
as underscores and dashes), for instance, are frustrating when spelling them out to some-
one. Simplicity is best especially when the name will appear in a URL that will be repeated
through verbal communication, on paper, or for a search engine.

Be Careful Using PHP Function Names as Action Names

Another important point is that actions can have conflicting names with PHP functions.
Naming an action date, for instance, would conflict with the PHP date() function. Generally,
you can get around this problem by naming actions that are specific to the general logic the
action will perform. When that logic does coincide with the kind of logic found in other PHP
functions, it’s only really a matter of trying the action on a case-by-case basis to see whether it
conflicts with PHP. Many PHP editing programs highlight PHP functions with a different color,
which may also help when trying action names.

http://localhost/blog/view/5/sep/2008

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Poorly Designed Databases

Ambitious web applications will certainly call for complicated database design. All too often
developers try to find a way to fit every piece of data into a field without building associations
between tables. Or, rather than store a reference to a record in another table, some developers
build scripts that write information into a text field. Worse yet, some developers write a static
list in the HTML of the site and change the list manually depending on where the list appears
in the application. Not only do these methods make updating the code of the application
more cumbersome and less portable, they also don't fit into the paradigm of Cake’s rapid
development methodology. Poorly designed databases can adversely affect Cake’s rapid devel-
opment qualities and turn up errors or dead ends that lead to time wasted on forcing you to
accommodate a bad database.

Why Good Database Design Matters

Much of Cake’s rapid development functionality comes from conventions that are tied to
how the database is designed. Not only does a good database design matter for the scaffold-
ing feature or the Cake console, but it is the very bread and butter of Cake’s data handling.
The interactions between different kinds of data will affect the time it will require to use that
data throughout the application. In theory, the database should separate data into cate-
gories that work off each other, rather than the MVC structure separating roles of operations
into different areas.

Cake relies on the process of database normalization for its naming conventions and
model functions. Normalization is the technique of designing relational database tables in an
effort to minimize duplication and safeguard the database against structural problems. By
normalizing your database, you produce an effective schema that improves your Cake appli-
cation and saves you from data anomalies that can cause data-handling errors.

To contrast poor and good database design or, in other words, to explain why database
normalization is so important, I'll discuss a social networking application scenario. For sites
that give users web pages of their own, a lot of data will need to be stored. A poor database
would have a record for each user’s profile and a field for each item in the profile: user’s
name, e-mail address, home page address, favorite book 1, favorite book 2, image, avatar-
sized image, slogan, description, friend 1, friend 2, and so on. When fetching the user’s profile
in the URL, a bad database wouldn’t have any kind of unique ID, so the record would be
pulled by the username.

This scenario is problematic because the number of fields is static. The user cannot add
more than two books or two friends unless the developer manually adds more fields. Also,
the number of fields would get large quickly the more the developer adds functionality to
the application. Back-end database maintenance would be frustrating with a high number
of fields. Field names such as favorite book 1 are clumsy and make it more difficult to
organize the code when processing data. Also, without a unique identifier to differentiate
the profile records, the possibility exists that the username could get duplicated and thus
break the queries that would seek to fetch a user’s profile. In theory, without some unique
identifier for a record, that record could potentially get forever lost in the database and
would not be retrievable.

39

40

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

On the other hand, a good database design would separate different categories of data
into different tables. There would be a table for profiles, another for books, and another for
users. The users table would store some basic information such as a username and password
as well as an e-mail address. As users interact with others through the site, they could select
other users to be their friends, and rather than saving that association as a field in the pro-
files table, another table could store the associations. A profile would be able to display any
number of books in the books table by storing the associations in a separate table like the
users’ friends. In this way, the database stores associations as well as individual records. This
fact is important for Cake development because of how it separates data into categories and
allows for associations to exist between categories. Cake’s fundamental design of separating
various operations into different areas allows for tighter control of each of these tables in
controllers, models, and views of their own.

Feature Creep and Cake

Consider the phenomenon of feature creep before designing the database. Feature creep
occurs when a project is under way and contributors to the project realize potential for new
features based on existing features in the uncompleted project. Before long, the contributors
end up requesting so many features that the project becomes much more complicated than
at the outset.

Cake will help with feature creep because of the specific areas that are devoted to spe-
cific functions. However, if the database is not equipped to handle feature creep, then taking
advantage of Cake’s flexibility later might not be possible and may necessitate rewriting the
application. The trick is to design the database to use associations rather than individual
fields for all categories of data. Cake handles associations wonderfully and will dramatically
reduce the amount of database querying required to handle complex data structures.

Table Associations

A good web application that illustrates Cake’s rapid development functionality and table asso-
ciations is a blog. Here, you will build a simple blog application using the scaffolding feature
to test associations. Later, you'll expand the blog to take on more powerful features. Mastering
table associations and how they work in Cake is essential for pulling in advanced features that
matter for complex web sites. A simple blog application will help us discuss table associations
in an easier way and should help you if you're unfamiliar with table associations to be better
equipped to use Cake.

Create a new Cake application in your localhost root named blog. It should have the stan-
dard Cake 1.2 libraries and folders inside. As you walk through building this blog, remember
how to launch the application in the browser. I'll reference a controller, and that will be exe-
cuted by calling it in the URL with the correct string, like http://localhost/blog/posts.

The Database Design

Create three tables in the blog’s database: posts, comments, and users. Listing 4-3 contains the
MySQL query to create fields in the tables.

http://localhost/blog/posts

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Listing 4-3. The SQL Table Structures

CREATE TABLE “posts™ (
“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(255) default NULL,
“date” datetime default NULL,
“content” text,
“user id® int(11) default NULL,
PRIMARY KEY ("id")

);

CREATE TABLE ~comments™ (
“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(100) default NULL,
“content” text,
“post _id® int(11) default NULL,
PRIMARY KEY (“id")
)5

CREATE TABLE “users™ (
“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(100) default NULL,
“email® varchar(150) default NULL,
“firstname™ varchar(60) default NULL,
“lastname™ varchar(60) default NULL,
PRIMARY KEY ("id")

);

The users table will contain a running list of available authors of blog posts. When a post
is created, it will be assigned an author from the users table. Notice that there is a field in the
posts table named user_id. This will match up with the id field in the users table, thus linking
an author to the post. Also, in the comments table, each comment will be assigned to a post in
the same manner. In this case there is a field named post_id, which will match up with the id
field in the posts table.

In the models, you will spell out these associations so Cake can pull them together. What'’s
more, you can test how well you've specified the associations using the scaffolding feature. As
noted earlier, one main idea in Cake application building is to start with the Cake objects and
build out. In general, you will design your database structure first, test their associations in the
scaffolding, and then build out with your own code to enhance the application.

“Belongs To”

When associating tables, you need to tell Cake what type of relationship each table has with
the others. This blog will have a “belongs to” relationship in a couple of tables. First, since each
blog post will have an assigned author, each blog post “belongs to” one user. In other words,
the posts table “belongs to” the users table. You have placed a user_id field in the posts table
as a way to save this relationship. For each record in the posts table, one of the records from
the users table will be saved by assigning one of its IDs to user_id.

41

42

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

To build this relationship into the models, first create the Post model as app/models/
post.php. Listing 4-4 contains the model’s code to assign it a “belongs to” relationship with
the User model.

Listing 4-4. The Post Model

1 <?

2 class Post extends AppModel {

3 var $name = 'Post’;

4 var $belongsTo = array('User');
5 %

6 >

Line 4 of Listing 4-4 shows how to enter a “belongs to” relationship in Cake. You do this by
assigning an array of models that are part of the relationship to the current model. The class
object variable Cake uses to build “belongs to” relationships is the var $belongsTo attribute.

In any Cake application, “belongs to” relationships are made by following the code on
line 4. You can add relationships by including them in the array syntax.

className Parameter

A possible key to be included with the $belongsTo settings is className. Simply put, className
is the model to which the current model belongs. In this case, it would be set to User, meaning
the class name of the users table’s model. If you decide to abandon Cake’s model naming con-
ventions or if there is a complex reason for naming a model other than the standard Cake
convention, then you will need to specify the name in this setting; otherwise, Cake will not

be able to link the association on its own.

foreignKey Parameter

This key sets the foreign key found in the related model. This setting is useful for specifying
multiple “belongs to” relationships.

conditions Parameter

This key contains a SQL string that filters related model records. Generally, it will contain an
equals/not-equals SQL statement for a field (for example, Post.published = 1).

fields Parameter

By default, Cake will return all fields from the associated table. In this case, all fields from the
User record, which is associated with the current post, will be fetched and made available to
the Post model. You can limit this by using the fields key.

You can set these keys to your own values by assigning them as an array to each item in the
$belongsTo array. Listing 4-5 shows the Post “belongs to” relationship with all keys displayed.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Listing 4-5. BelongsTo Keys Are Assigned to the Post: :User Relationship

var $belongsTo = array(

"User'=>array(
‘className'=>"User"',
'foreignKey'=>"'user id',
‘conditions'=>null,
'fields'=>null
)

)s

“Has One”

Each relationship with association mapping must be specified in both directions. In other
words, just saying that posts belong to users is not enough. You must also specify in the User
model how users are associated to any other table. In this case, a user will “have many” posts.
Three relationships are possible—“has one,” “has many,” and “has and belongs to many.” First
I'll discuss the “has one” association.

This relationship is exactly a one-to-one relationship. In applications that assign profiles
to users, such as social networking web sites, the “has one” relationship is used. Each user has
one profile, and one profile belongs to just one user.

To establish the “has one” relationship, you set the $hasOne attribute like you did with
$belongsTo in the Post model (see Listing 4-6).

Listing 4-6. The $hasOne Attribute String That Sets a “Has One” Relationship in the User Model

var $hasOne = array('Post');

className Parameter

For a “has one” relationship, className should always be set to the model that contains the
belongsTo attribute pointing to the current model.

foreignKey, conditions, and fields Parameters

These are similar to the “belongs to” foreignKey, conditions, and fields parameters. Set them
to add more specific control to the “has one” relationship.

dependent Parameter

When deleting records in a “has one” relationship, you may want both sides of the association
to be deleted. For example, when a user has one profile and the user is deleted, you may want
the associated profile to be deleted also. In these cases, the dependent key allows you to do this
easily. By default, it is set to false. Set dependent to true to delete records in both tables when
the delete action is run through the associated model.

In the blog you are building, you have no need of a “has one” relationship. We will make
use of another important relationship in Cake: “has many.”

43

44

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

“Has Many”

You've created the Post model; it’s time to make the User model. Create the User model in the
app/models directory and work in the code shown in Listing 4-7.

Listing 4-7. The User Model

1 <?

2 class User extends AppModel {

3 var $name = 'User';

4 var $hasMany = array('Post');
5}

6 >

For your blog, each user will have many posts. Even if a user enters only one post, you
would still want the relationship to be capable of saving more than one post per user. By
telling the User model that multiple post records are associated with it, and by completing
the relationship in the Post model with the belongsTo attribute, Cake can now link the two
together.

For more control, you may want to enter more parameters for the “has many” relationship.

className, foreignKey, conditions, and fields Parameters

These parameters specify the same things as described in the “belongs to” relationship earlier.

dependent Parameter

This setting behaves similarly to how it is described for the “has one” relationship. In the “has
many” relationship, setting dependent to true will work recursively. In other words, if you set
the $hasMany attribute in the User model to dependent=>true, then whenever a user is deleted,
all posts ever assigned to that user will be deleted as well.

order Parameter

You can control the sorting order of the associated records by entering SQL syntax in this
parameter. For example, in the User model, you could set order to Post.datetime ASC, and it
would order all associated posts by their date and time in ascending order.

limit Parameter

Some database requests may return a substantial number of associated records. You may want
to limit the number of returned records to cut down on server load time. You can do this by
setting this parameter to a value representing the maximum number of associated records
Cake will fetch from the database.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

finderQuery Parameter

To produce even more customized results, you may enter a SQL string in the finderQuery key,
and it will run when the associated records are queried. You really should need to use this
option only if your application requires a high level of database customization. Most of the
time, you will be able to work just fine using Cake’s built-in model functions.

The “has many” relationship is extremely useful for helping to design effective databases.
If you know that you intend to put a select menu in your application for a series of options
that will be stored in the database, the “has many” relationship can help you do so without
writing a static list in HTML. Instead, you could build a table to store those options and asso-
ciate them through the models using a “has many” relationship. Then, no matter what may
happen with feature creep or with adding or deleting options from the list, you can rest
assured the application isn’t broken and can handle the changes. It’s built on a database, not
on static forms, meaning that the application is dynamic and can change easily.

Testing the Associations

An easy way to test the associations in your database is to use the scaffolding feature. You have
already created the Post and User models; now let’s see how those associations hold up. You
will need to create controllers to run the scaffold.

Create the posts_controller.php file in the app/controllers directory, and insert the code
shown in Listing 4-8.

Listing 4-8. The Posts Controller File

1 <?

2 class PostsController extends AppController {
3 var $name = 'Posts’;

4 var $scaffold;

5}

6 2>

To test the User model, you will also want to build a scaffold around the users table.
To do this, create the file app/controllers/users_controller.php and insert the code shown
in Listing 4-9.

Listing 4-9. The Users Controller File

1 <?

2 class UsersController extends AppController {
3 var $name = 'Users’;

4 var $scaffold;

5 1}

6 >

Let’s add a couple of test users to the users table by launching the Users controller and
clicking the Add link. My screen when doing this appears in Figure 4-1; yours should be similar.

45

46 CHAPTER 4 © NAMING FILES AND DESIGNING THE DATABASE

(ol CakePHP: the rapid development php framework: Scaffold :: Add :: Users
uua i http: / /localhost/blog/users /add (5] .Q' Google

& CakePHP: the rapid development php framework

New User

Name
superman

Email
super@hero.com

Firstname
Clark
Lastname
|Kent] |
o
(Submit)
List Users

<[>

Figure 4-1. Adding a test user to the database using Cake’s scaffolding

Now that there are a couple of users in the database, you can test whether those users get
associated with the posts table. Launch the Posts controller, and click Add to insert a new
post. If the association is working right, you should see a select menu that is populated with
associated records in the users table; Figure 4-2 shows how this menu appears on the New
Post screen.

If the association weren't working correctly, you'd see an empty input text box rather than
a select menu for the user. That would indicate that Cake is asking you to fill in the user id
field with your own variable data. Notice that when you save the post, the list screen for the
Posts controller displays the name of the user, not an ID number. This is another indication
that Cake is picking up the association properly.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

CakePHP: the rapid development php framework: Scaffold :: Add :: Posts
3 hitp:/ /localhost/blog /posts fadd @ BlQ- Google

& CakePHP: the rapid development php framework

New Post

Name

Date

[February [4-(23563 2008F%] 11557 0614 (am &

Content

User

[Submit)

—
a

v

Figure 4-2. The User menu is populated with actual records from the users table.

Conventions for Establishing Table Associations

As mentioned earlier, you can manually set the foreign key for the relationship. In other
words, you can name the fields that store the associated ID however you want. However,
Cake does have some naming conventions for working with table associations that make
it possible to leave out the foreignKey parameter and other settings, thus reducing the
amount of code to build associations.

I have already mentioned that table names in the database ought to be pluralized. For a
“has one” or “has many” relationship, you will need to enter a field that will store the associ-
ated record’s ID value. This field’s name follows a naming convention, specifically that it must
be named after the model from which the ID comes. You must also append an underscore and
id to the field name for Cake to recognize this as the associated foreign key. Notice that when
you created the posts table, you followed this convention when adding the user id field. By
doing so, you could leave out the foreignKey parameter when setting the $belongsTo and
$hasMany attributes. With the tables being named properly as well as the foreign keys, Cake
automatically found the associations and made them available in the scaffolding. No specific
code was necessary.

47

48

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

“Has and Belongs to Many”

The final association Cake can recognize for database table relationships is the “has and
belongs to many” relationship. This relationship is powerful but also a little difficult to master.
The more you experiment with “has and belongs to many” associations, the easier it will be to
use them in your applications.

In short, I've already discussed a one-to-one relationship with the hasOne association, and
the hasMany association shows you how a one-to-many relationship is managed in Cake. What
about a many-to-many relationship?

Many-to-Many Relationships in Cake

Many web sites use tags to order their content. Many blogs, rather than assigning one cate-
gory to a post, will have a list of tags that can be assigned multiple times to multiple stories,
and vice versa. This is a many-to-many relationship between posts and tags. One post can
have many tags, and each tag can belong to many posts.

Structurally, the database can handle many-to-many relationships only if there is a third
table that saves these associations. In the post-to-tag example, a third table named something
like posts_tags would be created. In it would be just two fields: post_id and tag_id. By having
a third table, you maintain the flexibility needed to list as many relationships as the applica-
tion would need to save; there is no limit to the number of associations in either direction
because the third table can continually save more records.

As you can imagine, Cake saves a great deal of time in managing this association. Just like
the $hasOne and $hasMany attributes, you create a “has and belongs to many” association by
entering the $hasAndBelongsToMany attribute in the model.

You can also test “has and belongs to many” associations in the scaffold. Rather than view
a select menu for a one-to-many relationship, Cake’s scaffolding will render a multiple-select
menu. In this way, you can test the association in the same manner that you tested the “has
many” relationship earlier.

Applying and Testing This Relationship with the Blog

Let’s add a “has and belongs to many” relationship to the blog application. To do this, you will
need to create a new table in the database. See Listing 4-10 for the SQL syntax to create the
tags table.

Listing 4-10. The tags Table

CREATE TABLE “tags™ (

“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(100) default NULL,

“longname™ varchar(255) default NULL,

PRIMARY KEY ("id")

);

This tags table will hold category tags to better organize your blog posts. The name field
will be an alphanumeric field to be used in accessing the tag through the URL. The longname
field will store the category’s display title for use in links and page headings.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Because the tags table will be linked with posts in a “has and belongs to many” rela-
tionship, you must create another table to hold those associations. This table name will
follow Cake’s naming conventions. For “has and belongs to many” tables, the name must be
arranged in alphabetical order with each associated table’s name separated by an under-
score. Inside the table, you provide the foreign key and associated foreign key as fields with
names following the same convention for one-to-many relationships. In this case, the field
names will be ordered alphabetically, with post_id first and tag_id second. Use Listing 4-11
to create the new posts_tags table.

Listing 4-11. The posts_tags Table

CREATE TABLE “posts_tags™ (
“id® int(11) unsigned NOT NULL auto_increment,
“post_id” int(11) unsigned default NULL,
“tag id® int(11) unsigned default NULL,
PRIMARY KEY (*id")

);

The Tag model is absent, so create that next as the app/models/tag.php file. Paste
Listing 4-12 into the new Tag model file.

Listing 4-12. The Tag Model

1 <?

2 class Tag extends AppModel {

3 var $name = 'Tag';

4 var $hasAndBelongsToMany = array('Post');
5}

6 >

Next, you will have to establish the association in the Post model as well. Adjust this
model to reflect the “has and belongs to many” relationship, as shown in Listing 4-13.

Listing 4-13. The Post Model with the $hasAndBelongsToMany Attribute Set

1 <?

2 class Post extends AppModel {

3 var $name = 'Post’;

4 var $belongsTo = array('User');

5 var $hasAndBelongsToMany = array('Tag');
6}

7 >

Last, create the Tags controller with the scaffolding so that you can add tags to test the
“has and belongs to many” relationship. Listing 4-14 contains the code for the new Tags con-
troller file.

49

50

CHAPTER 4 © NAMING FILES AND DESIGNING THE DATABASE

Listing 4-14. The Tags Controller

1 <?

2 class TagsController extends AppController {
3 var $name = 'Tags';

4 var $scaffold;

5}

6 >

Run the Tags controller to add some placeholder tags for the test. Add more than one to
make the test more effective (since the relationship you are testing is many-to-many). Every-
thing is in place for a “has and belongs to many” relationship. Launch the Posts Add action to
create a new post, and you should see a multiple-select area populated with the tags’ names
from the tags table, like Figure 4-3.

CakePHP: the rapid development php framework: Scaffold :: Add :: Posts

g " ¥ http://localhost/blog/posts/add] -

& CakePHP: the rapid development php framework

Q- Google

New Post

Name
New Functions in 1.2

Date

[July B[« B[200858 12564 oo [pm S

Content

User

U

Tag
cakephp
books

0
Submit i hd

Figure 4-3. Testing the “has and belongs to many” relationship for tags and posts

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

The multiple-select box with the names appearing correctly indicates that Cake has
picked up the relationship effectively and is pulling the appropriate data from the tags table.
To test the relationship going the other direction, create a couple of posts and then access the
Tags Add action. You should see there a multiple-select box as well with the associated posts
highlighted, as shown in Figure 4-4.

CakePHP: the rapid development php framework: Scaffold :: Add :: Tags
| ¥ hitp:/ /localhost/blog /tags/add B(Q- coogle

Longname

[J

Post
New Functions in 1.2

List Tags List Posts New Post

.

13

Figure 4-4. In the Tags Add view, the post’s data is displayed in the multiple-select box.

Both tags and posts have shown the relationship in the scaffolded views. The models are
working with each other correctly, so you can now begin manipulating the views to improve
the application’s design, flow, and features. To provide better control over the “has and belongs
to many” relationship, the following parameters are available.

className Parameter

This name corresponds to the associated model. In the Posts: : Tags example, the Post model
would need className set to Tag.

joinTable Parameter

Remember how you created a third table to house all the associations for posts and tags? This
is referred to as the join table and can be manually set using the joinTable parameter. For the
blog, you would set this to posts_tags, named after the table, not the models.

52

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

foreignKey and associationForeignKey Parameters

The current model’s key in the join table is associationForeignKey, which in this case would
be post_id for the Post model. The foreignKey parameter is for the other model, that is, tag_id
for the Post model. Set these for when you must specify multiple “has and belongs to many”
relationships in a single model.

conditions, fields, order, and limit Parameters

These parameters behave like all other associations. Set manual SQL conditions, limit the
returned fields, set the sorting order of the returned results, and limit the maximum amount
of records to be returned with these parameters.

Beyond the Scaffold

Understanding basic installation routines, understanding naming conventions, and using
table associations for good database organization will improve your development time and
help you get off the ground with your project much more quickly. However, every applica-
tion will need to move beyond the scaffold before it is ready for deployment. Indeed, the
scaffolding feature is really intended for what I covered in this chapter: testing table associa-
tions without needing to code any HTML and providing a basic structure to tinker with a
few application ideas before getting too deep in programming the site.

Chapter 5 will introduce to you the Bake script, a handy console program that runs
much like the scaffold but supplies you with editable code from which you can expand your
application. You'll improve the blog and adjust the views to bring it more in line with a pro-
duction-level Cake application. As always, I recommend you practice using the table associ-
ations a few times with other scenarios, bringing in the parameters for each association,
and customizing the association to get a feel for the models and good database design. The
quicker you can take an application from zero to running the scaffold with advanced table
associations, the more comfortable you'll feel with the MVC structure and the fundamental
process Cake applications follow.

Table Associations Exercise

You may have noticed that I left the comments table out of the tutorial for this chapter. This was to allow you to try
building a “has many” relationship for the posts and comments tables on your own. In this exercise, associate
comments with posts by using the appropriate relationship, and test the association using the scaffold. Be sure to
check for errors by running the controller from both ends of the association.

CHAPTER 4 = NAMING FILES AND DESIGNING THE DATABASE

Summary

Cake uses naming conventions to simplify building an application. By adhering to the “con-
vention over configuration” paradigm, Cake provides you not only with dozens of useful
functions and code-cutting methods but also with an overall method for organizing the
resources the application will use. How to name models, views, and controllers, as well as
several other Cake resources such as helpers, elements, and components, is an essential
aspect of learning Cake. Not only will you need to structure your application following
Cake’s conventions, but how you design the database also matters for taking advantage of
the framework. Database normalization is key to designing a schema that best fits Cake’s
conventions and is essential for working with the models correctly. When you use the vari-
ous relationships in your database (one-to-one, one-to-many, and many-to-many), Cake
is able to do much of the difficult work in mapping the data and making them available in
the application.

53

CHAPTER 5

Creating Simple Views and
Baking in the Console

So far, you've really only used the scaffolding feature. Although scaffolding can help test
associations and get your database working well with Cake, it does not give you much control
over design, and the scaffolding does not go beyond simple CRUD operations either. To get
into the individual form elements or to change how you want the list view to display the
results, you must manually create and edit the views themselves.

Fortunately, Cake comes with some handy console scripts that can help you generate
those views, as well as perform other important development tasks. In this chapter, I'll intro-
duce the Bake script, which will essentially run like the scaffold and analyze the database but
then provide code to edit. From there you can include your custom logic and add improved
actions that go beyond simple CRUD operations. First, let’s change the views a little bit for
your blog application.

Note All the view files I'll use in this book will run PHP shorthand for the echo() function. Your server
setup may or may not support this method. If not, be sure to use the longer string <?php echo();?>
instead of my shorthand <?= ;?>. Because the echo command is so common for view files, Cake does
come with an echo convenience function that cuts down on characters. Use e() to echo and px () for the
print_r() function if you prefer the Cake convenience functions. Or, you can talk with your hosting provider
to make PHP shorthand tags available and stick with the examples as written.

Introducing Layouts

Remember, Cake’s framework follows the MVC method: models, views, and controllers. So far,
you've become familiar with the model and the controller. Views are separated from the mix to
provide for easier handling of output. Cake organizes all the views in the app/views folder.

The views folder contains the following directories:

e elements

® €rrors

55

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

e helpers

e layouts

* pages

e scaffolds

The layouts folder contains any overall layout files that are wrapped around your applica-
tion. You can intercept Cake’s default layout for scaffolds, error pages, and any other views by
creating your own default layout. Placing a file named default.ctp into the layouts folder tells
Cake to apply this layout instead of its own default scaffolding layout. Because it is a layout
file, all the surrounding HTML will be applied to all the output.

Writing the default.ctp File

Create app/views/layouts/default.ctp, and place inside it your own HTML/CSS code.
Listing 5-1 shows a basic (and boring) HTML layout to demonstrate how layouts work.

Listing 5-1. A Simple Default Layout

1 <html>

2 <head>

3 <title>My Cake Blog Application</title>
4 <?=$html->css('styles');?>

5 </head>

6 <body>

7 <div id="container">

8 <div id="content">

9 <?=$content_for layout;?>
10 </div>

11 </div>

12 </body>

13 </html>

Most of this is basic HTML code that displays a title called “My Cake Blog Application” in
the browser window but does little else. Line 4 of Listing 5-1 is a bit of Cake helper code that
will automatically pull in the CSS file named styles.css (you'll create this file in a second).

Line 9 of Listing 5-1 is the key to any layout file in Cake. It’s the string that tells Cake where
to put all the views. When you launch any controller that hasn't specified another layout file,
by default Cake will now swap out $content for layout with whatever output you've gener-
ated through your controllers, models, and views.

Creating a Style Sheet for the Layout

Public files, or files such as images, JavaScript files, and style sheets that you make available to
the general web user are stored in the app/webroot folder. By default, this folder contains
placeholders for CSS files, scripts, images, and other public resources. In a production setup,

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

app/webroot will typically serve as the document root. In any case, Cake will internally refer-
ence this directory when linking to style sheets, images, JavaScript files, or other public
resource files.

Line 4 of Listing 5-1 is Cake helper code that assembles some HTML for you, in this case,
alink to a CSS file. This line is pulling the css() function from the HTML helper, which is part
of Cake’s core libraries and is passing the parameter styles to the function. The HTML helper’s
css() function knows to look for a styles.css file in the app/webroot/css folder and generate
the <link rel="stylesheet" type="text/css" href="/css/styles.css" /> tagfor the layout.

By using the HTML helper to build this link, not only is the amount of code entered by
hand reduced, but you also ensure that wherever you may run the Cake application, the link
will not be broken from inconsistent server setups. Cake comes with many more helpers.
Using them can dramatically reduce the amount of code in the application, especially in views
and layouts.

As of yet, there is no styles.css file in the app/webroot/css directory. Create that file, but
leave it blank. You should get a rather simple view for the blog application (see Figure 5-1).

My Cake To-Do Application
(& http:/ /localhost/blog/posts [] ‘Q' Google

Page 1 of 1, showing 1 records out of 1 total, starting on record 1, ending on 1

Id Name Date Content User Actions
1 New Functions in 1.22008-07-04 00:00:00 spidermanView Edit Delete
<< previous
|
next >>

« New Post

e List Users

s New User

e List Tags

o New Tag

2 queries took 0 ms
Num. Toeok

Nr Query Error Affected rows (ms)
1 SELECT COUNT(*) AS “count’ FROM “posts” AS "Post LEFT JOIN “users” A5 “User ON 1 1 0

(Post" “user_id" ="User"."id") WHERE 1 = 1
SELECT "Post ."id", "Post ."name", “Post ."date™, "Post ."content’, “Post . user_id", "User*."id",

2 “User 'name’, "User "email’, "User firstname”, “User "lasiname™ FROM “posis™ AS "Post 1 1 (1]
LEFT JOIN “users” AS “User" ON ("Post . user_id" = "User ."id") WHERE 1 = 1 LIMIT 20

Figure 5-1. A blank style sheet and simple default layout replaces the scaffolding layout and
styles.

57

58

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Pretty boring, eh? You can spice this up by simply editing the app/webroot/css/styles.css

file. In this file, paste the code shown in Listing 5-2 or do something similar.

Listing 5-2. Sample CSS Code for the Default Layout

* { font-family: "Lucida Grande",lLucida,sans-serif; }

th {
font-size: 14px;
font-weight: bold;
background-color: #elelel;
border-bottom: 1px solid #ccc;
padding: 10px;

div.actions ul {
list-style-type: none;

}
Refresh the Posts controller, and you should get some new styles in the display (see
Figure 5-2).
000 My Cake To-Do Application

(& http:/ flocalhost/blog/posts O Bl Q- Google

Page 1 of 1, showing 1 records out of 1 total, starting on record 1, ending on 1

id Name Date Content User Actions

1 New Functions in 1.22008-07-04 00:00:00
<< previous

spidermanView Edit Delete

next >>

New Post
List Users
New User
List Tags
New Tag

6 queries took 8 ms

Nr Query Error Affected e
DESCRIBE “posts”

DESCRIBE “users”

DESCRIBE “tags”

DESCRIBE “posts_tags”

SELECT COUNT(*} AS “count™ FROM “posts™ AS “Post™ LEFT
JOIN “users™ AS “User™ ON ("Post™. user_id™ = “User™.7id")
WHERE1 =1

SELECT "Post™.'id", "Post’. name", 'Post’. date’,

BowW R
W w v

w
=

Figure 5-2. The new styles are reflected in all views.

W w v

=

Took

(ms)

NN

=

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

You can see that by placing your own styles into the default layout, you can fully edit
the design surrounding your application’s output. Any views that are rendered, if they fol-
low the default layout, will also be rendered using the same style sheet, so there’s no need
to duplicate styles or designs.

Return to the app/views/layouts/default.ctp file, and change line 4 to the following:

<?=$html->css('cake.generic');?>

When you refresh the Posts controller screen, you'll notice that Cake’s styles have been
implemented without the scaffolding’s default titles and such. With these style changes, the
scaffolding is still generating the individual CRUD operation views but now without Cake’s
built-in layouts.

Creating Individual Views

What do you do if you want to manipulate the views directly? For example, say you wanted to
get rid of the title at the top that reads “Posts” and replace it with “Blog Posts.” This is where
individual views come in.

Yes, the scaffolding is a nice feature that makes testing code quick and painless, especially
if all you want to do is play around with the database to make sure it’s working right. But it
can’t possibly read your mind, and it can create only some generic views. Adding or subtract-
ing from the application output will require you to manually build such output. No worries—
this, too, is made much easier through the use of the framework.

Adding Actions to the Controller

To break out of the scaffold, you can delete the $scaffold attribute in the controller, or you
can intercept the scaffold by adding your own actions instead. Scaffolded actions are specifi-
cally named index(), add(), edit(), view(), and delete(). Inserting an action into the
controller bearing any of these names will replace the scaffold for that one action. So, leave
the $scaffold attribute for all CRUD operations you don't want to code, and generate actions
for those you do.

The first, and simplest, action to add is the Index action. All this operation will need to do
is fetch all the posts in the database and make them available in the view. The view will then
display all the posts as a list. Insert Listing 5-3 into the Posts controller after the $scaffold
attribute.

Listing 5-3. The Index Action in the Posts Controller

6 function index() {
7 $this->set('posts', $this->Post->find('all'));
8 1}

Entering the action into the controller is only half the process. Should you launch the
Posts controller, it would display an error message because the controller would send for the
view file and there is no Index action view available yet. The next step is to create the corre-
sponding action view by following Cake’s conventions. The file will need to be placed in the
app/views/posts directory and be named after the action. Create the necessary posts folder,
and place the index.ctp file in it. Then paste the view code from Listing 5-4 into this file.

59

60

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Listing 5-4. The Index View in the app/views/posts Folder

1 <h2>Blog Posts</h2>

2 <table cellpadding="0" cellspacing="0">

3 <tr>

4 <th>ID</th>

5 <th>Name</th>

6 <th>Date</th>

7 <th>Content</th>

8 <th>User</th>

9 <th>Actions</th>

10 </tr>

11 <? foreach($posts as $post): ?>

12 <tr>

13 <td><?=$post['Post']["'id"]; ?></td>

14 <td><?=$post['Post']["name'];?></td>

15 <td><?=$post['Post']['date']; ?></td>

16 <td><?=$post['Post']['content'];?></td>

17 <td><?=$post['User']["name']; ?></td>

18 <td class="actions">

19 <?=$html->1ink('View","'/posts/view/'.$post['Post']['id"]);?>
20 <?=$html->1ink('Edit", ' /posts/edit/'.$post['Post']['id"]);?>
21 <?=$html->1ink('Delete’,'/posts/delete/".$post['Post']['id"],null,w
'Are you sure you want to delete #'.$post['Post']['id']);?>

22 </td>

23 </tr>

24 <? endforeach;?>

25 </table>

26 <div class="actions">

27 <1i><?=$html->1link('New Post','/posts/add');?></1i>
28 </div>

Essentially, what you have done here is re-create the scaffolding view (assuming you’re
still using the cake.generic.css file instead of your own). But now that the code is right in
front of you, you can toy with any aspect of it and customize it to meet your own needs. Notice
online 1 of Listing 5-4 that I've changed the <h2> tag to read “Blog Posts.” In Listing 5-3, the
Index action runs a model function that pulls all post records and assigns them to a variable
to be used in the view. In line 7 of Listing 5-3, the set () function is a Cake function that
assigns a value to a view variable. In this case, the variable will be named posts and will
contain the results from the find() function in the Post model.

In line 11 of Listing 5-4, the view file uses the set() function in the controller. Here in
the view, posts is now a typical PHP variable named $posts. Line 11 starts a loop through
that array variable, which is the equivalent of looping through each record from the data-
base that was fetched in the query. The view simply takes each record’s content and displays
it in table cells. Each iteration generates a new table row until it reaches the last record in
the $posts variable.

Launch the Index action in the Posts controller, and you should see nearly the same
screen as the scaffolding view (see Figure 5-3).

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE 61

000 My Cake To-Do Application

(& http: / flocalhost/blog/ posts © Bl Q- Google

Blog Posts

ID Name Date Content User Actions

1 New Functions in 1.2 = 2008-07-04 00:00:00 spiderman View Edit Delete
New Post

Nr Query Error Affected 'rd::'s -{:lzl;

1 DESCRIBE "posts” 5 5 2

2 DESCRIBE users”

3 DESCRIBE “tags”

4 DESCRIBE "posts_tags’

5 | SELECT "Post™.id", "Post’. name”, "Post’. date”, "Post’. content”,
“Post’. user_id", “User™."id", “User . name”, “User™. email ",
“User. firstname ", “User’. lastname™ FROM “posts™ AS “Post™ LEFT
JOIN “users™ AS “User™ ON (*Post’. user_id® = “User’.’id") WHERE 1 =
1

6 SELECT "Tag'.'id", "Tag . 'name’, "Tag . longname", 2 2 0
“PostsTag ™. id", "PostsTag . post_id", “PostsTag . tag_id~ FROM
“tags” AS “Tag~ JOIN ~posts_tags™ AS “PostsTag™ ON
("PostsTag ™. "post_id " IN (1) AND "PostsTag'. tag_id* = "Tag"."id")

Figure 5-3. The Index action view rendered by manual, not scaffolded, code.

H W wou
= oW woun
o N NN

The main difference in this example is that you have access to the display code and the
action’s logic because you have manually supplied the code in the controller and the view
file. Creating this code is not challenging, mainly because the Index action required only
one line to run the database query and make the results available to the view. More elabo-
rate operations are necessary for the other CRUD operations and will require many more
lines of code, both in the controller and in the view. Fortunately, Cake can help generate
this code in the console.

Using Bake to Create Views

I've walked you through how to manually create the index view. Actually, though, you should
be able to avoid having to type these basic CRUD functions by hand. Included with Cake is a
handy console script called the Bake script (the bake.php script, found in the cake/console/
libs folder). Not only will it save you tons of time generating the needed code to build these
views, but it will also show you some basic Cake code that will help you understand how Cake
uses models, views, and controllers.

62

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Configuring the Console’s Profile to Run Bake

However your localhost is set up, you will need a way of running the console to execute
Bake. Most Linux setups have a console built into the operating system, and Mac OS X
comes bundled with the Terminal application, so if you are running in one of these environ-
ments, you shouldn’t have to install anything to run shell scripts. For PC users, you may
have to install extra software that supports running PHP in the console, such as Cygwin
(www. cygwin.com) or MinGW (www.mingw.org). The main requirements for getting Bake to
work in your console is that the shell can run PHP and the same database engine you're
using for your Cake application.

Many users use helpful programs such as XAMPP, LAMP, or MAMP—personal web server
applications that reduce web server setup to a minimum. Although these programs make it
possible to essentially click a button to turn on a localhost, they do make things a little bit
trickier to get Bake running correctly. Often, the operating system and the web server envi-
ronments both have shell applications that can conflict with one another when running the
console. Whatever your setup looks like, you will likely need to adjust the shell’s profile to get
Bake working right.

In Mac OS X and some versions of Linux, the command-line console will use a file named
.profile, usually invisible in your operating system, when it executes commands. Fortunately,
you can add some of your own customized environment settings to tell the console where to
go when executing Bake commands.

You can open the .profile file in a number of ways. You can use the following command
to edit .profile in the console:

vi .profile

However, if you're like me, you'd probably rather edit this file in a simple plain-text editor.
You will need to locate the profile to open it in your editor, but when saved, Bake should run
properly regardless of your localhost settings.

The profile will need the line in Listing 5-5 added to get Bake working properly.

Listing 5-5. By Entering an Alias into the Profile, You Can Access Bake in the Command Line
alias cake="php ~/Sites/blog/cake/console/cake.php"

If you are unfamiliar with console profile aliases, Listing 5-4 may need some explaining.
First, a new alias is listed, which in this case is named cake. Now, whenever you type "cake" in
the command line of your console, it will execute what is contained within the quotes. The
order here is important: the first string is the path to the shell application to be executed when
the alias is typed, and the second string is the path to the file to be launched by the shell appli-
cation. In this case, when "cake" is typed in the console, the shell will run its native PHP shell
application. It will also tell PHP to launch the cake/console/cake. php file.

What you enter as the alias here will likely need to be adapted to your own settings, espe-
cially if you are running a web server application such as XAMPP. Make sure that the path to
PHP points to the PHP application that runs your Cake application. For personal web server
users, this will likely be a path to the xampp/php/php5/phpcli.exe file, or something like xampp/
xamppfiles/bin/php. Whatever the case, it must be the same command-line PHP application
that is used by your localhost root.

Also, the path to Cake’s console scripts will change depending on where your application
is stored on your localhost. A good rule of thumb here is to make these two paths absolute so

http://www.cygwin.com
http://www.mingw.org

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

that regardless of what environment you're using your console with, it will access the correct
applications and scripts.

Launching Bake

With the profile configured correctly, launching Bake is done simply by entering the following
in a command line:

$ cake bake

Two things can happen when Bake is properly launched: it will ask you what you want to
bake, or it will ask you where you want a new Cake application copied. If the latter is the case,
you will need to specify the path to the blog application to get Bake to work properly with your
existing project. To do so, when launching Bake, use the -app parameter to specify the applica-
tion’s path to its app directory. Be sure to include the trailing slash (see Listing 5-6).

Note If you're running your console in Windows, you may need to reference the Cake command using
the file name cake.bat instead of the terminal command cake. This will depend on how you’ve set up your
console and how, if any, third-party console applications are configured.

Listing 5-6. Using the -app Parameter to Point Bake to the Application
$ cake bake -app ~/Sites/blog/app/

You can tell whether Bake is working properly with your application when you see the
Bake welcome screen (see Figure 5-4).

LE:L£:2lE:LlllllIIIlIIlllIlIllIIIIllIIIIIIEiEHEE&iiiahEhllllIIlIlIlIllIIIIIIIIIIIIIIIIIIIIIIIJ

david-goldings-computer :~ davidgolding$ coke boke -opp ~/Sites/public_html/blogfapps

Welcome to CakePHP vi.2.8.6311 beta Console

App @ oapp
Path: /Users/davidgolding/Sites/public_html/blogsapp

Interactive Bake Shell

[0]atabaze Configuration

[M]odel

[V]iew

[Clontraller

[Plroject

[Q]uit

Whit would you Llike to Boke? (D/MAYCAP/Q)

=

Figure 5-4. The Bake welcome screen

63

64

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Using Bake to Generate CRUD Views

The welcome screen starts by asking what should be baked. Bake can handle creating a hand-
ful of application resources:

» Database configuration
* Model

e View

e Controller

* Project

Choosing a database configuration or project will bake either a new app/config/
database.php file or a new Cake application project. Most of the time, you will use Bake to
help create models, views, and controllers. You have already created the Index action in the
Posts controller to walk through the steps for manually creating actions and views. With
Bake, you will overwrite the Posts controller with a baked controller and then generate the
CRUD views.

Bake the Controller First

Select a controller in Bake by typing C in the console. Bake will prompt you to specify from
which model to bake, or dynamically write with the Bake script, the new controller (see
Figure 5-5). Start with the Posts controller by typing the corresponding number (2).

®OO Terminal — php
[M]odel r
[V]iew

[Clontraller

[Plroject

[Quit

What would vou like to Bake? {D/MAVCAPAQ)

=

Bake Controller
Path: AUsers/daovidgolding/Sites/public_html/blog/opp/control lerss

Poszible Models based on your current datobose:

. Comments

. Posts

. PostsTogs

. Tags

. Users

Enter o number from the list obove, or twvpe in the name of another controller.
=2

[T

Boking PostsControl ler

Would wou like to build your controller interactively?
Warning: Choosing no will overwrite the PostsController. {w/n)
DL

*
|
|
|
|
|
|
|
|
|
|
|
|
"
ry
v
A

Figure 5-5. To bake a controller, you must specify from which model to build.

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Bake gives you the option of baking the controller interactively. In interactive mode, Bake
will walk you through each step of building the controller. With each step you will have the
option of modifying the setting to fit your needs. Bypassing interactive mode will produce a
default controller and will overwrite any controllers that match the file name of the one Bake
builds. Enter interactive mode to bake the controller, and specify these settings:

¢ Would you like to use scaffolding? [No]
¢ Would you like to include some basic class methods (index(), add(), view(), edit())? [Yes]
* Would you like to create the methods for admin routing? [No]

* Would you like this controller to use other helpers besides HtmlHelper and
FormHelper? [No]

* Would you like this controller to use any components? [No]
e Would you like to use Sessions? [Yes]

Bake will ask you whether creating the Posts controller looks OK; this is an opportunity
to start over if somehow during the process you entered the wrong parameter. When you con-
tinue, because you have already created a Posts controller, Bake will ask you whether you'd
like to overwrite the existing Posts controller. Specify Yes. Finally, Bake will ask whether you
want to bake unit test files; specify No.

That'’s it. The Posts controller will now have the business logic included for the basic class
methods (see Listing 5-7).

Listing 5-7. The Baked Posts Controller

<?php

class PostsController extends AppController {
var $name = 'Posts’;
var $helpers = array('Html', 'Form');

function index() {
$this->Post->recursive = 0;
$this->set('posts’, $this->paginate());
}

function view($id = null) {
if (1$id) {
$this->Session->setFlash(__ ('Invalid Post.', true));
$this->redirect(array('action'=>"index"));
}
$this->set('post', $this->Post->read(null, $id));

65

66 CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

function add() {
if (lempty($this->data)) {
$this->Post->create();
if ($this->Post->save($this->data)) {
$this->Session->setFlash(__ ('The Post has been saved', true));
$this->redirect(array('action'=>"index"));
} else {
$this->Session->setFlash(__ ('The Post could not be saved. w=
Please try again.', true));
}
}
$tags = $this->Post->Tag->find('list');
$users = $this->Post->User->find('list");
$this->set(compact('tags', 'users'));

}

function edit($id = null) {
if (1$id 8& empty($this->data)) {
$this->Session->setFlash(_ ('Invalid Post', true));
$this->redirect(array('action'=>"index"));
}
if (lempty($this->data)) {
if ($this->Post->save($this->data)) {
$this->Session->setFlash(__ ('The Post has been saved', true));
$this->redirect(array('action'=>"index"));
} else {
$this->Session->setFlash(__ ('The Post could not be saved. =
Please try again.', true));
}
}
if (empty($this->data)) {
$this->data = $this->Post->read(null, $id);
}
$tags = $this->Post->Tag->find('list');
$users = $this->Post->User->find('list");
$this->set(compact('tags', 'users'));

}

function delete($id = null) {
if (1$id) {
$this->Session->setFlash(__ ('Invalid id for Post', true));
$this->redirect(array('action'=>"index"));

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

if ($this->Post->del($id)) {
$this->Session->setFlash(__ ('Post deleted', true));
$this->redirect(array('action'=>"index"));

}
}
}
2>
Bake the Views Second

After the controller is baked, Bake will return to the welcome screen. You can immediately
begin baking other resources, and with the controller actions now available for the CRUD
operations, you can bake the views.

Select View to bake the views, and choose the Posts controller from which to build them.
As before with baking the controller, enter interactive mode and then specify the following
settings:

e Would you like to create some scaffolded views (index, add, view, edit) for this con-
troller? [Yes]

* Would you like to create the views for admin routing? [No]

Again, you will be asked whether you want to overwrite the app/views/posts/index.ctp
file. Select Yes, and Bake should tell you that the view scaffolding is complete (see Figure 5-6).

Launch the Posts controller, and everything should appear exactly like the scaffolding
when the $scaffold attribute is called. Bake provides the same views and functions, but now
they are available to you to edit in the controller and the views.

67

68 CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

®00 Terminal — php

Interactive Bake Shell

[0]atabaze Configuration

[M]odel

[V]iew

[Clontraller

[Plroject

[Q]uit

What would vou like to Bake? {D/MAVCAPAQ)

=

Bake View
Path: /fUzers/davidgolding/Sites/public_html bloglapp/views/

Poszible Models based on your current datobose:

1. Comments

Z. Posts

3. PostsTags

4. Tags

5. Users

Enter o number from the list obove, or twvpe in the name of another controller.

=2

Would wvou like boke to build your views interactively?

Worning: Choosing no will overwrite Posts views if it exist. {w/n)

[¥] =¥

Would you like to create some scaffolded views (index, odd, view, edit) for this controller?
MOTE: Before doing so, you'll need to create your controller ond model closses (including ossocioted
models). (y/nd

[n] =¥

Would you like to create the views for admin routing? {w/n)

¥1>n

Creating file /lsers/davidgolding/Sites/public_html/blog/app/views/posts/ index.ctp
File exists, overwrite? /lUsers/davidgolding/Sites/public_html/blog/opp/views/posts/index.ctp (v/n/q)

[n] =¥
Wrote /AUsers/davidgolding/Sites/public_html/blogdfappsviews/posts/index.ctp

Creating file /lsers/davidgolding/Sites/public_html/blog/app/views/posts/view.ctp
Wrote /Alsers/davidgolding/Sites/public_html/blogdoppsviews/posts/view.ctp

Creating file /lzers/davidgolding/Sites/public_html/blog/app/views/postsadd.ctp
Wrote /AUsers/davidgolding/Sites/public_html/blogsapp/views/postssadd.ctp

Creating file /lsers/davidgolding/Sites/public_html/blog/app/views/postssedit.ctp
Wrote /AUsers/davidgolding/Sites/public_html/blogdopp/views/posts/edit.ctp

VYiew Scoffolding Complete. 1

|

Figure 5-6. The whole process for baking views off the Posts controller

Editing Baked Views

Editing the views is a simple task. Open the app/views/posts folder, and you should find the
following baked views:

e add.ctp
e edit.ctp
e index.ctp

e view.ctp

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Open the index.ctp file, and you will find all the HTML unique to this view. Change line 2
in this file to the following, and the title on the Index action page will change to “Blog Posts”:

<h2><? _ ('Blog Posts');?></h2>

You can add to and delete anything from this file to change the Index action view without
affecting any of the other actions. For example, the date field is not displayed nicely for the
user. You can format this date string to appear more readable by editing it in the view file.

Around line 34 in the app/views/posts/index. ctp file is the date string:

<?php echo $post['Post']["'date"]; ?>

Using PHP’s date() and strtotime() functions will make this variable display better.
Change line 34 to something like the following:

<?=date('M jS V, g:i a',strtotime($post['Post']["'date']));?>

The date will then read differently for the Index action view (see Figure 5-7).

000 My Cake To-Do Application
- G http:/ /localhost/blog/posts Q' Coogle

Posts
Page 1 of 1, showing 1 records out of 1 total, starting on record 1, ending on 1
Id Name Date Content User Actions
1 New Functions in 1.2 Jul 4th 2008, 12:00 am spiderman View Edit Delete

New Post List Users New User List Tags New Tag

Num. Took

Nr Query Error Affected Caws (ins)

1 | SELECT COUNT(*) AS “count’ FROM “posts™ AS “Post’™ LEFT JOIN 1 1 0
“users” AS "User” ON ("Post™. user_id” = "User . id")WHERE 1 = 1

2 SELECT “Post™."id", "Post’ . name”, "Post™. date”, "Post™. content’, 1 1 0

“Post™. user_id", “User’.'id", "User’. name”, “User’. email ",
“User™. firstname™, "User . lastname™ FROM ~posts” AS “Post™ LEFT
JOIN “users™ AS “User™ ON (*Post’. user_id” = "User’."id") WHERE 1
= 1 LIMIT 20

Figure 5-7. Each listing of a post in the Index action view has a more presentable date field.

69

70

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Considering Internationalization

You may have noticed that some text strings in the baked views are encased in a PHP function
__ (). Simply stated, this function is Cake’s method for making views easy to alter dynamically
for international web sites. Cake can localize the content encased in this function to the lan-
guage of the user, but other settings must be entered in the application’s controllers and con-
figuration files. If your application has no need of internationalization or localization, then
you can avoid using the __ () function.

Using Commands for Faster Baking

Some basic commands can make baking Cake resources easier. Simply enter the resource
you need to bake after typing the cake bake command in the console. Examples include the
following:

$ cake bake controller
$ cake bake model

$ cake bake view

$ cake bake project

You can even enter the name of the resource if you want to bypass interactive mode and
just generate the file:

$ cake bake controller tags
$ cake bake model comment

Don't forget to include the -app parameter if your Cake console installation requires you
to do so for Bake to access your working application folder:

$ cake bake controller tags -app /serverroot/blog/app/

Customizing Views

The Bake script cuts down on startup time to get scaffolded views available quickly. By tin-
kering with the baked view files, you can add onto them your customized elements and
forms. In this chapter, you affected only the Index action view and learned to operate the
Bake script. Chapter 6 will discuss each line in the baked controllers and views and how to
create more advanced web pages. You'll analyze the other CRUD operations and how Cake
interacts with user form submissions. Form and HTML helpers that come with Cake will
allow you to more effectively administer form fields and submissions with less code than
the typical PHP application requires.

Before moving on, practice using Bake with other tables by following this chapter’s “Bake
More Resources” exercise.

CHAPTER 5 © CREATING SIMPLE VIEWS AND BAKING IN THE CONSOLE

Bake More Resources

In this chapter, you baked the Posts controller and some scaffolded views. Master Bake by generating the con-
trollers for the tags and comments tables, as well as their models and views. Be sure to try the other Bake
commands to improve your development speed and explore the database configuration and project features.

Summary

Layouts in Cake are files that are wrapped around your application. When you create a
default layout file, you intercept Cake’s default layout for scaffolds, error pages, and any
other views. Individual view files are rendered where the $content_for layout variable is
echoed in the layout, thus allowing you to create a common interface for multiple views.
One of the fastest ways for getting your application off the ground is to use Cake’s scaffold
and Bake features. By setting up the console to work with Bake, you can generate cus-
tomized actions and views with simple shell commands, sometimes with only one string of
text. Using Bake correctly can speed up development by providing you with basic code that
allows you to create, edit, list, and view database records through a web interface. Chapter 6
will examine more closely what is happening in baked elements and will explain how to
customize views in Cake.

7

CHAPTER 6

Customizing Views

Using Bake to generate views and controller actions is great for getting an application
started quickly. Eventually, though, you will need more customized code to flesh out the
application’s feature set. For the application to provide much functionality, it will inevitably
have some level of user interaction in the form of clicking links and HTML elements, supply-
ing form data, or performing other interactions. As the users interact with the application,

they will make requests that operate sequentially through controllers and views. This chapter

will go through these sequences and explore the Cake features that give you more fine-tuned
control over the user experience.

Handling User Interactions

In general, three kinds of sequences result from a user interacting with a Cake application:
¢ A simple page request sequence
¢ A form submission sequence
¢ An asynchronous (Ajax) sequence

The views and their interaction with the controllers and models will vary depending on
the program’s processes. When customizing views beyond the Bake or scaffolding views, you
will need to keep in mind the kind of process you are building.

A Simple Page Request

Open the app/controllers/posts _controller.php file, and scroll to the View action. It should
be similar to Listing 6-1.

Listing 6-1. The View Action in the Posts Controller

1 function view($id = null) {

2 if (1$id) {

3 $this->Session->setFlash(__ ('Invalid Post.', true));
4 $this->redirect(array('action'=>"index"));

5 }

6 $this->set('post’, $this->Post->read(null, $id));
7}

73

74

CHAPTER 6 © CUSTOMIZING VIEWS

Processes are usually—if not always—dispatched to the controller. Here, the View
action is processed by the controller, and the corresponding view file will be called when
the process terminates. The first step of the action is to receive any parameters supplied by
the user. Because this is a simple page request sequence, all the user is going to supply is
one or two variables that match a record in the database—no form data, no complicated
logic tests, just a couple of parameters at most. Line 1 in Listing 6-1 receives the parameter
supplied by the user with the function variable $id. This variable is defaulted to null but
could very well be changed to an array or have a default value, depending on your appli-
cation’s needs.

In this action, a simple logic test is performed: if the user has not supplied a unique ID of
a post to be pulled from the database, return an error; otherwise, read the matching record
and forward its contents to the view as a variable. This test is performed on lines 2-6.

Line 3 is executed if the user has not provided an ID value as a parameter. This line
uses Cake’s Session component, which is a component class that contains several functions
for managing and working with sessions. Rather than display a Flash page that renders an
error message for the user, the Session component sends a string of text to the view, to be
displayed either in the layout or in the individual view file. In this case, the action uses the
Session component’s setFlash() function. The error string that will be sent is set to
“Invalid Post.” In the app/views/layouts/default.ctp file, you must include the other end
of the Session->setFlash() function, which will receive the error string and display it.
Open the default layout, and insert the line in Listing 6-2 somewhere within the <body>
element.

Listing 6-2. Displaying Session Flash Messages
<? $session->flash();?>

Now when the error is recognized, line 4 in Listing 6-1 will redirect the user to the Index
action in the Posts controller. Because you've included the Session component in the default
layout, the error message specified in line 3 will be displayed in the page.

Line 6 in Listing 6-1 passes information from the database to the view using the set()
function. This line also includes a model function, read(), which looks up the record that cor-
responds to the ID supplied by the user and pulls its data. By assigning this model function to
the view variable post in the set() function, everything in the record will be made available in
the view.

Simple page requests usually behave like this View action. The first step is to retrieve the
parameter from the user’s link or URL and make it available in the action. The second step is
to check for a supplied parameter and supply an error message if the parameter is null. The
third step is to fetch the data items that correspond to the request and pass them along to the
view. Now with the controller’s logic working properly for a simple page request, you can cus-
tomize the view.

This sequence can include much more than the code I explained earlier. For instance, the
action could perform more complex checks on the parameter or work with multiple parame-
ters at a time, run multiple database queries, and then forward those on to the view. In some
cases, you may want the action to not even work with the view but forward data to another
action. In these scenarios, Cake behaves like a typical PHP script, except when creating the
display for the user. Using Cake functions and components, as Bake does with the Session

CHAPTER 6 = CUSTOMIZING VIEWS

component, takes the place of your own functions or code, but in general the controller will
operate as a general PHP script.

A Form Submission Sequence

Handling user form data goes a step beyond a simple page request sequence. In this scenario,
a few things will happen in order:

1. The controller action is called, and it determines whether the user is submitting any
form data.

2. If there is no form data, the controller instructs the view to display the form. If editing
an existing record, the controller may perform a database lookup to propagate the
fields in the subsequent view.

3. The user fills out the form and submits it to the controller.

4. This time, the controller finds form data in the request and handles the data. Depend-
ing on the results of the action’s operation, another view is rendered, usually with a
feedback page that alerts the user to a successful submission or a failed one.

To understand the internals of Cake flow, open app/controllers/posts_controller.php,
and scroll to the Add action. It should appear similar to Listing 6-3.

Listing 6-3. The Add Action in the Posts Controller

1 function add() {

2 if (lempty($this->data)) {

3 $this->Post->create();

4 if ($this->Post->save($this->data)) {

5 $this->Session->setFlash(__ ('The Post has been saved', true));

6 $this->redirect(array('action'=>"index"));

7 } else {

8 $this->Session->setFlash(__ ('The Post could not be saved. =
Please try again.', true));

9 }

10 }

11 $tags = $this->Post->Tag->find('list");

12 $users = $this->Post->User->find('list");

13 $this->set(compact('tags', 'users'));

14 }

The Add action behaves like the outline earlier: in line 2 of Listing 6-3, it checks for any
user form data with a simple logic test and then saves the data to the database (if present);
otherwise, it returns an error to the user and renders the Add view.

$this->data

Cake handles form data for you and sticks to convention when doing so. All the form fields sup-
plied to the controller will automatically be formatted in an array with naming conventions

75

76

CHAPTER 6 © CUSTOMIZING VIEWS

that dictate where in the array the data will be stored. The form will always be parsed and
organized following the MVC structure. For an example, observe Listing 6-4.

Listing 6-4. A Simple Form

<?=$form->create('Posts');?>

<?=$form->input('name');?>
<?=$form->input('content’,array('type'=>"textarea', 'rows'=>4, 'cols'=>40));?>
<?=$form->end('Submit');?>

Though I haven't yet discussed it, Listing 6-4 uses the Form helper, which I will use more
extensively later. In short, the Form helper runs functions in the view that determine how to
display a chunk of HTML code. The input() function in the Form helper is useful because it
takes the name provided (which corresponds to fields in the database) and renders an HTML
<input type="text"/> element with all the appropriate names and values for Cake to parse
the data automatically. If you were to take a peek at the page source in the browser, this view
would output the following:

<form method="post" action="/blog/posts/add">

<input type="text" name="data[Post][name]" id="PostName"/>

<textarea name="data[Post][content]" cols="40" rows="4" id="PostContent"></textarea>
<input type="submit" value="Submit"/>

</form>

When the user fills out the form and submits it, Cake places the form data into the
$this->data array like this:

Array (
[Post] => Array (
[name] => Title Entered in the Name Field
[content] => All the content provided in the <textarea> field.

When working with associated models, $this->data may also include those fields as well.
In the case of the Post model, you have already built an association between posts and tags for
the blog. When done correctly, the form will pass along associated fields to $this->data nicely:

Array (
[Post] => Array (
[name] => Title Entered in the Name Field
[content] => All the content provided in the <textarea> field.

)
[Tag] => Array (
[Tag] => Array (
[0] => 1
[1] => 56
)
)

CHAPTER 6 = CUSTOMIZING VIEWS

In the $this->data['Tag']['Tag'] array, each selected item’s ID is placed as a separate
element in the array, since the Tag model is associated with the Post model as a “has and
belongs to many” relationship.

User form submissions can get more complex quickly. Also in the posts’ Add action is
a datetime field. Working with dates and times can be rather cumbersome; differentiating
between months, days, minutes, and hours can be a nightmare considering each has a spe-
cific set of numbers by which it may be represented (for example, one month may have 30
days, another may have 31, and February changes between 28 and 29 days every four years).
When used in conjunction with the Form helper, $this->data can dramatically shave off code
for dealing with dates and times. When done correctly in the view with the Form helper, Cake
parses a form containing dates and times for the $this->data array like so:

Array (
[Post] => Array (
[date] => Array (

[month] => 07
[day] => 04
[year] => 2008
[hour] => 12
[min] => 00

[meridian] => pm

Whether in the view or the controller, you can pull user-submitted data from $this->data
like any PHP array. For example, checking for the year can easily be done by examining the
$this->data['Post']['date']['year'] value. Or, you can fetch the meridian by calling the
$this->data['Post']['date']['meridian'] value. Dates and times in Cake are all the more
attractive when considering that in the view all the necessary date and time fields are supplied
with a single line:

<?=$form->input('date');?>

Back in line 2 of Listing 6-3, the Add action checks for a user submission by looking at the
$this->data array: if it is empty, then the user has not submitted anything; if not, a form has
been submitted, and the action must handle the data.

Lines 3-6 in Listing 6-3 save the data to the database, provided a test of $this->data
has passed successfully. The rest of the action behaves like a simple page request. If no
data has been supplied, the action pulls some associated data from the Tag and User mod-
els and passes it along to the view.

Saving Forms

When $this->data is formatted according to Cake’s conventions (which is mostly managed by
implementing the Form helper in the view), saving data is easy. Cake performs saves through
the use of the create() and save() model functions.

77

78

CHAPTER 6 © CUSTOMIZING VIEWS

Note The distinction between a mode! function—either a function written in the model class or a cus-
tomized function stored in the model file—and other functions (such as controller actions, for instance) is
that they are always executed through the model. This means that to launch a model function, you must
always do so through the model class. In this case, the Post model saves the data, so the model functions
have names like $this->Post->save(), not just $this->save(). Other model functions such as read()
and find() will always be run similarly, through a specified model. Hence, the syntax goes $this followed
by the model, followed by the function, with the function’s parameters housed in the parentheses.

The create() function inserts a new record into the table. Because this model function
flows from a specified model, it will insert into said model. In line 3 of Listing 6-3, the create()
function is being called from the Post model, so the new row will be inserted in the posts
table. Running the save() function immediately following the create() function will propa-
gate whatever is passed for saving to the new row. Line 4 in Listing 6-3 sends the preformatted
$this->data array. The save() function is already built to parse and save the array, so no other
data handling is needed.

In short, the first step for adding a new record is to create a new row with the create()
model function, and the second step is to save $this->data by passing it through the save()
model function. The baked Add action goes beyond just saving the data by checking for an
error in the process. You could intercept the save function by entering some logic in the
beforeSave() model action. If this action returns false, then in the controller (line 4 in List-
ing 6-3, for example) the save() model function also returns false. The controller can then
use the Session component to display an error message or perform other operations in
response to a failed save in the model.

Saving form data for a specific ID is done by setting the model ID variable, as in the fol-
lowing example:

$this->Post->id = $id;
$this->Post->save($this->data);

This is usually necessary only for updating a record. When creating a new record, use the
create() model function.

Filling Form Fields for Editing or Updating

The form submission sequence may also include editing records in the database or previously
saved data. In this instance, the controller will need to include a few more operations than the
Add action does. Open the app/controllers/posts _controller.php file and scroll to the Edit
action. It should include code similar to Listing 6-5.

CHAPTER 6 = CUSTOMIZING VIEWS

Listing 6-5. The Edit Action in the Posts Controller

1 function edit($id = null) {

2 if (1$id 8&% empty($this->data)) {

3 $this->Session->setFlash(__ ('Invalid Post', true));

4 $this->redirect(array('action'=>"index"));

5 }

6 if (lempty($this->data)) {

7 if ($this->Post->save($this->data)) {

8 $this->Session->setFlash(__ ('The Post has been saved', true));

9 $this->redirect(array('action'=>"index"));

10 } else {

11 $this->Session->setFlash(__ ('The Post could not be saved. w=
Please try again.', true));

12 }

13 }

14 if (empty($this->data)) {

15 $this->data = $this->Post->read(null, $id);

16 }

17 $tags = $this->Post->Tag->find('list");

18 $users = $this->Post->User->find('list');

19 $this->set(compact('tags', 'users'));

20 }

This action is more or less the combination of the Add and View actions. Editing requires
both a simple page request (the record or data source to be edited) and a form submission
process, which is included in the baked Edit action. The action performs three logic tests.
First, has the user supplied a record ID alone? Second, has the user provided any form data?
Third, has the user provided neither a form submission nor a record ID? These tests are found
in three chunks of code, namely, lines 2-5, 6-13, and 14-16.

Notice that on line 15, $this->data is equal to the result of the read() model action. In
other words, the read() function result follows the same formatting rules as form submis-
sions in the controller. Going in both directions, either reading a database record and making
it available in the view or sending form data from the view to the controller, Cake will format
the arrays in the same manner.

An Asynchronous Sequence

Asynchronous processes occur when the user makes a request through a web page and the
server responds without exiting or refreshing the current page. In other words, from the user’s
perspective, the request is processed by the server in the background without any interference
with the current display. Usually, a specific HTML element is updated by the server instead of
the whole web page. Asynchronous HTTP requests have become popular in recent years as
enterprise-level web sites have made better use of JavaScript and XML. Most developers refer
to any asynchronous server responses as Ajax operations, even though Ajax started as an
acronym meaning Asynchronous JavaScript And XML.

79

80

CHAPTER 6 © CUSTOMIZING VIEWS

Recently, several open source Ajax frameworks have appeared, making asynchronous
operations easier to manage. Cake comes with an Ajax helper designed to facilitate asyn-
chronous user sequences. With tools such as these, working with the server without
reloading the entire web page has never been easier. The simple page request and form
submission sequences can be made to work asynchronously in Cake, but JavaScript
methods must be used to accomplish the correct HTTP response.

For Ajax to work, the default behavior of the web browser must be manipulated by
JavaScript. For example, when clicking a link or a form button, the web browser automati-
cally sends an HTTP request synchronously and waits for a new web page to be returned by
the server. This behavior is suppressed by JavaScript; the form button in this example uses
JavaScript to send the HTTP request without the browser refreshing or waiting for a new
page. JavaScript also handles receiving the server’s response and determines where to dis-
play the outcome of the user’s request. Because Ajax relies on JavaScript, the asynchronous
sequence in Cake begins with the view file.

In the view, whichever HTML elements send or receive Ajax requests must include the
correct JavaScript code. If you use an Ajax framework, then the layout will generally include
the links to the framework’s libraries. An Ajax link, for instance, might use the onClick HTML
attribute with JavaScript code that follows the framework’s methods rather than use the syn-
chronous href attribute. However the Ajax framework prepares and handles asynchronous
processes, the URLSs it uses will generally follow the pattern used by Cake. In the view file,
the Ajax forms or links will consequently point to a controller just like synchronous forms
and links.

The controller, however, does need to perform a slightly different operation for Ajax to
work in Cake. Assume that all the JavaScript is in place to send an asynchronous request to a
Cake controller. In this sense, the controller will behave the same as if the request were made
in a typical fashion. By default, however, Cake will render the corresponding view file, depend-
ing on which action is being run. The render () function makes it possible to intercept the
default view render and tell Cake that it must behave asynchronously.

Simply put the render () function in the action where you would normally allow the con-
troller to terminate and output the view. Be sure to include the Ajax parameter in the function
so that Cake knows to render the view asynchronously:

$this->render('add', 'ajax"');

Later, we’ll deal with more advanced Ajax methods, which will require extensive editing
in the views. For now, be aware that the asynchronous sequence is an option in Cake and is
handled almost identically to the other two responses.

Writing Individual View Files

With the controller logic in hand, next the individual view files must handle user interaction
sequences properly. Open the app/views/posts/view.ctp file. Scroll to lines 1-30; they should
appear like the code in Listing 6-6.

CHAPTER 6 = CUSTOMIZING VIEWS

Listing 6-6. The View Action View File, Lines 1-30

1 <div class="posts view">

2 <h2><?php ('Post');?></h2>

3 <dl><?php $i = 0; $class = ' class="altrow"';?>

4 <dt<?php if ($i % 2 == 0) echo $class;?>><?php ('Id"); ?></dt>

5 <dd<?php if ($i++ % 2 == 0) echo $class;?>>

6 <?php echo $post['Post']['id"']; ?>

7

8 </dd>

9 <dt<?php if ($i % 2 == 0) echo $class;?>><?php _ ('Name'); ?></dt>
10 <dd<?php if ($i++ % 2 == 0) echo $class;?>>

11 <?php echo $post['Post']['name']; ?>

12

13 </dd>

14 <dt<?php if ($i % 2 == 0) echo $class;?>><?php _ ('Date'); ?></dt>
15 <dd<?php if ($i++ % 2 == 0) echo $class;?>>

16 <?php echo $post['Post']['date']; ?>

17

18 </dd>

19 <dt<?php if ($i % 2 == 0) echo $class;?>><?php _ ('Content"); ?></dt>
20 <dd<?php if ($i++ % 2 == 0) echo $class;?>>

21 <?php echo $post['Post']['content']; ?>

22

23 </dd>

24 <dt<?php if ($i % 2 == 0) echo $class;?>><?php _ ('User'); ?></dt>
25 <dd<?php if ($i++ % 2 == 0) echo $class;?>>

26 <?php echo $html->1link($post['User']['name'], w=
array('controller'=>'users', 'action'=>'view', $post['User']['id"'])); ?>

27

28 </dd>

29 </d1>

30 </div>

The View action, in short, is a simple page request. The user will have asked for a specific
record to be displayed, and this view file is meant to do that in an organized fashion. Most of
what is being rendered in these lines is HTML. Line 1 creates a new <div> element, and line 30
closes it. Some important Cake operations are at work here, however, that correspond with the
data provided in the controller. Recall that in Listing 6-1’s line 6, the View action performs a
read() model function and assigns the result to a variable named post with the set() func-
tion. This variable is now available in the View view as $post and can be displayed throughout
the view however you please.

Bake provided you with a series of HTML tags surrounding instances of the $post variable
that serve to display the contents of the returned record nicely. Notice that $post is formatted
like $this->data. It contains an array of model names with nested arrays that match the fields
in their respective tables. Notice how line 26 displays data from an associated model. In this

81

82

CHAPTER 6 © CUSTOMIZING VIEWS

case, posts have been associated with users, and when the controller performed the read()
function, it noticed the association and supplied the related records as well. All of these data
are available in the $post array.

Using the Debug Function

Often you will want to view the contents of these data arrays. Cake’s debug() function provides
a detailed and nicely formatted view of a specified array. In this view file, insert the following
line, which uses the debug() function:

<? debug($post);?>

When you refresh the View action, you ought to see a bright yellow box containing a print-
out of the contents of the $post variable (see Figure 6-1).

[« [»|[&|[z=]]+] @http:,‘,’Incalhost,fhlng,rpostsf\dewfl [+] .

app/views /posts/view.ctp (line 1)

Figure 6-1. The debug() function displaying the contents of the $post variable

CHAPTER 6 = CUSTOMIZING VIEWS

Each model is keyed in the array by its name and has related records attached. Not only
has Cake provided you with the contents of the post record the user requested but also with
the records from associated models. Say you wanted to display the name of the assigned user
of this blog post by the title of the post. You could do this by performing an echo() function of
the correct array, key, and value:

<h2><?=$post['User']['firstname']." '.$post['User']['lastname'];?></h2>

The debug() function helps you figure out during the development process what exactly is
being tossed around in the view. It can be used with any array. Of course, other array display
functions can be used, such as the print_r() function native to PHP or Cake’s convenience
function pr().

Customizing the View File from Scratch

Bake has provided you with a fabulous start to this simple page request. Let’s go from scratch
and simplify the view so as to make it more readable for a site visitor. In your blog application,
this view will be a simple story display like other blogs or newspaper sites. You won't need to
display fields such as the ID or the author’s ID, even though those may be useful for construct-
ing links that point to other actions or controllers.

Edit the app/views/posts/view.ctp file by deleting the baked code and inserting the code
in Listing 6-7.

Listing 6-7. A Simplified View

<h1><?=$post['Post"']['name'];?></h1>

<p>Author: <?=$post['User']['firstname'];?> <?=$post['User']['lastname'];?></p>
<p>Date Published: <?=$post['Post']['date'];?></p>

<hr/>

<p><?=$post['Post']['content'];?></p>

Ul B W N

Listing 6-7 is very simplified code, but starting small helps you include other useful fea-
tures as you go along. Line 1 displays the post’s title as an <h1> element. Lines 2-3 display the
associated user’s first name and last name as well as the post’s date in separate <p> tags.
Finally, line 5 displays the textual content of the post. The $post variable still contains the
other array data you could use, but only a couple of fields in the view have been called out.

The HTML Helper

Suppose you wanted the title of the post to be a link to itself, just for consistency throughout
the application. In this case, the built-in HTML helper could be used to generate the appropri-
ate links for you. Change line 1 in the View view file to Listing 6-8.

Listing 6-8. The HTML Helper and Its 1ink() Function

<?=$html->1ink('<h1>".$post['Post']['name']."'</h1>","/posts/view/".$post['Post" Jw
["id'],null,null,false);?>

Each parameter in the 1ink() function is separated like other PHP function parameters.
Between commas, and when necessary, with arrays, you pass along your own variables and

83

84

CHAPTER 6 © CUSTOMIZING VIEWS

settings to the helper function, and it returns some HTML to be displayed. You won’t need to
use every parameter, so in these cases you can enter a null value. In Listing 6-8, you've called
out the 1ink() function in the HTML helper by first calling the $html object. With this particu-
lar helper, most of its functions will require you to perform an echo() function, which you've
done with the shorthand operator <?=rather than spelling out the function. The final parame-
ter in the function corresponds to the 1ink() function’s escaping feature. In this case, you've
set it to false so that the function ignores escaping the greater-than and less-than symbols as
HTML entities.

The first parameter in the HTML helper’s 1ink () function is the text to be displayed. The
second parameter is the URL, following the application’s routes, that will be placed in the link.
Notice that you've used the $post variable to supply the title and the current ID to make this
link operable and correspond to the user’s request.

For a simple page request, not much more is needed other than to display the contents
of passed arrays. Form submission processes, however, will require more detail. As already
mentioned, Cake has supplied helpers that help with this.

Customizing an HTML Form

Listing 6-4 describes a basic Cake form that uses the Form helper to render form elements.
How you customize these features will require consistency and understanding of how the
Form helper works.

Open the app/views/posts/add. ctp file. Its contents should match the baked code in
Listing 6-9.

Listing 6-9. The Baked Contents of the Posts Add View File

1 <div class="posts form">

2 <?php echo $form->create('Post');?>

3 <fieldset>

4 <legend><?php _ ('Add Post');?></legend>

5 <?php

6 echo $form->input('name");

7 echo $form->input('date");

8 echo $form->input('content');

9 echo $form->input('user id");

10 echo $form->input('Tag');

11 >

12 </fieldset>

13 <?php echo $form->end('Submit');?>

14 </div>

15 <div class="actions">

16

17 <?php echo $html->link(_ ('List Posts', true), w=
array('action'=>"index"));?></1i>

18 <?php echo $html->link(_ ('List Users', true), w=

array('controller'=> 'users', 'action'=>'index')); ?>

CHAPTER 6 = CUSTOMIZING VIEWS

19 <1i><?php echo $html->link(__ ('New User', true), =
array('controller'=> 'users', 'action'=>'add')); ?> </1i>

20 <1li><?php echo $html->link(__('List Tags', true), =
array('controller'=> 'tags', 'action'=>'index')); ?>

21 <1li><?php echo $html->link(__ ('New Tag', true), =
array('controller'=>"tags', 'action'=>'add')); ?> </1i>

22

23 </div>

Lines 15-23 contain links to various actions that all use the HTML helper’s 1ink() func-
tion. Lines 2-13 contain the form and its fields that make the action possible. As the applica-
tion talks back and forth between the view and the controller, the Form helper intercepts all
the data being tossed around and analyzes each piece of data to determine how it ought to be
displayed in the form. As long as $this->data remains consistent with Cake’s default construc-
tion, the Form helper will be able to keep up. Sometimes the application’s design will require
some added settings to make the Form helper work properly, but for the most part, it works
wonderfully with $this->data and saves you a lot of headaches. Say goodbye to that old PHP
$_POST array!

As done with the View view, let’s rebuild the Add view from scratch. Replace the contents
of the app/views/posts/add. ctp file with Listing 6-10.

Listing 6-10. Some Minimal Code for the Add Action

<div class="posts form">
<?=$form->create('Post');?>
<fieldset>
<legend>Add Post</legend>

<
e($form->input('name'));
e($form->input('date'));
e($form->input('content'));
e($form->input('User'));
e($form->input('Tag'));
?>
</fieldset>
<?=$form->end('Submit');?>
</div>

This code resembles what was already supplied by Bake but uses the e() convenience
function (which is identical to echo()) and trims out the action links. Notice that the input()
function is at work for each of the fields and the Form helper automatically recognizes what
type of data will be contained in each field. For the associated models, the model’s name (for
example, User and Tag) was provided, and the Form helper assumes that the field is an associ-
ation and builds off the relationship. Automatically, you're given a select menu for the user
and a multiple-select for the tag.

To customize the form elements, the available options in the Form helper functions must
be used. An example is adding some parameters to the input() function. Currently the Tag

85

86

CHAPTER 6 © CUSTOMIZING VIEWS

input element is a multiple-select menu that contains a list of tags found in the $this->data
array. Changing this to multiple check boxes would normally take several lines of HTML tags
to render each individual check box. With the Form helper, you can customize the form to
handle multiple check boxes with one string of code (see Listing 6-11).

Listing 6-11. The Form Helper's input () Function Rendering Multiple Check Boxes Instead of a
Multiple Select Menu
echo $form->input('Tag',array('type'=>"'select’, 'multiple’=>"checkbox"));

The first parameter for the input() function is the name of the model or current model’s
field. The second parameter is an array containing several options as keys and their specific
settings as values. Notice that you've told the Form helper to render an input element using
the data housed in the Tag key in the $this->data array and that this element must be a select
type but use checkbox for the multiple options instead of the default. Refresh the Add action,
and you should see the simplified form with the customized check boxes. Cake formats the
data the same, regardless of the type of HTML elements, and since the controller is already set
to save the data it receives from the view, the Add action continues to work properly.

Using Other Helpers

Cake comes preinstalled with several helpers:
* Ajax
e Cache
¢ Form
e HTML
e JavaScript
* Number
¢ Paginator
e RSS
e Session
e Text
e Time
e XML

Each of these helpers contains several functions that simplify handling data and display-
ing content. Each helper will operate under the same basic syntax—an object available in the
view as a variable plus its function with its parameters supplied in the parentheses. Third-
party helpers are also available on the Internet, many of them through Cake’s official Bakery
(http://bakery.cakephp.org). To make the helper available, besides the HTML and Form

http://bakery.cakephp.org

CHAPTER 6 = CUSTOMIZING VIEWS

helpers, you must specify in the controller that the helper is being used. You do this by popu-
lating the helper settings array with the corresponding helper’s class name:

var $helpers = array('Ajax','Session', 'Time');

By placing this string up by where the var $name and var $scaffold attributes are
called, Cake is able to begin a new instance of the helper class object and make it available
in the view. Using more helpers adds to the customization possibilities in your arsenal. The
more familiar you are with Cake’s helpers, the more options you will have when customizing
your views.

Readable Dates and Times

Practice using helpers in your views by trying the Time helper. Remember to set the $helpers attribute in the
controller to include the Time helper first. Then in the Posts View view, use the nice () function to make the
$post['Post']['date’] value more readable. Hint: you'll need to pass the variable to the function for it to
work properly.

Summary

Users will most often interact with your Cake application in one of three ways: by making

a simple page request, by submitting a form of some kind, or by sending page or form
requests asynchronously (also described as Ajax processes). Controllers and views work
together in Cake to handle these types of sequences. When customizing the view with which
the user will interact, you will also work in the controller to provide the necessary logic to
process the user’s requests. The controller will use functions such as set() and render() to
call out the view and provide it with the necessary parameters and variables. Standardized
arrays such as $this->data make handling user form data much easier as the controller
parses data rendered in the view and runs it through the model. This chapter explained how
$this->data is formatted by Cake as well as its interaction with the Form helper. Expanding
the capabilities of controllers and models comes next—Chapter 7 will describe how to cus-
tomize controllers and models to perform more complex operations.

87

CHAPTER 7

Working with Controllers
and Models

A single operation in Cake will generally invoke multiple MVC elements and will work in
those elements simultaneously. For instance, in the previous chapter, you used the Form
helper both to receive fetched data from the controller and model, and to send user form data
to the controller for processing. Changing something in the controller can affect how the Form
helper behaves, which is most noticeable when manipulating something like the $this->data
variable.

As I discuss more advanced ways of developing controllers and models in this chapter,
don’t forget that changes to the view may be necessary for the operation or customization to
work correctly. For example, managing sessions is such an integrated process that you may
spend equal time in the view (creating login screens and displaying a session’s status), the
controller (performing session logic to determine aspects of the session), and the model (sav-
ing session data in the database). To work an overall session operation into the application, in
other words, will mean editing and testing actions in the controller, model functions, and
views together.

Building an Extensive Blog

The classic tutorial for frameworks has been to build a blog. On Cake’s official web site, there is
an entire blog application tutorial. However, you need a thorough explanation of what is hap-
pening, not just a walk-through of how to build the program. So, how this tutorial differs from
others is that I will systematically explain every line of code in this application. You should be
able to master the concepts, not just the steps. With such mastery, you should be able to wrap
your head around a lot of the features Cake has to offer and understand how to incorporate
them into your own customized applications.

The blog program you've been working with has already allowed you to explore the scaf-
folding, Bake, and helper features Cake has to offer. To make the blog more powerful, you'll
need to deal with models, views, and controllers simultaneously. Now that you've been intro-
duced to various starting points and key concepts, it’s time to discuss application building in
more detail. Let’s begin with controllers and models, the lifeblood of any Cake application.

The extensive blog you will build will include these advanced features:

89

90 CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

e Articles that run through a wiki processor that turns content into HTML elements
¢ Reader comments with community voting

* Routes that create date-friendly URLs

* An admin area where the site administrator can add stories

* User management for multiple authors

» Category sorting for organizing posts dynamically

* Asitewide menu system for navigating through categories and articles

Features such as these will not be too difficult to produce but will make full use of all the
controllers, models, and views. In this tutorial, you'll approach one feature at a time and build
it into the application. Along the way, I'll continue to explain important concepts for develop-
ing in Cake. First I'll discuss controller actions in general, and then I'll show how to build some
custom actions.

Working with Actions

You have already built and worked with actions in Cake. In the following extensive blog appli-
cation, you will build a host of actions, each for a specific function in the site. Rules for
developing actions follow the pattern of typical PHP functions.

In Listing 7-1, I've created a basic controller action named foo. Notice that it follows the
typical function syntax in PHP. Controller actions behave somewhat differently from typical
PHP functions, however. For instance, when the action is launched by Cake, it will also auto-
matically render a corresponding view or produce an error. Only if the action is called by
another action in the application will it be capable of returning a value without displaying
a view.

Listing 7-1. A Basic Controller Action

function foo($bar = null) {
$this->set('output’,$bar);
}

Using Variables in Actions

Passed function variables can be initiated and receive default values by naming and setting
variables in the parentheses of the action. These variables are available throughout the action.
Global variables, however, to be used by all actions in a controller can be created within the
controller class as class attributes:

var $myVar = 'Variable value';

Now, in any of the controller actions, I could use the $myVar attribute by placing $this->
before it:

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

function foo($bar = null) {
$bar = $this->myVar;
$this->set('output’,$bar);

Be sure when creating your own class attributes that they don’t conflict with other Cake
properties like $scaffold or $helpers.
Other local variables can be called within the action as in other PHP scripts:

function foo() {
$bar = "hello world';
$this->set('output',$bar);

Requesting Actions

In your Posts controller, suppose you needed to fetch a list of tags from the Tags controller.
Conventionally, you do this through the model, especially since what you are trying to accom-
plish is a database query of some kind. But to illustrate how controller actions can talk to one
another, let’s run this query through the controllers instead of the models.

In the Posts controller in one of the actions, I could pass along a list of tags to the view by
using the set() and requestAction() functions, like so:

$this->set('tags',$this->requestAction('/tags/getList"));

The requestAction() function is pointing to the Tags controller’s getList() action, which
hasn't been produced yet. For the $tags variable in the Posts controller’s view to be formatted
with data, the getList() action in the Tags controller will need to run a return of some data,
not point to the view (which it will do by default). If you leave out a return in the getList()
action, then the Tags controller will by default try to render a view in the app/views/tags
directory named getlist.ctp.

So, for this to work properly, the getList() action will need to look something like this:

function getlist() {
return $this->Tag->find('list');

}

Sometimes there is just no way around using the requestAction() function. Most of the
time, however, you should be able to use a component, model, or other element to navigate
your code. When needing to launch another action with its views and everything else, use
the redirect() function instead of requestAction(). Requesting actions as opposed to redi-
recting is reserved for performing logic in another controller and pulling its results to the
current controller, not for simply launching another action elsewhere in the application. In
short, the redirect() function causes another browser request and changes the URL, while
requestAction() works internally to launch specific actions.

91

92

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

How Callback Actions Work in the Controller

Controller callbacks make it possible to perform logic before or after launching an action. For
example, say you launched the View action in the Posts controller. Before the View action is
run by the controller, certain callbacks are checked for any content. By placing code in these
callback actions, you can perform some logic for any and all actions before the action is exe-
cuted, after it is executed, or just before the view is rendered. Let’s say you wanted to restrict
access to the View action; you could accomplish this in a callback action.

beforeFilter

The beforeFilter() callback action is called before every action is executed. It is entered like
any other action, as a PHP function, and interrupts processing controller logic in the
requested action. To block users from accessing a certain area of the site, the beforeFilter()
action can check the session for information.

This particular callback example in Listing 7-2 ensures that for the View action, the user
must be logged in; otherwise, it redirects the user to a login action (more on these possibilities
later). This is just one example of using a callback to interrupt launching an action in the
controller.

Listing 7-2. The beforeFilter() Callback Aaction

function beforeFilter() {
if ($this-saction == 'view') {

if (!$this->Session->check('User')) {

$this->redirect('/users/login');

}

afterFilter

Just like the beforeFilter() callback action, afterFilter() performs logic after every action is
called.

beforeRender

This callback action performs logic between the execution of the requested action’s logic and
the rendering of the view output for all actions. Like beforeFilter() and afterFilter(),
beforeRender () can be made to apply to a specific action by using the $this->action variable.

Customizing the Controller for the Blog

Currently, the Posts controller already contains the typical CRUD actions as supplied by Bake.
The first screen in the application at which the user will arrive will be the Index action of this
controller (Listing 7-3). Let’s customize this screen to list five blog posts with their content and
author information. First, you will need to take a look at the index() action and make it per-
form the logic needed for the Index view to display properly.

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Listing 7-3. The Index Action in the Posts Controller

1 function index() {

2 $this->Post->recursive = 0;

3 $this->set('posts', $this->paginate());
4}

Recursive

Line 2 of Listing 7-3 sets the Post model’s recursive attribute to 0. This attribute affects how
Cake pulls data from the table. Remember that posts are associated with tags and users. When
the Post model runs a query to pull posts from the database, it will also fetch associated
records from the tags and users tables. The recursive attribute tells the model how far to look
when pulling those associated records. If users were to have an association with another table
and the recursive attribute were set to a value greater than 1, then the model would pull not
only the associated user records but their associated tables’ records as well.

In the Index action, the recursive attribute is set to zero, which means that beyond the
initial level of associations, Cake will ignore other records. Table 7-1 outlines the possible
recursive values and their results.

Table 7-1. Possible Recursive Values

Value Result

-1 Returns only the current model and ignores all associations

0 Returns the current model plus its owner(s)

1 Returns the current model and its owner plus their associated models

2 Returns the current model, its owner, their associated models, and the associated

models of any associations

Pagination

Line 3 of Listing 7-3 uses the paginate() controller function. This allows the Paginator helper
to simplify column sorting and multiple pages of data. Essentially, the paginate() function
performs a find() model function but also analyzes the result and passes some important
pagination parameters to the view. Then, in the view, the Paginator helper takes those param-
eters and constructs multiple pages and column sorting. If the paginate() function is not run
in the controller, the Paginator helper would break in the view. If pagination is an important
element of the application, then leave the paginate() function here. However, for this blog,

I will remove the Paginator helper from the view, so the paginate() function can also be
removed from the Index action.

The find() Function

You can actually cut down the code for the Index action by using the find() function instead
of paginate(), as shown in Listing 7-4.

93

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Listing 7-4. The Revised Index Action

1 function index() {
2 $this->set('posts',$this->Post->find('all"));
3}

Notice that line 2 runs the model function find() through the Post model. This function
is one of the more powerful features in Cake. It allows you to run a series of important data-
base queries without constructing any SQL strings. In fact, if you were to switch the data
source to something other than SQL, the find() function could still run data queries in the
syntax of the data source. The parameters of the find() action include more than just query
strings. With this function you can order the results, limit the number of returned rows, set
the recursive value, and more.

The parameters for the find() function are displayed in Table 7-2. A find() operation that
uses all the parameters would look something like this:

$this->Post->find('all',array('conditions'=>w=
array('User.id'=>1),'fields'=>"Post.name', 'order'=>w=
'Post.id ASC','limit'=>10, 'recursive'=>0));

In this example, the Post model would run a query searching for all posts associated with
the user with an ID equal to 1. It would also return only the name field and would order the
results array by the posts’ IDs in ascending order. The returned array would have a maximum
of ten results, and the query would pull from the first set of ten in the batch. Lastly, the recur-
sive value is set to 0, forcing the query to supply only the Post model data and its owner
model.

Table 7-2. Parameters Available in the find() Model Function

Name Default Value Details

type "first' Can be all, first, or list; determines what type of find
operation to perform

conditions null Array containing the find conditions as key and value

fields null Array specifying from which fields to retrieve data

order null Ordering conditions; used to specify by which field to order the
result set; field name must be followed by either ASC or DESC

page null Page number for using paged data

limit null The limit of results to be calculated per page

offset null The SQL offset value

recursive 1 Recursive value for associated models; can be overridden by the

recursive attribute

This example shows one way of notating parameters in the find() function. Simply put,
the parameters in the function are stored in an array and follow the type of find action to be
performed. Another way of listing the parameters in find() is like this:

find(type[string], parameters[array])

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

In other words, all of the find parameters are stored in the parameters array, and the type
of find (all, first, or list) is passed in type.

When not specifying the type of find operation, find() will perform the first type by
default. When you need to fetch only the first record of a result set and you want to specify
more complicated conditions, then you can use an alternate notation method that leaves out
the type parameter altogether. In this case, each parameter is entered in find() between
parentheses, not in a parameters array as in the notation explained earlier. The find() func-
tion would then take on settings in this fashion:

find(conditions[array], fields[mixed], order[string], recursive[int])

If I were to fetch the first post of the entire table but ordered by date, I could use find()
like this:

$this->Post->find(null,null, 'date DESC');

Manipulating these parameters in the find() function and using these two ways of notat-
ing find conditions allows you to perform more complex database queries and trim the data
set to exactly what results you need. This saves you from having to run loops through data
where you can provide an array with specific conditions and the model returns data set for
you, already formatted to be handled in the controller and view.

Setting Find Conditions

Find conditions are formatted as an array. The key corresponds to the field to be searched, and
the value represents the value to be found in the field. Notice that the field provided in the find
condition is structured differently than a typical SQL query string. The associated model (in
this case User) followed by a period and the field name tells the find() function to run the
query through the associated model, not the Post model. In other words, search in the associ-
ated table for fields named id with the value 1.

Using arrays for find conditions is probably the more efficient way of putting together
your queries. By default, the query will search for values equal to what is entered in the array.
To search for the field with values not equal to a certain value, simply add <> before the
expression:

$this->Post->find('all',array('conditions'=>array('User.id'=>"'<> 1')));

Cake parses other SQL expressions, which include LIKE, BETWEEN, and REGEX, but you must
have a space between the operator and the value. You can search for date or datetime fields by
enclosing the field name in the SQL DATE () parameter.

Setting Multiple Conditions

Cake supports multiple conditions. By using the array to format the conditions, multiple
searches are easily managed:

$this->Post->find('all',array('conditions'=>=
array('User.id'=>1, 'DATE(Post.date)'=>"CURDATE()")));

95

96

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

The default way of pulling the conditions into a single query is by using the AND boolean
operator. In other words, the previous example will tell the model to find all posts owned by
the user with an ID of 1 and all posts with a date equal to today.

Suppose you need to perform a multiple condition query with the OR operator instead.
You do this by setting the condition’s array as the value in an array with the key or like so:

$this->Post->find('all',array('conditions'=>array(
"or'=>array(
'User.id'=>1, 'DATE(Post.date)"=>"CURDATE()"
)
N);

All valid SQL boolean operations can be used in place of OR in this example. These include
AND, OR, NOT, or XOR.

You can also have Cake search for multiple values in a field. Simply attach an array to a
field key with all the possible values for which to search:

$this->Post->find('all',array('conditions'=>array('User.id'=>array(1,2,5,10))));

Displaying the Most Recent Posts

As the posts table grows, the results returned by the current find() function in the Index
action will grow as well. To guarantee that the server load is not compromised down the road
and because you need only the five most recent posts, you can customize the find conditions
to return only five records and not (potentially) hundreds.

The easiest way to do this is to set the limit to 5 and order the results by creation date,
descending:

$this->Post->find('all',array('order'=>"date DESC','limit'=>5, 'recursive'=>0));

Now, the find() function will pull all Post records and their owners (in this case User
records associated with the post), sort by the date field with the most recent first, and limit the
results to five.

The example database is structured with an auto_increment in the ID field, meaning that
the ID field not only identifies records by a unique value but also tells you the order of cre-
ation. Because, in theory, the administrator could manipulate the date field but not the ID
field, it may be worthwhile in some instances to order by ID rather than by date. This, though,
is at the discretion of the client or developer. In this blog, we'll trust that the date assigned to
the post will determine when the post appears in the site.

Insert the new conditions into the find() function in line 2 of Listing 7-4 and replace the
Index action with the resulting code.

Adjusting the Index View

The Index view will need to be adjusted as well, if only to remove administrative actions from the reach of the user.
Go into the app/views/posts/index.ctp file and insert the following code, or work in your own customized
view code that displays the content in a more storylike form:

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

<? foreach($posts as $post): 2>
<div class="story">

<?=$html->1ink('<h1>'.$post['Post']['name']. '</h1>","/posts/view/" .=
$post['Post']['id"'],null,null,false);?>

<p>

Posted <?=date('M jS Y, g:i a',strtotime($post['Post']['date']));?>
</p>
<p>
By <?=$post['User']['firstname'];?> <?=$post['User']['lastname’];?>=

</p>

<p><?=$post["Post']['content'];?></p>
</div>
<? endforeach; ?>

The View Action

The exercise you just completed made it possible for the user to click the title of each post in
the Index view, which would take them to the View action for that post. The View action
should already contain the baked code shown in Listing 7-5.

Listing 7-5. The View Action in the Posts Controller

1 function view($id = null) {

2 if (1$id) {

3 $this->Session->setFlash(_ ('Invalid Post.', true));
4 $this->redirect(array('action'=>"index"));

5 }

6 $this->set('post’, $this->Post->read(null, $id));
7}

Line 6 of Listing 7-5 shows the use of the read() function. This is similar to the find()
function I have already discussed, but it does have some unique qualities that are especially
useful for simple page requests.

The read() Function

In short, the read() function reads the contents of a particular record. It differs from find() in
that it does not include the recursive parameter. See Table 7-3 for parameters available in the
read() model function.

Table 7-3. Parameters, in Order, Available in the read() Model Function

Name Type Default Value Explanation
fields Mixed null String value for a single field name or an array of field
names

id Integer null ID of record to be read

97

98

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

The View action’s use of the read() function is appropriate for the task at hand; leave it
the same. Lines 3—4 of Listing 7-5 contain functions for setting an error message through the
Session component and for redirecting the user in the event of an error.

The setFlash() Function

In Chapter 6 I discussed the setFlash() function, but only in basic terms. This function can go
beyond displaying a mere error message. Table 7-4 lists its parameters.

Table 7-4. Parameters, in Order, Available in the setFlash() Function in the Session Component

Name Type Default Value Explanation

message String null The message to be made available in the $session->
flash() function in the layout

layout String default The layout in which to place the flash message; this can
switch the <div> container element in which the flash is
displayed from the default to another customized one

params Array null Parameters to be passed to the layout as view variables

key String flash A way to distinguish various flash message types for
multiple flash messages

By default, the $session->flash() function in the layout, when it receives a flash message
from the setFlash() function, will display the message inside a standardized HTML string:

<div id="flashMessage" class="message">Invalid post.</div>

To customize the HTML wrapped around the flash message, you can add a new layout file
in the app/views/layouts folder and set the layout parameter in the setFlash() function. For
example, you could create a custom flash layout named flash.ctp in the layouts directory
with the following single line of code:

<div class="error message"><?=$content for layout;?></div>
Then, in the setFlash() function, you can pass the new layout parameter like so:
$this->Session->setFlash('Invalid Post.','flash');

When the flash message is displayed, it will not replace the whole layout for the view. The
entire contents of the new flash layout file will be placed where the $session->flash() func-
tion appears in the layout. Then, where $content _for layout appears in the flash.ctp file, the
flash message will be inserted. Setting the layout parameter allows full customization of how
the flash messages are displayed, but it will require creating a separate layout file to hold that
custom HTML.

If, for some reason, the flash needed to contain more specifics regarding the error, you
could pass along variables to the layout by adding them in the third slot of the function as
an array:

$this->Session->setFlash(“Invalid post.’,’flash’,array(‘story’=>$id));

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

In the app/views/layouts/flash.ctp file, the variable passed through the previous
setFlash() function will be available as $story, which behaves like passed variables in view
files through the set() controller function.

The key parameter in setFlash() makes it possible to have flash messages appear in
different areas of the layout. For instance, the app/views/layouts/default.ctp file could
contain two flash() functions differentiated by the key:

<div id="top">

<? $session->flash('top');?>
</div>

<div id="bottom">

<? $session->flash('bottom');?>
</div>

Now when the controller fires a flash message with setFlash(), you can specify where
you want the message to appear. Using the key in a flash message like this:

$this->Session->setFlash('Invalid post.',null,null, 'bottom");

tells the Session component to match the message with the flash() function with the param-
eter set to bottom.

Line 3 of Listing 7-5 needs to display a basic flash message only in the event of an error, so
I won't add any more parameters to the setFlash() function. But you can, of course, make the
message say anything you want. Simply change the first parameter to your own error message.

The redirect() Function

Line 4 of Listing 7-5 redirects the user in the event of an error. You can do this by using the
redirect() controller function. The available parameters for redirect() are listed in Table 7-5.

Table 7-5. Parameters, in Order, Available in the redirect () Controller Function

Name Type Default Value Explanation

url Mixed null A string or array pointing to another site or location in the
application.

status Integer null The HTTP status code, if desired (for example, 404 or 500
error codes).

exit Boolean true If true, the PHP exit() function will be called after the
redirect.

Caution If the exit parameter in this function is set to false, Cake will continue to execute code in the
controller following the redirect. Only when the exit parameter is set to true, meaning the PHP exit () func-
tion is called and thus terminating script execution, will all other processes be stopped after the redirect.
This may have unintended consequences since the user’s browser will request a new page but an old script
may continue to run.

99

100

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

The URL parameter for the redirect() function can be set up as an array. Notice in line 4
of Listing 7-5 that the array has a key and value corresponding to locations in the Cake appli-
cation. The available keys for use in this function correspond with Cake’s router arguments.
For example, the array would redirect the user to the Index action in the Users controller:

array('controller'=>"users', 'action'=>"index")

Single strings are also possible in the URL parameter. These follow the same URL struc-
ture used in the web browser to access areas of the Cake application. This same path shown
in the previous array could be formatted as a string like so:

'/users/index’

Other Cake functions can help with the URL parameter. One example is the referer()
function. By placing $this->referer() in the URL parameter, Cake will redirect to the refer-
ring page of the current action.

The status parameter allows you to pass an HTTP status code as part of the server
response. One of the most frequent error responses from the server is a 404 Not Found error.
Sometimes you may want the redirect() function to be used for unresolved URLs. In these
cases, using 404 as an integer in the status parameter allows the application to respond to the
error like a typical 404 server response. All the HTTP status codes are available.

In line 4 of Listing 7-5, you're assuming that the user accesses the View action from the
Index action, so in the event of an error, you'll redirect them back to this action.

Customizing the Post Display

The View view will need to be adjusted for the same reasons you adjusted the Index view. You may also want to
tweak this view to make the posts easier to read. Previously, you simplified this view. In this exercise, try embel-
lishing the View view with your own design. Be sure to make the story readable and have good layout. You may
even want to play with the app/webroot/css folder and add your own styles. The following is some minimal
code to start with that belongs in the app/views/posts/view. ctp file:

<?=$html->1ink('<h1>'.$post['Post']['name'].'</h1>","/posts/view/".$post['Post' Jw
['id'],null,null,false);?>

<p>Author: <?=$post['User']['firstname'];?> <?=$post['User']['lastname"];?></p>
<p>Date Published: <?=$post['Post']['date’];?></p>

<hr/>

<p><?=$post["Post']['content'];?></p>

Creating a Model for the Blog

The Add and Edit actions in the Posts controller use important model functions. You can
extend the interactions these actions have with the Post and related models by adding new
functions in the model. In Chapter 6, you customized some CRUD views and learned about
submitting forms. Now you’ll take a look at the model functions and extend them. You'll begin
with the Add and Edit actions in the Posts controller, examine their logic, and see how they
relate to extending the Post model.

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

The Add Action

The Index and View actions interact with the model with a simple database query. For the Add
action to work properly, however, sending data to the model is required. By using callbacks
such as the controller’s beforeFilter() and afterFilter() functions, you can intercept data-
base saving, run data validation checks, and more. Let’s first examine the Add action in the
controller. Open the app/controllers/posts_controller.php file, and scroll to the Add action
(see Listing 7-6).

Listing 7-6. The Add Action in the Posts Controller

1 function add() {

2 if (lempty($this->data)) {

3 $this->Post->create();

4 if ($this->Post->save($this->data)) {

5 $this->Session->setFlash(_ ('The Post has been saved', true));
6 $this->redirect(array('action'=>"index"));

7 } else {

8 $this->Session->setFlash(_ ('The Post could not be saved. =
Please, try again.',true));

9 }

10 }

11 $tags = $this->Post->Tag->find('list');

12 $users = $this->Post->User->find('list");

13 $this->set(compact('tags', 'users'));

14}

Most of the logic in this action resembles the commands discussed in the “Customizing
the Controller for the Blog” section of this chapter. Where this action differs is in its use of
model functions. In Chapter 6, I briefly discussed the save() function; now I'll explain this
model function more carefully.

The save() Function

As previously mentioned, the save() function takes a formatted array (usually the automati-
cally formatted $this->data array) and saves its values to matching fields in the database.
Some other parameters are available for this function that allow for data validation and speci-
fying to which fields the data will be saved (see Table 7-6).

Table 7-6. Parameters, in Order, Available in the save () Model Function

Name Type Default Value Explanation

data Array null The data, keyed by field and value, to be saved to the
database

validate Boolean true Triggers data validation as specified in the

corresponding model

fieldlist Array null Alist of fields to which data is allowed to be written

101

102

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

The save() function returns either a true or false depending on the success of the save.
For example, when data validation occurs and fails a test (as specified in the model), the
model will return false. In the controller, processes such as flash messaging or reacting to a
failed validation in other methods can be specified.

Notice that Line 4 in Listing 7-6 already is made to handle a returned result of the save()
function. In other words, line 4 fires off lines 5-6 if the save() function returns true. To run a
validation test, you don’t have to use the controller (in fact, you should avoid using the con-
troller); you can run validations in the model alone.

Validating Data

Perhaps one of the most cumbersome tasks in web development is running data validation
tests on user-submitted forms. One reason why this can be such a detailed task is that users
really can throw just about anything at the application when you give them an open field.
How is the application supposed to know how to deal with an infinite number of textual vari-
ations the user could provide? Rather than get pulled into a long and grueling conversation
about regular expressions, Cake lets you tackle this problem in much less technical terms.

The first step to setting up data validation for user-submitted forms, as in the Add action,
is to open the model and begin defining validation rules. Go to the app/models/post.php file.
It should appear like the code in Listing 7-7.

Listing 7-7. The Post Model

1 <?

2 class Post extends AppModel {

3 var $name = 'Post’;

4 var $belongsTo = array('User');

5 var $hasAndBelongsToMany = array('Tag');
6}

7 >

You have already built the model’s associations with the User and Tag models. Begin
building your validation rules by inserting a new line between lines 5 and 6.

var $validate = array();

So far, no rules have been entered in the $validate attribute array. To create a validation
rule, simply key the array to correspond to fields and their rules. If any of the rules are not met
during a save, the model will then return an error to the controller and exit the save process.

The posts table will receive data for the name, date, and content fields and will receive the
ID for the associated User model. You can validate the type of data being supplied for each of
these fields by providing a key for each and a rule in the $validate array. Here is where the
type of field in the database will help you determine the kinds of data you want to store. The
name field is a standard varchar field, so you may want to validate that the only characters to
be stored here are alphanumeric. Simply add the following string to the $validate array:

var $validate = array('name'=>'alphaNumeric');

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

You could continue the array for all the other fields with rules that match their field types
like so:

var $validate = array(
"name'=>"alphaNumeric',
'date'=>"date’,
'content'=>null

);

Using Multiple Validations

Many more validation possibilities exist. You may need to check the length of the supplied
string, or the symbols used, or even apply multiple rules to a single field. The model can
accommodate more options simply by extending each field with its own array. Each item in
this array will contain a key that matches an available option and the value you supply for
validation.

Required Fields

To require a field, use the required boolean option:
var $validate = array('name'=>array('required'=>true));

In this example, if the user submitted a null value for name, then the model would fail
during validation. Thus, the save() function in the controller would return false, telling the
controller that nothing was saved to the database.

Another important point about this parameter is that it will continue to invalidate if no
index for the field is found in the data array. For instance, $this->data is the array with keys
and values that get saved, and if no key exists for the field name to be validated, required will
also invalidate.

You may have constructed the database in such a way that a field may need to remain
empty, but not trigger an invalidation response if the key is missing from the data array. To
do this, use the allowEmpty parameter. By setting this parameter to false, you are essentially
saying “Do not allow this field to contain empty characters like spaces, tabs, and so on.” The
catch is that this parameter is called into the validation only if there exists a key for the field
in the data array.

Setting Error Messages During Validation

You can customize the invalidation error message to be used by the controller and/or dis-
played in the view. You do this with the message key:

var $validate = array(
"name "' =>array(
'rule'=>"alphaNumeric',
'message'=>'The Title of the Post can only contain alphanumeric characters'

)s

103

104

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

To display this error message in the view, be sure to include the Form helper’s error ()
function:

<?=$form->input('name");
<?=$form->error('name");

Create or Update?

Two possibilities exist for saving data: creating a new record or updating one. Sometimes you
may need validation to occur only during an update process and not when creating a new
record, or vice versa. To distinguish which type of save needs validating, use the on parameter:

var $validate = array(
"name "' =>array(
'rule'=>"alphaNumeric',
'message’'=>'The Title of the Post can only contain alphanumeric characters',
‘on'=>'create’

);

The available options for the on key are create and update.

Using Built-in Validation Rules

Several built-in validation rules reduce certain data-checking processes to a single parameter.
Table 7-7 lists the available rules.

Table 7-7. Built-in Rules

Value Rule Example

alphaNumeric Field must contain only letters ‘rule'=>"alphaNumeric’
and numbers

between Length of field must be between 'rule'=>array('between’,10,20)
supplied values

blank Field must be left blank or contain only ‘rule'=>"blank’
whitespace characters

cc Field must be a valid credit card number 'rule'=varray('cc', 'fast")

comparison Field’s numeric value is compared to a "rule'=>array('comparison’,
supplied value '>="',21)

date Field must contain a valid date string 'rule'=>"date’

decimal Field must be a valid decimal number 'rule'=>"decimal’

email Field must be a valid e-mail address 'rule'=>"email"

equalTo Field must equal the supplied value 'rule'=>array('equalTo’, "www')

extension Field must contain the supplied file 'rule'=>array('extension’,'jpg")

extension suffix

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Value Rule Example

ip Field must be a valid IPv4 address 'rule'=>"ip'

minLength Field must have length at least as long as 'rule'=>array('minLength',12)
supplied value

maxLength Field must be shorter in length than 'rule'=>array('maxLength',30)
supplied value

money Field must contain a valid monetary 'rule'=>array('money', 'left")
amount

numeric Field must be a valid number ‘rule'=>"numeric’

phone Field must be a valid phone number "rule'=>array('phone',null, 'us")

postal Field must be valid ZIP code 'rule'=>array('postal',null, 'uk")

range Field must be between supplied values "rule'=>array('range',0,100)

ssn Field must be a valid Social Security 'rule'=>array'ssn',null, 'us")
number

url Field must be a valid web address 'rule'=>"url’

With all these validation rules, you also have the option of specifying your own regular
expressions to fine-tune the validation. If, for instance, your site must validate ZIP codes for
a country other than the United States, Canada, and the United Kingdom, you can supply
your own regular expression based on the postal code criteria of that country. Some of these
expressions can be entered in the parameter’s array (like postal), but all custom validations
can be specified with the custom parameter:

'rule'=>array('custom','/[a-z0-9]{12,}$/i")

Using Multiple Rules

Each field can have multiple validation rules. Simply follow the array syntax to extend the
field’s rules to include more than one. For each rule, you can use the validation parameters
discussed earlier. Listing 7-8 shows your Post model with a variety of validation settings.

Listing 7-8. Various Validation Rules for the Post Model

1 var $validate = array(

2 "name ' =>array(

3 "alphaNumeric'=>array(

4 'rule'=>"alphaNumeric',

5 'required'=>true,

6 'message’'=>"'The Title may not contain any symbols'

7)}

8 "maxLength'=>array(

9 'rule'=>array('maxLength',80),

10 'message'=>"'The Title must not exceed 80 characters'

105

106

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

11)

12))

13 "date'=>array(

14 'rule'=>"date’,
15 'required'=>true,
16 'message’=>"You must supply a valid date’
17))

18 "content'=>array(

19 'required'=>true
20)

21);

Notice that, on lines 3 and 8 of Listing 7-8, a separate rule was assigned to the name field.
The benefit of having more than one rule in this array rather than creating one custom regular
expression to cover both rules is that the error messages you forward to the browser can be
specific to the cause of the invalidation. Using multiple rules also allows you to take advantage
of Cake’s built-in rules and save time.

Go ahead and add Listing 7-8 to the Post model just below the model associations. Now
the form submission process has validation handling included in the model. You could have
run some cumbersome validation logic in the controller, but this would have gone beyond
Cake’s MVC architecture. By running data validation through the model, more streamlined
functions and methods are available to you.

Error Messages in the View

For the error messages used in lines 6, 10, and 16 of Listing 7-8 to be visible to the user, you will need to prepare
the views with the Form helper. By using the error () function, create error message placeholders in the app/
views/posts/add.ctp and edit.ctp views. Make sure the supplied parameter matches the given field, such
as $form->error('name") for the name field.

Writing Custom Model Functions

Suppose you wanted to enter a URL that would fetch not only a post by its ID but all posts
for a given year. This type of process would likely require a few lines of logic to run the
query, depending on the URL supplied by the user. All too often, beginners to Cake try to
perform this logic in the controller, resulting in large controllers throughout the applica-
tion. Because this is a process that deals specifically with data, you should run this
function in the model.

Open the Post model, and insert Listing 7-9 after the recently added data validation
attribute.

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Listing 7-9. The Custom findByYear () Function in the Post Model

1 function findByYear($year=null) {

2 $date = $year.'-01-01 00:00:00";

3 $end _date = $year.'-12-31 23:59:59°';

4 return $this->find('all',array('conditions'=>array('DATE(Post.date)'=>w
'>'.$date, 'DATE(Post.date) '=>"<"'.$end date)));

5}

In the controller, you'll use this function so it will pass the $year variable supplied by the
user. Lines 2-3 of Listing 7-9 initialize variables for the start and end dates of the year that will
match the datetime field in the database. Line 4 performs the query and searches all records
whose date fields match the range between $date and $end_date. It also uses return to pass
the results back to the controller.

This function is held by the model, but the model itself won't execute the function. The
controller will do that. So in the Posts controller, insert a new action called read(). Use
Listing 7-10 to include the model function you just created.

Listing 7-10. The Read Action in the Posts Controller

1 function read($year=null) {

2 if (!$year) {

3 $this->Session->setFlash('Please supply a year');
4 $this->redirect(array('action'=>"index"));

5 }

6 $this->set('posts’,$this->Post->findByYear($year));
7}

Most of this logic is taken from the View action and uses the Session component and the
redirect() function to run an error test on the $year variable passed in the URL. Line 6 is the
key to your custom model function. Notice that the function is called like the find() function,
except it matches the custom function you added to the Post model. The results returned from
the function are passed right on to the view by using the set() function.

Now, to test your new function, you'll need to create the Read view file. Create this file,
and add the debug() function to view the contents of the $posts variable. Launch the action by
supplying a year in the URL, like so:

http://localhost/posts/read/2008

Your result should include an array something like Listing 7-11.

107

http://localhost/posts/read/2008

108 CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Listing 7-11. The Returned Array from the findByYear () Function for One Record

Array
(
[0] => Array
(
[Post] => Array
(
[id] => 1
[name] => New Functions in 1.2
[date] => 2008-01-01 00:00:00
[content] => No content yet.
[user id] => 1
)
[User] => Array
(
[id] => 1
[name] => spiderman
[email] => spidey@hero.com
[firstname] => Peter
[lastname] => Parker
)
[Tag] => Array
(
[0] => Array
(
[id] => 1
[name] => cakephp
[longname] => CakePHP Framework
[PostsTag] => Array
(
[id] => 1
[post_id] => 1
[tag id] => 1
)
)
)
)

mailto:spidey@hero.com

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Each record in the database that contains a date value matching the given year will now
appear in this view. You accomplished a couple of important things here. First, you followed
strict convention by placing the extended logic in a custom function in the Post model rather
than using the controller. You also used variables in the right places to allow the user to specify
any year in the URL. The application can dynamically handle whatever value is supplied, and
you can even extend your function to run a test on a valid year, if you want, without affecting
the controller or the view.

Trimming Results

Imagine that you ran the same query used in the previous section but for a large database
with thousands of stored records. All the associated models would get pulled into the array
and make for a substantially large process. Early on you won't notice the load your cus-
tomized code could impose on the server, because you're usually dealing only with test data
and in low quantities. But what if you were to launch the application on an extremely busy
web site? Quite possibly the application could overload the server when searching for all the
associations. For this reason, Cake has provided some functions that can help trim results by
killing associations on the fly.

The unbindModel() Function

In Listing 7-11, several lines of code were returned to describe the associated models in the
array. Remember, this is just one record. All these lines would be multiplied not only by the
number of records returned but also by how many associated tags are assigned to each record.
There’s a possibility of loading redundant data, especially when you run queries on “has and
belongs to many” associations.

The unbindModel () model function allows you to temporarily kill the “has and belongs
to many” relationship the Post model shares with the Tag model. In the findByYear() func-
tion in the Post model, you can run this function before the database query, and the results
will change dramatically. Listing 7-12 shows how to insert this function in the findByYear()
function.

Listing 7-12. Using the unbindModel () Function to Trim Results and Server Load

1 function findByYear($year=null) {

2 $date = $year.'-01-01 00:00:00';

3 $end_date = $year.'-12-31 23:59:59';

4 $this->unbindModel(array('hasAndBelongsToMany'=>array('Tag')));

5 return $this->find('all',array('conditions'=>array('DATE(Post.date)'=>w=
'>'.$date, 'DATE(Post.date) '=>"<".$end date)));

6}

Line 4 in Listing 7-12 shows how to use the unbindModel () function to kill the
hasAndBelongsToMany association. One important aspect of this function is that it is run only
once; in other words, once line 5 has done its find() query, the association will resume for all
other succeeding model functions.

109

110 CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS

Now reload the Read action and take a look at the resulting array:

Array
(
[0] => Array
(
[Post] => Array
(
[id] =
[name] => New Functions in 1.2
[date] => 2008-01-01 00:00:00
[content] => No content yet.
[user id] => 1
)
[User] => Array
(
[id] => 1
[name] => spiderman
[email] => spidey@hero.com
[firstname] => Peter
[lastname] => Parker
)
)
)

The entire Tag association is left out when the query was run, meaning that the server load
was reduced by how much it would take to retrieve all the Tag model’s associated records. You
also have a leaner array that contains only what is needed, which recalls the philosophy that
Cake is supposed to trim fat, not add it.

The unbindModel () function accepts two arrays: one containing all the associations to
unbind and another for the models themselves. Notice that line 4 of Listing 7-12 has an array
that contains the “has and belongs to many” relationship, and this relationship is assigned an
array for all models that might have that association. You can specify one or more models to
be unbound from the current model by extending the array.

The bindModel() Function

Just as the unbindModel () function helps you kill associations on the fly, the bindModel() allows
you to assign associations as well. Again, this function operates for just one query and then
ceases to affect other succeeding model functions.

This function follows the same syntax as the unbindModel() function and contains two
arrays: one for the association to be bound to the current model and another for the models
to be assigned to the association.

$this->bindModel (array('hasMany'=>array('Tag')));

mailto:spidey@hero.com

CHAPTER 7 © WORKING WITH CONTROLLERS AND MODELS 11

The Read View

Right now, the Read view contains only the debug () function to show you the contents of the $posts array.
Using Cake’s HTML helper as well as any other custom HTML, make a view to wrap around this array.

Summary

The MVC structure can be tricky for some, but you should feel comfortable with Cake’s use of
this kind of architecture. You explored adding your own customized functions to models and
controllers to extend the application and explored the logic that comes from baked actions
and views. In the following chapters, you'll dive in and make something of your blog applica-
tion. Along the way, you'll pull in other useful built-in helpers, and in Part 3, you'll use other
customizable areas that will improve the power of your application. If you think you have the
hang of working in models, views, and controllers, then congratulations—you've overcome
the hardest part of learning Cake.

CHAPTER 8

Implementing Ajax Features

In recent years Ajax has become a more common method for handling requests among pop-
ular web sites. In short, Ajax makes it possible for the user to interact with the web site without
waiting for the page to load or refresh. By working with HTTP requests this way, the web site
behaves more like a desktop application. Methods that were thought to be impossible for web
browsers have not only changed the Internet landscape but are turning the tides on software
development. Many developers call this phenomenon the rise of “Web 2.0.” However, building
arich Web 2.0 application is no simple task and usually requires a heavy dose of JavaScript.
With Cake’s help, you can bring common Ajax procedures into an application without much
headache, and the amount of JavaScript you will have to use is minimized.

In this chapter, you will use the Ajax helper to build a comments section for your exten-
sive blog application. Users will be able to add comments and vote other users’ comments
up or down, all without waiting for the page to reload or refresh. Along the way, I'll mention
the possibilities of the Ajax helper and also introduce some Ajax methods that go beyond
the scope of this helper. This chapter won't dive into all the possibilities Ajax provides, sim-
ply because that could be a book all by itself, but it will explain how Ajax can work in a Cake
application and open up the door to other more complex methods you can try on your own.
Let’s first examine how Ajax is supposed to work and then use it to improve your blog.

How Ajax Works

In Chapter 6 I discussed asynchronous sequences and how Cake uses the render () function to
pull a view without loading the whole page. In your blog application, you'll use Ajax to man-
age comment submissions in this way, meaning that the user will submit a comment, and
they will see the comment post to the page instantly. In other words, the comments form will
disappear, the text of the comment will appear below any other previously posted comments,
and everything else on the page will remain in place. Figure 8-1 shows how Ajax works behind
the scenes to add comments to a given post.

113

114

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

—

— y Controller

NG

View Model

Figure 8-1. The Ajax flow for submitting a comment asynchronously

This figure looks almost identical to a typical flow in Cake. But it does differ in a couple of
important ways:

1. When the form is submitted to the controller in this step, it is done using the Ajax
helper. This means that the form data is collected by a JavaScript function and passed
to the controller without changing the state of the browser.

2. The controller handles the form data as it would a typical response. It sends data to
be saved to the model and checks for invalidations.

3. The model saves the data in the database and returns a successful response.

4. Rather than display the view normally, the controller uses the render () function to
pass the output along as an Ajax response. The view file is fetched normally, but its
contents are rendered in the waiting HTML element. In other words, the Ajax helper
observes the response and places whatever is returned in a specified HTML element
(for example, a <div> or element).

5. The view is sent back to the client and, thanks to JavaScript, is displayed within the
page, not replacing the whole page as a normal HTTP response would do.

In the blog application, the user will enter some data into a couple of form fields and
then click Submit. The form will be passed along in the background because the Ajax helper
intercepts the HTTP request and, with the help of JavaScript, does all the server-side process-
ing without refreshing the page. You will render the view inside the web page rather than
replace the page because you will tell the Ajax helper where in the page to update once the
server responds. This area will be the whole comments section, allowing you to dynamically
add the user’s comment to the rest of the post’s comments without refreshing the browser.

Working with Ajax Frameworks

Just as Cake helps reduce the amount of PHP code needed to run a script, some Ajax frame-
works cut down on the amount of JavaScript needed to perform Ajax methods. These
frameworks are worthwhile because tackling Ajax can be extremely complex. It’s better to take
advantage of open source Ajax frameworks than pull open that 500-page JavaScript primer.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Some of the most popular Ajax frameworks include the following:

e Prototype (www.prototypejs.org)

* jQuery (www.jquery.com)

* Adobe Spry (http://labs.adobe.com/technologies/spry)

e MooTools (www.mootools.net)

Any of these frameworks can be used in Cake, but the Ajax helper currently works only
with Prototype. Later, I'll use jQuery to run some Ajax methods in Cake, but it will be done
without the Ajax helper.

Using the Ajax Helper

Cake comes standard with the Ajax helper—a nifty set of methods for simplifying the code
you enter in the view to make Ajax requests work properly. Like other helpers, it has more
than a dozen useful functions (see Table 8-1) that can be called to reduce a process usually

to a single string.

Table 8-1. Functions in the Ajax Helper

Function Description

afterRender() Includes code blocks after a view has been rendered

autoComplete() Creates an autocomplete text field

div() Creates a <div> element for Ajax updates

divend() Closes an Ajaxed <div> element

drag() Creates a draggable element; requires the Scriptaculous animation libraries

drop() Creates a droppable element; requires Scriptaculous

dropRemote() Creatgs an area that triggers an Ajax response when a draggable is dropped
onto it

editor() Creates an editor control that is swapped for the element when triggered by
the user; requires Scriptaculous

form() Creates a form element that runs in the background when submitted

isAjax() Returns true if the current request is a Prototype update

link() Creates a link to run an Ajax call

observeField() Triggers an Ajax response when the observed field is changed

observeForm() Observes a form and triggers an Ajax response when changed

remoteFunction() Creates Ajax functions to be run, usually in conjunction with a 1ink() event

remoteTimer() Triggers an Ajax response at a specified time interval

slider() Creates a slider control; requires Scriptaculous

sortable() Makes lists or other objects sortable; requires Scriptaculous

submit() Renders a form submit button that triggers an Ajax form submission

115

http://www.prototypejs.org
http://www.jquery.com
http://labs.adobe.com/technologies/spry
http://www.mootools.net

116

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Like all other helpers, the Ajax helper must be initialized in the controller by including it
as avalue in the var $helpers array:

var $helpers = array('Html','Form', 'Ajax"');

Then, in the view, the Ajax helper functions are called by using the $ajax object. For
example:

$ajax->submit();
Of course, parameters are passed to the function, depending on the function being used.

$ajax->submit('Submit',array('url'=>"/comments/add", 'update'=>"'comments add'));

Preparing the Ajax Helper

Before you can use the Ajax helper, one or two important steps must be taken that are unique
to this helper. Because it depends on Prototype, you must ensure that Prototype JavaScript
files are included in each page. You will also need to make these scripts accessible for all the
views that could potentially use the Ajax helper.

Installing Prototype

Download the latest version of Prototype from www.prototypejs.org/download. You should
end up with a JavaScript file named something like prototype-1.x.x.x. js. Place this file in the
app/webroot/js folder. It is now accessible by the whole application. To finish installing Proto-
type, you need to edit the default layout. Somewhere between the <head> tags in the
app/views/layouts/default.ctp file, include the following line:

$javascript->link(array('prototype'));

Here, you are using the JavaScript helper to produce a link to the JavaScript file. These
links appear something like this to include the script in the web page:

<script type="text/javascript" src="/js/prototype.js"></script>

Of course, the JavaScript helper automatically produces the correct URL to the
JavaScript file.

Including the JavaScript Helper in the App Controller File

If you went ahead and refreshed the application, you may have noticed the following error:
Undefined variable: javascript [APP/views/layouts/default.ctp, line 5]

This error occurs whenever the helper is not initialized properly. In this case, you're trying
to use a helper in the layout file, and since the default layout is meant to be called for all con-
trollers, you will need to initialize the JavaScript helper in all controllers.

There is a way around going into each controller individually. By creating your own App
controller file, you can place functions to be used by all controllers in it and thereby cut down
on redundant code. To do this, however, there are some conventions to be used so that Cake
can recognize the App controller.

http://www.prototypejs.org/download

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

The location of the App controller is app/app_controller.php. Like other controllers, the
file must include the proper PHP code to create a new instance of the App controller object:

<?
class AppController extends Controller {
}

2>

Making Helpers Available for the Whole Application

In the App controller, you can also include any helpers that may be used in any or all con-
trollers. This is done, as in an individual controller, by assigning a list of helpers in the array
of the var $helpers attribute.

For the sake of your blog application, let’s go ahead and include all the helpers you will
need to use. Insert the following line into line 3 of the new App controller:

var $helpers = array('Html','Form','Ajax','Javascript');

The $javascript->1ink() function in the default layout file should now work properly.
Generally, when using helpers in layouts, you should use the App controller to include those
helpers; it will save you from having to do helper includes in every controller.

Adding Comments to the Blog

Before you can use the Ajax helper to handle user comments, you will need to create the table
to store the comments in the database. Make the new table with the name comments in the
database, and create the fields shown in Listing 8-1.

Listing 8-1. SQL for Creating the comments Table

CREATE TABLE “comments™ (
“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(255) default NULL,
“content” text,
“post_id® int(11) unsigned,
PRIMARY KEY (“id)
)5

Next, create the Comment model with the code shown in Listing 8-2.

Listing 8-2. The Comment Model

<?

class Comment extends AppModel {
var $name = 'Comment';
var $belongsTo = array('Post');

117

118

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Notice that this model has the belongsTo association with the Post model. To bind this
association, you will need to edit the Post model to include the “has many” relationship. Open
the Post model, and insert the following line to complete the association:

var $hasMany = array('Comment');

For good measure, create the Comments controller in app/controllers/comments
controller.php, and paste in the code shown in Listing 8-3.

Listing 8-3. The Comments Controller

<?
class CommentsController extends AppController {
var $name = 'Comments’;

}

>

The Comments controller, as well as the matching table and model, are now prepared
properly for use in the application. Now you can work comments into the blog by inserting
some Ajax helper code in the Posts views and controller.

Working Ajax into the View

Using the Ajax helper requires that the Prototype framework be included in the web page.
You've done this by installing the Prototype script in the app/webroot/js folder and also
providing a link to that file in the app/views/layouts/default.ctp file. You've also made the
helper available in the App controller. Working Ajax into the individual view that will be
using the helper is now easy to do.

Displaying Comments
Remember that the Ajax output will be inserted into an HTML element of your choosing.
Whatever element you use in the view to handle this output is where all the action will take
place. <div> and elements are for any generic block-level or inline content, respec-
tively. Let’s create a <div> to handle all the Ajax output for comments in the Posts view.
Open app/views/posts/view.ctp, and at the bottom of the file create the <div> to be the
target of the Ajax handling.

In Listing 8-4, I've left space on line 9 for an iteration of comments as well as an Ajax form
to submit a new comment. To pull associated comments and make them available here, you
will need to edit the View action in the Posts controller.

Listing 8-4. Adding the Comments Section to the Posts View

6 <hr/>

7 <h2>Comments</h2>

8 <div id="comments">
9

10 </div>

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Listing 8-5 is almost the same as before, except I've tweaked the lines after line 6. Line 7
fetches the requested post record, and line 8 fetches the comments associated with the cur-
rent post. Line 9 uses the set () function to pass those variables along to the view.

Listing 8-5. The Adjusted View Action to Provide Associated Comments for the View

1 function view($id = null) {

2 if (1$id) {

3 $this->Session->setFlash('Invalid Post');
4 $this->redirect(array('action'=>"index"));
5

6 }

7 $post = $this->Post->read(null,$id);

8 $comments = $this->Post->Comment->find('all',array('conditions'=>array(=
"Post.id'=>$id)));

9 $this->set(compact('post', " 'comments'));

10 }

Back atline 9 of Listing 8-4, you can now plug in a loop to display the contents of the
$comments array (see Listing 8-6).
Listing 8-6. The Comments Loop in the Posts View

9 <? foreach($comments as $comment): ?>
10 <div class="comment">

11 <p><?=$comment['Comment"']['name'];?></p>
12 <p><?=$comment['Comment']['content"'];?></p>
13 </div>

14 <? endforeach;?>

The loop follows the conventional structure of the find() results in line 8 of Listing 8-5.
Notice on line 11 in Listing 8-6 that the array is formatted to include the Comment key, which
corresponds to the name of the Comment model and the name and content keys, which match
up with fields in the table. I've also used lines 10 and 13 to instantiate a <div> element to be
designed with CSS for better display.

In the database, create some test comments and refresh this post. You should get a similar
screen to Figure 8-2.

119

120

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

a0 The Extensive Blog
i . \&y hitp: //localhost/blog/posts /view /1

New Functions in 1.2
Author: Peter Parker
Date Published: 2008-01-01 00:00:00

Comments

Great
I'm excited about the new Cake 1.2 features!

Figure 8-2. Comments now displayed in the Posts view

Using an Ajax Form

Now after line 14 in the app/views/posts/view.ctp file, you can include a form for adding
comments. When doing so, you'll use the Ajax helper so that when the user submits a com-
ment, it updates the <div id="comments"> element without refreshing the whole screen.

To work Ajax into this view, insert the Ajax form shown in Listing 8-7 into the view file.

Listing 8-7. The Add Comments Form

15 <?=$ajax->form("'/comments/add', 'post',array('update'=>"'comments"'));?>
16 <?=$form->input('Comment.name");?>

17 <?=$form->input('Comment.content');?>

18 <?=$form->input('Comment.post_id',array('type'=>"'hidden’, 'value'=>=
$post['Post']['id"']));?>

19 <?=$form->end('Add Comment');?>

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Line 15 in Listing 8-7 does all the Ajax magic for you. Notice that the parameters you are
supplying in the $ajax->form() function tell it to first send the form data to the Add action in
the Comments controller.

The second parameter specifies what method to use when sending the form data. This is
currently set to post but could be changed to get if desired.

The third parameter is the options array containing keys and values that correspond to
possible features in the function. Here, you've assigned the value comments to the key update.
What this means is that the $ajax->form() will update the <div> with the ID of comments. You
have already created the <div id="comments"> on line 8 of the view file.

Lines 16-19 work like typical Cake form elements; they use the Form helper to create
fields that correspond to fields in the comments table. Notice that I've included the model name
in the field (Comment.) to specify that these fields are part of the Comment model, not the current
Post model.

The only thing tricky about lines 16-19 is how the current post ID is passed to the Com-
ments controller on line 18. Simply put, you made a hidden form element named after the
post_id field in the comments table and assigned it the value contained in the $post['Post"]
['id'] variable.

That'’s all there is to itt When users come to a post in the blog, they will see a list of com-
ments previously submitted as well as a set of form fields with which to supply their own
comment. When the user clicks Add Comment, the form will submit in the background.

At this point, there is only one problem—the Comments controller is not yet ready to
handle the submitted form. The next step is to work Ajax into this controller by tweaking the
Add action.

Working Ajax into the Controller

The current Comments controller contains nothing but the $name attribute. Let’s add the
Add action to it, but with Ajax in mind (see Listing 8-8).

Listing 8-8. The Add Action in the Comments Controller

1 function add() {

2 if (lempty($this->data)) {

3 $this->Comment->create();

4 if ($this->Comment->save($this->data)) {

5 $comments = $this->Comment->find('all',array('conditions'=>=
array('post_id'=>$this->data['Comment']['post id']), 'recursive'=>-1);

6 $this->set(compact('comments'));

7 $this->render('add success','ajax');
8 } else {

9 $this->render('add failure','ajax');
10 1

11 1

12 1

121

122

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Lines 1-4 of Listing 8-8 are just like the baked Add action: they check for supplied data
found in the parsed $this->data array, they create a new record in the database if data has
been supplied, and they run the save() function in the model to insert the data into the new
database record and check for a successful result from the model. Lines 5-7 are executed
when a successful save has occurred, and line 9 is called only upon a failed save. (You could,
if you wanted, run data validation in the model, and the controller would be prepared to
handle the results.)

So, assuming that the supplied comment was saved successfully, then you would want to
fetch all the comments in the database, including the newly added one, and display them in
the <div id="comments"> element. Therefore, you must run a database query to pull the com-
ments and pass that along to the view. Line 5 does this with the find() function; it pulls all
comments with a post_id equal to the value supplied in the hidden form element you created
in line 18 of Listing 8-7. I've also set the recursive value to -1 so that each comment in the
resulting array doesn't include the entire contents of the associated post; you want the com-
ments themselves without their associations. Line 6 passes the results of the find() function
to the view.

Rendering for Ajax

The secret of making Ajax work in the controller is nothing more than using the render()
function to bypass the typical view-rendering mechanism in the MVC structure of Cake appli-
cations. In line 7 of Listing 8-8, you use the render () function, with a second parameter to
specify that the output is of the Ajax type. By including this parameter, you instruct Cake to
disable its viewing mechanism and send only the view’s output (not the layout as well) to the
waiting JavaScript event. You must create a corresponding view file in the app/views/comments
folder to be used by the controller and displayed in the <div id="comments"> element back in
the Posts view.

Create the app/views/comments/add_success.ctp file. This file will be rendered to com-
plete the Ajax form submission, so it will need to also iterate through the $comments array as
does the app/views/posts/view.ctp file. Paste Listing 8-9 into the add_success.ctp file.

Listing 8-9. The add_success.ctp File

<? foreach ($comments as $comment): ?>

<div class="comment">
<p><?=$comment['Comment"']['name"'];?></p>
<p><?=$comment['Comment']['content'];?></p>
</div>

<? endforeach;?>

You should now be able to add comments to a post without the page being reloaded, like
you see in Figure 8-3.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES 123

000 The Extensive Blog
__ http:/ flocalhost/blog/ posts/view/1 ,n_.lva Google

New Functions in 1.2
Author: Peter Parker
Date Published: 2008-01-01 00:00:00

Comments

Great

I'm excited about the new Cake 1.2 features!
nother_commenter

Me too, me too.

Figure 8-3. The Post’s comments displayed asynchronously

Line 9 of Listing 8-8 calls for another view file in case an error occurs during the form sub-
mission. To accommodate this, create app/views/comments/app_failure.ctp, and insert some
kind of error message there:

<p>Sorry, but your comment could not be added to this post. Please try againws
later.</p>

You could also include the form in case the user wanted to immediately try again. In this
case, the code would the same as Listing 8-7.

Using Other Ajax Helper Functions

Sometimes you may need to use a different method for submitting forms with Ajax. Or,
depending on the task, you may not even need to submit a form but perform another process
with Ajax. There are a variety of other Ajax helper methods for these needs.

124

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

The submit() Function

In Listing 8-7, you created an Ajax form using the $ajax->form() function. Another way of
submitting a form with Ajax is by using the $ajax->submit() function. This method will work
almost exactly as the form() function does, except that in the view you make the submit but-
ton—rather than observing a change event in the form—trigger the Ajax process.

Two lines in Listing 8-7 will need to change: the form tag itself and the submit button.
See Listing 8-10 for how I've changed these tags from how they appear in Listing 8-7 to use the
$ajax->submit() function.

Listing 8-10. Using the $ajax->submit() Function to Submit a Form in the Background

15 <?=$form->create('Comment',array('action'=>"add", 'onSubmit'=>"return =
false;')); >

16 <?=$form->input('Comment.name");?>

17 <?=$form->input('Comment.content');?>

18 <?=$form->input('Comment.post id',array('type'=>"hidden', 'value'=>$poste
['Post']['id"']));?>

19 <?=$ajax->submit('Add Comment',array('url'=>'/comments/add"', 'update’=>w
"comments'));?>

20 </form>

Note that line 15 of Listing 8-10 has changed from the $ajax->form() function to the
$form->create() function. You've added the onSubmit key in the options array and passed the
value return false; to this attribute. This will keep the form from sending a synchronous
HTTP request when a form event occurs.

All but lines 19-20 have remained the same as before. The $ajax->submit() function is
similar to the $ajax->form() function in that it uses an options array to pass some important
parameters. These parameters specify where to send the form (the url parameter) and which
HTML element receives the Ajax response (the update parameter). Line 20 is simply closing
out the form.

When used in this way the same Ajax process is accomplished, but with the $ajax->
submit() function. Some customized JavaScript functions may interrupt the form observe
event, and in these cases using the $ajax->submit() function may prevent those hiccups.
Other advantages of using the $ajax->submit() function over the $ajax->form() function
include the ability to use multiple Ajax events within a form. With the $ajax->form() func-
tion, some Ajax calls such as autofill can trigger the JavaScript event observation. When
using multiple Ajax calls within a form, the $ajax->submit() function usually bypasses any
conflicts that could occur with $ajax->form().

The link() Function

Many Ajax methods don’t require any form data. The simplest Ajax call is one that simply
sends a parameter to a script and returns a response in the background. These types of Ajax
processes can be managed with the $ajax->1ink() function. You can build this function into
the blog by creating a community voting mechanism for each comment.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Add the votes field in the comments table with this SQL:
ALTER TABLE “comments™ ADD “votes™ int(11) DEFAULT '0' ;

You'll add an Ajax link in each comment box that, when clicked, will either add 1 to the
value in votes or subtract 1 from it. The new total will be sent back to the browser and updated
in the comment box.

Copying Some Helper CSS

The design of the voting links will need to be crafted in the CSS files the application is cur-
rently using. Without some CSS to help you out here, the tool will look confusing and will also
get in the way of understanding the $ajax->1ink() function, so let’s add some CSS to improve
the design. I've provided some styles in Listing 8-11 you can use if you'd like.

Listing 8-11. CSS Markup for the Voting Tool

.comment {
border: 1px solid #ccc;
border-width: 1px Opx Opx 0;
clear: both;
width: 500px;

}

.comment p {
float: left;
clear: left;

}

.vote {
width: 50px;
height: 20px;
background-color: #fffdc3;
text-align: center;
font-size: 16px;
font-weight: bold;
padding: 15px 0 15px 0;
float: right;

}

.cast_vote {
height: 50px;
float: right;

}

.cast_vote ul {
list-style-type: none;
}

125

126 CHAPTER 8 © IMPLEMENTING AJAX FEATURES

.cast_vote ul 1i {
font-size: 9px;
margin: 5px O 5px O;

If you wanted to tinker with this design to fit your own style, by all means do so. But
the CSS in Listing 8-11 should at least help you see the various elements at work in the
voting feature.

Using the link() Function in the View

Next, inside the <div class="comment"> element in the app/views/posts/view.ctp file, you will
need to supply some code to display the voting links and total votes. Starting on line 11, insert
the lines shown in Listing 8-12.

Listing 8-12. The View Code to Display Voting Links and Total Votes

11 <div id="vote <?=$comment['Comment']['id"'];?>">

12 <div class="cast vote">

13

14 <?=$ajax->1link('up</1i>","'/comments/vote/up/".$commente
['Comment']['id'],array('update'=>"vote '.$comment['Comment']['id"']),null,false);?>
15 <?=$ajax->1link('down</1i>","'/comments/vote/down/".$commente
['Comment']['id'],array('update'=>"vote '.$comment['Comment']['id"']),null,false);?>
16

17 </div>

18 <div class="vote"><?=$comment['Comment']['votes'];?></div>

19 </div>

Line 11 of Listing 8-12 appends the comment’s unique ID to vote_to provide you with a
uniquely identified <div> element to update. The Add Comments form already will perform
some Ajax, so to avoid any collisions in updating elements, I've ensured that the ID of each
comment is unique.

Most of the markup in Listing 8-12 is to organize the design of the feature so as to be
accessible to the user and so it can be changed to fit the design of your own site. But the
$ajax->1ink() function has been included in lines 14 and 15. It behaves similarly to the
$html->1ink() function used in baked views, with the first parameter being the text to be
displayed and the second parameter being the href attribute. The href is set to a controller
action you haven't created yet called Up or Down and passes along through the URL the
comment ID to receive the vote. When this link is clicked, rather than perform a standard
HTTP link request, Cake will provide some Prototype functions to perform the request in
the background and receive the response. Notice that in the options array of this function
you've set the update element to the same value as line 11: vote_ and then the unique ID of
the comment.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Creating Voting Actions in the Controller and Model

The Vote action, which is referenced in lines 14-15 of Listing 8-12, doesn't exist yet; let’s create
it in the Comments controller. This action will be rather simple: add or subtract 1 from the
votes field in the comments table and return a total votes value to the view. Of course, this
action will use the render () function to render the views in Ajax mode.

Use Listing 8-13 to add the Vote action to the Comments controller.

Listing 8-13. The Vote Actions in the Comments Controller

1 function vote($type=null,$id=null) {

2 if ($id) {

3 $votes = $this->Comment->vote($type,$id);
4 $this->set(compact('votes'));

5 $this->render('votes', 'ajax');

6 }

7}

Recall that one Cake best practice is to make the model “fatter” than the controller if
possible; that is, you should add code to the model instead of the controller if possible. I've
put this principle to work in line 3 of Listing 8-13 by creating my own model function
vote(), and I've passed the parameters supplied in the $ajax->1ink() functions of lines
14-15 of Listing 8-12. This function will do all the work with the database to both fetch the
votes and update the number of votes for the comment. It will need to know whether it is a
vote up or down and which comment to update, which has been passed through the con-
troller variables $type and $id.

Listing 8-14 contains the model function vote(), which will do the database work to make
the vote happen. Add this to the Comment model after the other attributes and associations.

Listing 8-14. The vote() Model Function in the Comment Model

1 function vote($type=null,$id=null) {

2 if (1$id) {

3 return "-";

4 } else {

5 $votes = $this->read(null,$id);

6 $votes = ($type == 'up' ? $votes['Comment']['votes']+1 : $votesw
['Comment']['votes']-1);

7 $this->id = $id;

8 $this->saveField('votes',$votes);
9 return $votes;

10 }

11 }

Line 5 of Listing 8-14 pulls the number of votes for the supplied comment ID from the
database. Line 6 adds or subtracts 1 from the total depending on the type of vote. Lines 7-8
save the result to the database using the saveField() function. This function allows you to

127

128 CHAPTER 8 © IMPLEMENTING AJAX FEATURES

update only one field (or column) in the row rather than format the whole $this->data array
for the more common save() function. Of course, you need to tell the model which record to
update, and this is done at line 7 by setting the ID attribute. Finally, at line 9, the new total is
returned to the controller to be displayed in the view.

Creating the Votes View

The last step is to create the view to be rendered by the controller action in line 5 of

Listing 8-13. This will be simple enough: it will only need to display the passed value inside the
same <div> element used in the Posts view. Listing 8-15 contains the code for the app/views/
comments/votes.ctp file.

Listing 8-15. Displaying the New Total with the Votes View
<div class="vote"><?=$votes;?></div>

Go ahead and refresh the Posts view, and click the Ajax links to vote comments up and
down. The total number of votes should automatically change in the background without any
page reloads, and this was all done without submitting any forms, like in Figure 8-4. Using the
$ajax->1ink() function allows you to do similar asynchronous tasks easily in a way that’s
often easier and more fun for the user. And it sure beats trying to code by hand all the
JavaScript that makes this possible.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES 129

000 The Extensive Blog

W http://localhost/blog/posts fview/ 1 = Q- Google

New Functions in 1.2
Author: Peter Parker
Date Published: 2008-01-01 00:00:00

Comments
Great up
I'm excited about the new Cake 1.2 features! 2 down
nother_commenter up
Me too, me too. 0 down
johnny up
Be excited, be very excited... -1 down
Name
Content

Figure 8-4. Ajax voting is now working in the comments section.

Doing More with the Ajax Helper

You have barely scratched the surface of the possibilities that the Ajax helper opens up. As
you can see in Table 8-1, the Ajax helper includes much more than the form(), submit(), and
1ink() functions. True, these functions are useful because they allow you to discuss the main
concepts of using Ajax in a Cake application. What about using Ajax with animation frame-
works? Or building fancy Web 2.0 features such as a drag-and-drop shopping cart or a slider
tool that adjusts sizes of HTML elements? When considering how you want to bring Ajax into
your Cake application, remember some of these fundamental steps.

130

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Passing JavaScript with the Options Array

Look for the options array in various helper functions, even in non-Ajax helpers when bring-
ing in more complex or customized JavaScript functions. By using this array, you can pass on
JavaScript functions to the HTML element being rendered by the helper that work with more
complex Ajax methods. For instance, if I wanted to craft my own JavaScript function, I could

call that function with the options array like this:

$form->input('OK',array('type'=>"button', 'onSubmit'=>"alert(\'Hello World\');"));

Not only did I pass along the parameter saying what type of form input field the helper
should render (in this case an HTML button), but I also assigned the JavaScript alert() func-
tion to the element by keying the HTML attribute onSubmit and giving it a value.

Using the options array is generally more effective than using raw HTML. Usually the
helpers can provide a uniform linking system or display mechanism that cuts down on the
headache of keeping the application consistent. Also, getting used to the look and flow of
helper strings can be more aesthetic for the eyes, especially if you favor PHP syntax over
HTML markup. Probably the most important reason for sticking with helpers, even for cus-
tom JavaScript and Ajax calls, is to prevent duct-taping your application. In other words,
you're working in Cake, and the framework is strong enough to lessen your code. Too often
developers settle for a hack or for a deprecated method to get a complex process working
right. Don’t overlook how Cake’s helpers can contribute to your process. You'll find more fea-
tures than you might have been expecting to help you through the challenge.

Prototype vs. jQuery

In recent months, the jQuery framework has increased in popularity and in functionality.
Many Cake developers have begged for Cake to be rewritten around this framework rather
than Prototype. At the time of writing, rumors are floating around that jQuery will eventually
replace Prototype in the Ajax helper. Whatever the case, the Ajax helper is destined to go on
working the same way; you just may need to install a different library in the app/webroot/js
folder.

Regardless of the direction Cake will take, both frameworks offer some important features
that every serious Ajax developer will want to consider. Again, you can pull in their functions
by using the options array in various helper functions. For example, using jQuery’s form
plugin, I can upload a file with the Form helper:

<?=$form->button('Upload’,array('onClick'=>"$(\ "#storyEditForm\").ajaxSubmit({=
target: \'#storyTextUpload\',url: \".$html->url('/stories/text')."\'}); return=
false;')); >

There’s definitely more to this function than what is included here, but this example
does illustrate how to assign a jQuery function to the onClick event in the $form->button()
function. Provided that my controllers are using the render () function in Ajax mode, Cake
can run its logic through the MVC structure as normal and still use an Ajax library outside
the Ajax helper.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Uploading Files with jQuery
We couldn'’t possibly explore every possible Ajax method available in Cake. However, one of
the most common needs of web applications is some kind of file upload. This task can be
rather cumbersome, especially when you want to manage file uploads with Ajax. Many of the
Ajax frameworks don’t support file input elements because of the way they serialize HTML
forms. JavaScript can’t place the file contents into a string, which is how many of these frame-
works submit form data. Fortunately, jQuery’s Form plugin can handle file uploads, making it
possible to integrate uploading with Ajax.

Because jQuery currently is not part of the default Ajax helper, adding a file upload fea-
ture to your blog will demonstrate how to incorporate a non-Prototype framework into Cake.

Installing jQuery and the Form Plugin

Remember that you must install the JavaScript libraries to be called manually. Download the
latest version of jQuery as well as the Form plugin. The following links should help in locating
those files:

* jQuery:http://docs.jquery.com/Downloading_jQuery

e Form plugin: http://jqueryjs.googlecode.com/svn/trunk/plugins/form/
jquery.form.js

Next, you have to place the necessary files into the app/webroot/js directory and make
them available in the default layout. The trouble is that jQuery may conflict with Prototype,
which you have used to provide the comments voting and submissions, so let’s add some logic
to the default layout to detect whether it’s running the Posts Add action or something else.

Open the default layout (app/views/layouts/default.ctp), and replace the JavaScript
helper line referencing Prototype with the following line:

<?=($this->params['controller'] == 'posts' & $this->params['action'] ==
'add' ? $javascript->link(array('jquery.js','jquery.form.js')) : $javascript->w
link('prototype'));?>

Now when the Posts Add action is fired, jQuery will be initialized, not Prototype. But
Prototype will remain the default script for all other actions, thus not conflicting with the
comments section.

Creating the Posts Add Action

Perhaps an author of the blog has already typed a post in a plain-text file and wants to upload
it to the blog. Let’s create a file upload mechanism that can analyze a plain-text file and insert
it into the Content field in the Posts Add action to facilitate creating new posts.

Open the app/views/posts/add. ctp file (which should have already been baked) and
replace its contents with Listing 8-16.

131

http://docs.jquery.com/Downloading_jQuery
http://jqueryjs.googlecode.com/svn/trunk/plugins/form

132

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Listing 8-16. The File Upload Feature in the Add Action

1 <div class="posts form">
2 <?=$form->create('Post',array('name'=>"postAddForm', 'id"'=>"postAddForm" =
"type'=>'file'));?>
3 <fieldset>

<legend>Add Post</legend>

<?=$form->input('name");?>

<?=$form->input('date’);?>

<?=$form->input('content');?>

<div id="postTextUpload">

<?=$form->input('content', array('label'=>'Content ', 'rows'=>"'15",w=
cols'=>"75")); >
10 <?=$form->input('upload text',array('label'=>'Upload Text File ',w
"type'=>'file'));?>
11 <?=$form->button('Upload Text',array('onClick'=>w
"$(\"#postAddForm\").ajaxSubmit({target: \'#postTextUpload\',w
url: \"'.$html->url('/posts/text').'\"'});return false;"'));?>

-0 00 ~N O U1 B

12 </div>

13 <?=$form->input('User');?>

14 <?=$form->input('Tag',array('type'=>"'select’, 'multiple'=>"checkbox"));?>
15 </fieldset>

16 <?=$form->end('Submit");?>

17 </div>

Line 2 of Listing 8-15 assigns the form the ID of postAddForm, which will be needed for
jQuery to collect the form data. This line also sets the type attribute to file so that the
form includes the enctype="multipart/form-data" attribute for the form submission to
work correctly.

Notice that I've wrapped a <div> element around the Content field starting on line 8 so
that I can replace the current field with a filled one after the file is uploaded.

Line 10 contains the actual file input field. With the Form helper, you need specify only
that the input type is equal to file to render a file input field.

Line 11 is where all the Ajax happens. By setting the onClick attribute to a jQuery-
formatted string containing all the necessary code, the Form helper will be able to render a
button containing the necessary JavaScript to execute an Ajax method through jQuery. This
syntax follows the form submission method used in the jQuery Form plugin.

Creating the Posts Controller Text Action

When the file is chosen and the user clicks the Upload Text button, jQuery will submit the
whole form to the text action in the Posts controller because of the URL parameter you wrote
in the onClick event.

So, in the app/controllers/posts_controller.php file, you'll need to include the function
shown in Listing 8-17.

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Listing 8-17. The Text Action in the Posts Controller

1 function text() {

2 if (!$this->data['Post']['upload text']) {

3 $this->set('error', 'You must select a text (.txt) file before you w
can upload.');

4 $this->render('text', 'ajax');

5 } else {

6 App: :import('Core','File');

7 $file =& new File($this->data['Post']['upload text']['tmp name']);
8 if ($this->data['Post']['upload text']['type'] != 'text/plain') {
9 $this->set('error', 'You may only upload text (.txt) files.');
10 $this->render('text', 'ajax');

11 } else {

12 $data = h($file->read());

13 $file->close();

14 $this->set("text',$data);

15 $this->render('text', 'ajax');

16 }

17 }

18 }

Line 2 of Listing 8-17 checks for any contents in the upload file field. File uploads will
still be automatically parsed by Cake, which is more secure than using the PHP $ FILES array.
To facilitate file handling, Cake’s core includes a series of File class functions. But to use these
functions in the controller, since theyre not component classes, helpers, or other Cake ele-
ments, you must instantiate a new File class; this is done in line 6 with the App: : import()
function. On line 7, the File utility is assigned to $file as a class object; now, throughout the
action, the $file object will provide you with Cake’s core File functions. Also, the $file object
will represent the uploaded file itself, so when you have to maneuver through the upload, it
will be much easier to save the data to the server.

Line 8 checks to see whether the file is the right MIME type (“text/plain” for plain-text
files). Lines 12-15 handle the file itself. Now, in this action, you need only to retrieve the con-
tents of the file and make them available in the Contents field. So line 12 just reads the file and
places the contents in the $data variable. Line 13 closes out the file, and lines 14-15 make the
$data variable available in the app/views/posts/text.ctp view file. Line 15 takes care to render
the view in Ajax mode so as to not trigger Cake’s synchronous rendering engine.

All that'’s left is to swap out the Content field with a new propagated one; this is done in
the Text view file, which you haven't created yet.

Writing the Text View
Create the app/views/posts/text.ctp file, and paste Listing 8-18 into it.

133

134

CHAPTER 8 © IMPLEMENTING AJAX FEATURES

Listing 8-18. The Text View File

1 <? if (lempty($error)): 2>

2 <p><?=$error; ?></p>

3 <?=$form->input('Post.content’, array('label'=>'Content', 'rows'=>"15",w=
"cols'=>"75")); >

4 <? else: ?>
5 <p>Upload successful</p>
6 <?=$form->input('Post.content’,array('label'=>"'Current Text ',w=

value'=>$text, 'rows'=>"15","'cols'=>"75"));?>

7 <? endif;?>

8 <?=$form->input('Post.upload text',array('label'=>'Upload Text File ', w»
"type'=>'file'));?>

9 <?=$form->button('Upload Text',array('onClick'=>"$(\"#postAddForm\")ws
.ajaxSubmit({target: \'#postTextUpload\',url: \"'.$html->url('/posts/text")w
'\'}); return false;'));?>

Listing 8-16 mimics the Posts Add view, except that it adds an error check (and displays
the error message) and supplies the Content field with the file upload contents (available in
the $text array from the controller).

Now you should be able to upload the contents of a plain-text file and make them avail-
able instantly in the Add action without reloading the page. Thanks to jQuery and its Form
plugin, you can do this in Ajax. Unfortunately, the Ajax helper doesn’t allow for jQuery func-
tions or file uploads yet, so you had to provide the JavaScript functions to make it happen in
the onClick attribute.

More Ajax Features

The world of Ajax is continually expanding. Several open source projects have made previ-
ously expensive or complex libraries available to the masses. As Ajax methods continue to
improve, you can rest assured that Cake’s structure will remain open to Ajax and allow those
methods to be brought into your Cake applications. Hard-coding the onClick and other DOM
events certainly extends the capabilities of the Cake application, but by practicing with other
Ajax helper functions, you can take care of most common Ajax processes with Cake.

Summary

In this chapter, we discussed how Cake simplifies Ajax methods with its built-in Ajax helper.
You built a comments feature into your blog application that allows the user to add a com-
ment to a blog post and also provides users with a way to vote on those comments. Currently,
Cake’s Ajax helper is built on the Prototype JavaScript library, and this chapter explained how
to work Prototype into your Cake application. Using other Ajax frameworks like jQuery is also
possible in Cake but is done outside the Ajax helper for most methods. I showed how to use
jQuery to upload a text file, which is just one feature you could add from another Ajax frame-
work. The Ajax helper is just one of the many helpers available in Cake. Chapter 9 will explain
helpers in more detail, including the HTML and Form helpers, as well as how to create a cus-
tom helper of your own.

PART 3

Advanced CakePHP

In Part 2, you began building a blog application, and along the way | discussed some key
fundamentals—how to build controllers, models, and views, as well as where to use
helpers to streamline development. Using and customizing other advanced features such
as helpers, behaviors, DataSources, and components allows you to take advantage not
only of Cake’s efficient structure but of its cutting-edge functionality as well. In this part,
you will build your own features and explore advanced built-in functions.

CHAPTER 9

Helpers

In the previous chapters, you capitalized on some of Cake’s built-in helpers to dramatically
improve and speed up the development of some typical web application processes. Using
the Ajax helper, you added some flare to the process of submitting and voting on the blog’s
comments. The Form helper facilitated data handling and form submissions, and the HTML
helper condensed the amount of markup you wrote by hand in the views and managed the
links throughout the site to prevent any breaks. In this chapter, you will explore built-in
helper functions in depth and even build a couple of your own. First, I'll briefly discuss
installing helpers.

Installing Helpers

You have already used some built-in helpers and made them available to the application by
entering their names in the var $helpers array in the controller or App controller. When
installing third-party helpers or creating your own, you must take the following steps to
ensure the helpers work properly:

1. Every helper file should go in the app/views/helpers directory.

2. Include the helper’s class name in the var $helpers array in either the App controller
or in a specific controller in whose views the helper may be called.

3. When using the helper in the view, make sure you call the helper’s class object cor-
rectly (that is, use the $ajax variable to call the Ajax helper object). Don’t create local
variables in the view that might conflict with available helper objects.

In Chapter 8, you created the App controller file to make some helpers available to the
whole application. This is generally good practice when most of the controllers in the applica-
tion use a set of helpers because it allows you to use one string of code in one location rather
than spelling out the helper includes in various places. You may ask, why not include all the
built-in helpers in the App controller by default rather than having to go through this extra
step? The answer is that, by so doing, you compromise the load time of the application. It’s
better to use the App controller to specify helpers that all or most controllers use most often,
rather than include them all at the outset and bog down the application.

If, for example, only one controller in the application uses the Time helper, then it’s best
to include this helper in that controller alone. Helpers such as HTML, Form, and Ajax are best
called in the App controller because of their common use throughout the application. When
a helper is called in the App controller, the helper object will be created and loaded into the

137

138

CHAPTER 9 = HELPERS

server memory for each action the application performs. That can add up quickly if too many
helpers are called for the whole site.

Because PHP code is parsed and compiled each time it is accessed, anything you can do
to reduce the amount of code will help site performance. Using code only where it is needed
will also help you when troubleshooting. Including too many helpers in the App controller
increases server load and may necessitate adjusting PHP settings or using a runtime accelera-
tor with PHP.

Using Cake’s Built-in Helpers

One of the most attractive qualities of Cake is its collection of helpers. Tasks such as rendering
RSS feeds, managing form submissions, truncating and highlighting text, and performing Ajax
methods are all simplified by helpers. Cake provides a large assortment of web-specific func-
tions that can save you hours of headaches; knowing what is available in Cake’s built-in
helpers is key to building advanced Cake applications.

Note Rather than inundate the chapter with long explanatory tables, I've opted for a more “dictionary”
approach to explaining the helpers and their functions. Each function will have its own set of parameters that
are called by populating the parameter in the view. Each parameter is separated from the previous one by a
comma and includes in brackets the type of data specified in the parameter. Beneath each description, |
include each parameter’s default value. Leaving the parameter blank, or entering null in its place, means
that the default value for that parameter will be used when the function is executed.

Explain Every Helper Function?

This chapter could get very boring very fast. Listing all the possible helper functions would
make for a very long list indeed and would turn this chapter, more or less, into API documen-
tation. (If API documentation is what you want, then by all means check out Cake’s online API
athttp://api.cakephp.org. It's kept up-to-date and contains resource links to the source code
itself for each function.) I will explain the functions in detail rather than reprinting the API
documentation. The fact remains that some helpers are used so frequently that, for most
developers, leaving out a detailed survey of Cake’s built-in helper functions would hinder your
progress in really using what Cake has to offer. Therefore, I will only highlight the HTML and
Form helpers in detail, since these are fundamentally necessary for anything to happen in
even the most basic Cake application.

Don't be afraid to try these functions on your own; most of the time, they’re rather
straightforward, and since they don’'t manipulate your database, you can’t inflict any perma-
nent damage on your application. Usually the more helpers you use, the more time you save,
so it’s worth practicing. A common pitfall for inexperienced Cake developers is to be unaware
of helper functions so they resort to building their own processes or custom helpers to per-
form tasks that have already been standardized in a helper function. (I have certainly been
guilty of this—I once wrote an entire console script to automate building views before I real-
ized that Cake already came with Bake!)

http://api.cakephp.org

CHAPTER 9 © HELPERS

Let’s move on to the HTML and Form helpers. You should already be acquainted with
them since you have used them previously; but they do offer more features than those men-
tioned so far.

Working with the HTML Helper

You have already used the HTML helper, and this is perhaps the easiest one to master. Using
the HTML helper provides some advantages:

e Often the amount of HTML markup you must enter in the view is reduced by sticking
to the helper.

e HTML output can be managed dynamically rather than manually by passing along
variables to the helper. You won't have to write your own methods for common tasks
that are already available through the HTML helper.

e Have I overstated the advantage of managing links? I'll say it again: this helper saves
you the migraine headache of sifting through and testing all the possible broken links
should you change a domain name, change a URL scheme, or move to a different host-
ing provider. This cannot be overstated—especially since one of the biggest challenges
for new web developers is making their applications portable.

* For some users, reading through PHP is easier than reading HTML. At the very least,
those who favor PHP’s syntax to HTML markup will find the HTML helper a better
method for coding the views.

The HTML helper is called in the view by using the $html object. This helper is one of two
that is automatically included in the whole Cake application without having to use the var
$helpers array in the controller. However, once you add more helpers to the application, it’s
not a bad idea to spell out the HTML helper in the var $helpers array; this way, no matter
what future version of Cake the application may run on, the helper will be called appropri-
ately. A more verbose $helpers property also ensures that other developers involved on the
project know precisely which helpers are at work in the view.

Caution The HTML helper is specified in title case like all other helpers in the var $helpers array. This
means that using var $helpers = array('HTML'); with all capitals will not work properly; it must be
done with Htm1 like so: var $helpers = array('Html');.

In the following sections I've included descriptions of most of the HTML helper functions
and how to use them. As you come across opportunities to use them in your applications, be
sure to maintain consistency; you could always write HTML by hand, which could bypass
some of the advantages of using the HTML helper.

139

140 CHAPTER 9 = HELPERS

charset

This function outputs the HTML <meta> tag, specifying the character set for the page. Using
this function generally occurs in a layout file.

charset(charset[string])
charset = null: The character set to be used in the <meta> tag
For example, the following:

<?=$html->charset('UTF-16");?>

will output this:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-16"/>

The default character set can be specified in the app/config/core.php file. Change the
App.encoding setting on or near line 47 following the standard HTML character set specifica-
tions. (For your information, a list of registered character set values is available from the World
Wide Web Consortium at www.w3.org/International/0-charset-lang.html.) The App.encoding
value is originally set to UTF-8.

CSS

This function outputs a tag for including a style sheet. Generally, CSS files are stored in the
app/webroot/css directory and are made available by using the CSS function as described in
this section. A <1ink> or <style> tag is returned depending on the values specified in the
parameters.

css(path[mixed], rel[string], attributes[array], inline[bool])

path: The name of the style sheet (excluding the .css extension) or an array of multiple
style sheets in the app/webroot/css directory.

rel = 'stylesheet': The rel attribute; if set to import, then the function will return the
@import link in the <style> tags rather than the <link rel='stylesheet'> tag.

attributes: Contains any HTML attributes to be included in the <1ink> or <style> tag;
arranged as keys named for the attribute and values to be assigned to the attribute.

inline = true:If set to false, the result will be placed in the <head> element of the page;
otherwise, the function will output inline.

Using the attributes array, you can specify a style sheet for printing or screen output
like so:

<?=$html->css('cake.generic.print',null,array('media’'=>"print'));?>
or like so:

<?=$html->css('cake.generic.screen',null,array('media'=>"screen'));?>

http://www.w3.org/International/O-charset-lang.html

CHAPTER 9 © HELPERS

Multiple style sheets can be called by passing an array in the path parameter:
<?=$html->css(array('reset’, "type', 'layout'));?>

The CSS function is generally used in layouts but can also be called in individual view
files.

div
This function returns a formatted <div> tag. Its use is rather straightforward and basic, given

that <div> tags are meant to be wrappers for HTML styles and layout or placeholders for
JavaScript actions.

div(class[string], text[string], attributes[array], escape[bool])
class = null: The name of the class attribute for the tag.
text = null:The text to appear inside the <div> element.

attributes: Contains any HTML attributes to be included in the tag; arranged as keys
named for the attribute and values to be assigned to the attribute.

escape = false: If set to true, the contents of the text parameter will be escaped for
HTML.

Say I wanted to create a uniquely designed tab or page element to be displayed as a <div>
element. The $html->div() function could be used thusly:

<?=$html->div('tab', "Home");?>

to output the following:

<div class="tab">Home</div>

If a passed variable contained the contents of the <div> tag, I could easily display the vari-
able with slightly less code than if I were to use only HTML markup. The div() function as
follows:

<?=$html->div('story',$story['Story']['contents']);?>
uses a few less characters than does this:
<div class="story"><?=$story['Story']['contents'];?></div>

This function is generally used as a convenience wrapper for displaying <div> tags and
allows you to stick with PHP instead of HTML if you choose.

docType

Like the $html->charset() function, this function is used mainly in layouts to avoid entering
the long standards-compliant HTML document type string.

docType(type[string])

141

142

CHAPTER 9 = HELPERS

type = 'xhtml-strict': The document type to be used in the docType declaration

For possible document types to be used in the type parameter, see Table 9-1.

Table 9-1. Possible Document Types to Be Used with the $html->docType() Function

Parameter Value Document Type
html4-strict HTML 4.0 Strict
html4-trans HTML 4.0 Transitional
html4-frame HTML 4.0 Frameset
xhtml-strict XHTML 1.0 Strict
xhtml-trans XHTML 1.0 Transitional
xhtml-frame XHTML 1.0 Frameset
xhtml11 XHTML 1.1

By entering the following in the layout file:
<?=$html->docType('xhtml-strict');?>

the document type declaration is produced as the following string:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/w=s
xhtml1/DTD/xhtml1-strict.dtd">

image

Managing images can be a tedious task for elaborate web sites. The $html->image() function
helps with graphics management by simplifying the rendering of image tags and using a stan-
dardized internal path scheme to reference the files. This function dynamically outputs an
 tag.

image(path[string], attributes[array])
path: The path to the image file

attributes: An array of keys and values corresponding with HTML attributes to be
included in the tag

The path to the image file can be constructed in one of three ways. First, if you enter only
a file name, this function will automatically output the path relative to the app/webroot/img
directory. For instance, to display the file app/webroot/img/title. jpg, only the file name
title.jpgis needed in the path parameter.

<?=$html->image('title.jpg');?>

http://www.w3.org/TR/�xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/�xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 9 © HELPERS

Second, if you enter a full link to an external image file, the $html->image() function will
reference the file directly with no path manipulation. An image available at waw.mydomain.com/
images/title.jpg could be accessed by this function with this:

<?=$html->image (" www.mydomain.com/images/title.jpg");?>

Finally, the path can be made relative to the app/webroot directory by starting with a for-
ward slash:

<?=$html->image('/img/gallery/title.jpg');?>

Like other helper functions, HTML attributes can be passed through this function using
the attributes array. For example, the following:

<?=$html->image('title.jpg",array('alt'=>"'My Homepage','class'=>"title');?>
outputs the following:

link
Using the $html->1ink() function helps with maintaining consistent links and also is a con-
venience wrapper for the common <a> tag. This function outputs an <a> anchor tag.

link(title[string], url[mixed], attributes[array], confirmMessage[string],w=
escapeTitle[bool])

title: The content to be linked; may include HTML tags, but the escapeTitle parameter
must be set to false to display correctly.

url = null:If an array, this will cause the link to point to controllers and actions; as a path
relative to Cake, it will be parsed as an internal link; as an absolute URL, it will be passed
asitis.

attributes: The parameter through which to pass HTML attributes to be included with
the tag.

confirmMessage = false: When set, this message will be displayed in a JavaScript alert
dialog box; if the user proceeds, the link will be activated.

escapeTitle = true: By default, any symbols will be escaped for HTML; when set to
false, the string supplied in title will be passed along as entered.

This function is rather simple: provide the content to be linked, and tell Cake where to
send the user when clicked. I discussed basic inline links with the $html->1ink() function
when I showed how to bake some views. These are simple enough—linking the string “Add
a Post” to the Posts Add action is done with the following code:

<?=$html->1ink('Add a Post','/posts/add');?>

143

http://www.mydomain.com
http://www.mydomain.com/images/title.jpg');?

144

CHAPTER 9 = HELPERS

But you can use an alternate method for producing this same link by entering an array in
the url parameter, like so:

<?=$html->1ink('Add a Post',array('controller'=>'posts','action'=>"add"));?>
Of course, entering an absolute URL into the url parameter will send the user off site:
<?=$html->1ink('Check out the Bakery','http://bakery.cakephp.org');?>

You can include a confirmation message to be displayed as a JavaScript alert dialog box by
entering a string in the confirmMessage parameter. For instance, say you wanted to alert the
user before deleting records from the database. You could do this by entering the confirm
message in the $html->1ink() function:

<?=$html->1ink('Delete",'/posts/delete/'.$post['Post']['id"],null, 'Are you surew
you want to delete this post?');?>

When this is clicked, a box will appear asking the user “Are you sure you want to delete
this post?” If the user clicks Proceed, then the link will be activated.

You can include HTML tags in this function by setting the escapeTitle parameter to
false. Even other helper functions that output HTML can be included in the title parameter,
like so:

<?=$html->1ink($html->image('title.jpg')," /" ,null,null,false);?>

meta

$html->meta() outputs <meta> tags, which can be used for specifying a site description or
other <meta> tags. It can also output <1ink> tags for RSS feeds and a site favicon.

meta(type[string], url[mixed], attributes[array], inline[bool])

type = null: The type of <meta> tag to be produced; this can be set to any string, but some
built-in strings are also available (rss, atom, icon, keywords, and description).

url = null:If an array, this will cause the link to point to controllers and actions; as a path
relative to Cake, it will be parsed as an internal link; as an absolute URL, it will be passed
asis.

attributes: Parameter for passing along HTML attributes and their values.
inline = true:Ifset to false, the tag will appear within the <head> tags of the layout.

If the type parameter is set to either rss, atom, or icon, then the corresponding MIME type
will be returned. For instance, the following:

<?=$html->meta('icon");?>
returns these strings:

<link href="/blog/favicon.ico" type="image/x-icon" rel="icon"/>
<link href="/blog/favicon.ico" type="image/x-icon" rel="shortcut icon"/>

http://bakery.cakephp.org');?

CHAPTER 9 © HELPERS

nestedList

$html->nestedList() displays an array as a nested list. This can be very helpful when
debugging.

nestedList(list[array], attributes[array], itemAttributes[array], tag[string])
list: The elements to list
attributes: The HTML attributes to be passed to the list tag

itemAttributes = null: The HTML attributes to be passed to the individual item (<1i>)
tags

tag = 'ul':The type of list tag to be used, either ordered or unordered lists (or
tags by entering ol or ul)

For each array and nested array passed in the 1ist parameter, a new list tag will be called
(that is, for unordered lists, a new tag will be returned with the contents of the nested
array parsed with <1i> tags). The array can contain as many levels as desired. For instance, say
the $posts variable has the following array contents:

$posts = array(
"Post 1'=>array(
'Jan 1, 2008,
"No Author'),
"Post 2'=>array(
"Jan 2, 2008,
"Administrator")

)s

By placing this array in the 1ist parameter of the $html->nestedlList() function, the fol-
lowing HTML would be returned:

Post 1

Jan 1, 2008</1i>
No Author</1i>

</1i>
Post 2

Jan 2, 2008</1i>
Administrator</1li>

</1i>

This function works well with lists pulled from the database using the find('list") or
generatelist() model function.

145

146

CHAPTER 9 = HELPERS

para

Simply put, this is a convenience function for wrapping the paragraph tag around a chunk of
text. It can be useful in simplifying HTML escaping for content that may contain nonalpha-
numeric characters.

para(class[string], text[string], attributes[array], escape[bool])
class: The CSS class name of the <p> tag
text: The content to appear inside the <p> element
attributes: HTML attributes to be passed and displayed in the tag
escape = false:When set to true, the content will be HTML-escaped
The following test string:
<?=$html->para(null, 'This is a test for the $html->para() function',null,true);?>

will return the following when run through the $html->para() function:

<p>This is a test for the $html-8gt;para() function</p>

style

The $html->style() function is a convenience wrapper for inserting styles into HTML ele-
ments. For instance, a particular element may need to have some inline styles assigned to it
with the style attribute. This function allows you to specify those styles in PHP instead of CSS.

style(data[array], inline[bool])

data: CSS settings arranged as an array

inline = true:If set to false, each CSS element will be separated by a hard return; if
true, the CSS will be returned as a single string.

A Cake application may use the database to manage CSS styles. A model for a CSS table
could fetch the styles and provide them as an array to be used in the view. To simplify parsing
through this array, the $html->style() function could save some time. Say I've got some CSS
stored like the following array:

$styles = array(
"p_bold'=>array(
'font-size'=>"'1.0 em',
'font-weight'=>"bold’
)
'p_italic'=>array(
'font-style'=>"italic'
)
);

CHAPTER 9 © HELPERS

Then, by using the $html->styles() function, I can reduce fetching these styles to a single
function. In conjunction with the $html->para() function and assuming this $styles variable
is available in the view, notice how the styles() function conveniently handles dynamic CSS:

<?=$html->para(null, 'Paragraph Text',array('style'=>$html->styles($stylesw=
['p_bold"])));?>

This line would return the following HTML:

<p style="font-size:1.0em; font-weight:bold">Paragraph Text</p>

This function can also simplify loops through elements that use database-driven styles.
Just make sure the keys in the styles array are formatted correctly by following the previous
example.

tableHeaders and tableCells

These functions display a table. Also, a common feature of tabular displays is alternating rows.
Rather than build PHP formulas for alternating through table rows, the $html->tableCells()
function can automatically attach a CSS class or HTML attributes to odd and even rows. Simi-
lar to other convenience wrappers, both the $html->tableHeaders() and $html->tableCells()
functions make displaying dynamic content in HTML much easier to manage.

tableHeaders(names[array], trAttributes[array], thAttributes[array])
names: Array of names for the table’s columns

trAttributes = null: HTML attributes to be passed to the <tr> tag

thAttributes = null: HTML attributes to be passed to the <th> tag

tableCells(data[array], oddTrAttributes[array], evenTrAttributes[array],=
useCount[bool])

data: Table data arranged as rows and columns in an array
oddTrAttributes = null: HTML attributes to be passed to odd rows
evenTrAttributes = null: HTML attributes to be passed to even rows

useCount = false: If true, adds the class name column- plus the number of the row to the
<tr> element

The $html->tableHeaders() function renders only the header row inside a table. Be sure
to enter the <table> element tags by hand as HTML and include these table functions inside
this element. The returned HTML contains both the <th> and <tr> tags, so to pass HTML
attributes to one or both of these, use the trAttributes and thAttributes parameters, respec-
tively. The following line:

<?=$html->tableHeaders(array('1",'2"),array('class'=>"row"),array('class'=>w
"header'));?>

147

148

CHAPTER 9 © HELPERS

will return the following:

<tr class="row"><th class="header">1</th> <th class="header">2</th></tr>

The names array for the $html->tableHeaders() function is formatted with only the names
themselves without any nested arrays. However, the data array for the $html->tableCells()
function must include nested arrays ordered by column for each row. For example, the follow-
ing array is formatted for use in the $html->tableCells() function:

$cells = array(
"rowl'=>array(
'columni', 'column2', 'column3’
)5
"row2'=>array(
'columni', 'column2', 'column3’
)
)5

The actual text contained in the row keys (for example, rowl and row2) will not be dis-
played in the HTML output:

<tr>
<td>columni</td>
<td>column2</td>
<td>column3</td>

</tr>

<tr>
<td>columni</td>
<td>column2</td>
<td>column3</td>

</tr>

addCrumb and getCrumbs

$html->addCrumb() and $html->getCrumbs functions render breadcrumbs (for example,
home->about->mailing address) . These functions manage a breadcrumbs array and make it
available to each view. The $html->addCrumb() function adds a link to the breadcrumbs array,
and the $html->getCrumbs() function fetches and displays the array.

addCrumb(name[string], link[mixed], attributes[array])
name: The text to be displayed

link = null: Can be keyed in an array (for example,
array('controller'=>"posts', 'action'=>"add")) or entered as a string (for example,
'/posts/add"); if left blank, no link will be rendered around the text

attributes: HTML attributes to be passed to the <a> tag of the crumb

CHAPTER 9 © HELPERS

Adding the home page of the site to the breadcrumbs array, for example, is simple using
this function:

<?=$html->addCrumb('Home","'/");?>

To display the breadcrumbs, however, you must use the $html->getCrumbs () function.
Some parameters exist for the $html->getCrumbs () function to better manipulate how these
links are rendered.

getCrumbs(separator[string], startText[string])

separator = '»':The text displayed in between crumbs when more than one
crumb is found

startText = false: The first crumb in the breadcrumb trail; if set to false, the first crumb
in the array will be displayed first

If you were to display the home page link that was added to the breadcrumb array in
the previous example for the $html->addCrumb() function, you would use $html->getCrumbs()
like so:

<?=$html->getCrumbs();?>

This will render the following when the Cake application is named blog:

Home

Of course, the link will change to match the specific server settings for the application.

Using the HTML Helper in the Default Layout

Currently, your blog application doesn’t use much of the HTML helper in its default layout.
To put some of these functions to good use, let’s revamp the default layout to include more
of them.

In app/views/default.ctp, replace its contents with Listing 9-1.

Listing 9-1. Using the HTML Helper in the Default Layout

<?=$html->docType('xhtml-strict');?>
<head>
<title>The Extensive Blog</title>
<?=$html->charset('UTF-8");?>
<?=$html->meta('icon');?>
<?=$html->css('cake.generic');?>
<?=($this->params['controller'] == 'posts' 8& $this->params['action'] ==
'add' ? $javascript->link(array('jquery.js')) : $javascript->link('prototype'));?>
</head>

149

150

CHAPTER 9 = HELPERS

<body>

<?=$html->div(null, $session->flash().$html->div(null,$content for layout,array=
('id'=>"content")),array('id'=>"container"));?>

</body>

</html>

Finding ways to use the HTML helper in the default layout has allowed you to replace
much of the HTML with PHP. By using the $html->docType() and $html->charset() func-
tions, you've been able to bypass all the standards-compliant declarations coding and still
future-proof the layout against possible standards changes. Also, the $htm1->div() function
allowed you to wrap the layout’s contents in <div> tags that match the app/webroot/css/
cake.generic.css style sheet and reduce this to one line.

In the individual views, you could repeat this process and look for ways to use the HTML
helper to replace your hand-coded markup with PHP.

Working with the Form Helper

Just as the HTML helper is essential to streamlining your use of HTML markup in the view, the
Form helper is indispensable for form processing. In fact, avoiding this helper would likely
take more effort than learning its functions.

A couple of important points ought to be explained before examining the Form helper
functions in detail. First, some functions are designed to display the results of a processed
form. In a way, these functions act as a kind of receiver and are not immediately visible in the
page. Other functions work to format and send data for the model to use. Both receiver and
supplier functions must follow model naming conventions to work properly. For instance,
Model.fieldname is used to tell the $form->input() function in which field and in which table
in the database to store the user input data. Whenever the field parameter or an array of
fields are called in the function, be sure to name the fields properly. To ensure that the helper
is able to send the data to the correct model, include the camel-cased model’s name, followed
by a period and then followed by the field name:

<?=$form->error('Post.content");?>

When you're sure the controller will experience no conflicts with multiple models, you
can usually specify only the field’s name:

<?=$form->error('content");?>

Note Earlier versions of Cake followed this convention for specifying models and fields using the HTML
helper and with a slash instead of a period, such as Model/fieldname. If you do come across earlier Cake
applications, be sure to replace the forward slash with a period to be consistent with Cake 1.2. Use the
Form helper to render all form elements, not the HTML helper.

Second, most form elements will use the options or attributes parameters the same way.
Because form elements can be more elaborate than other HTML elements with regard to

CHAPTER 9 © HELPERS

JavaScript, Ajax, and other interactive functions, they may need more specific options to be
passed along. You can fully customize an HTML attribute to be passed in a form element by
keying the options or attributes array correctly. Just make sure that the key matches the
name of the attribute and its value contains the proper values. The following line:

<?=$form->submit('Submit',array('onSubmit'=>"return false;"));?>

will return a submit button containing the onSubmit attribute, like so:

<input type="submit" value="Submit" onSubmit="return false;" />

Any attribute can be passed through the options and attributes arrays.

Note Because the options and attributes parameters are mostly consistent for most Form helper
functions, I'll forego describing them for each function. Where a particular option or attribute affects the
function’s output, I'll highlight that option in the description.

With these points in mind, let’s take a look at the main functions of the Form helper. Most
of them will work properly only when contained inside a <form> element, usually created with
the $form->create() function listed next.

create

Rendering <form> tags is simplified by the $form->create() function. This function also man-
ages the action HTML attribute and points the form to the correct model.

create(model[string], options[array])
model = null: The model to which the form data should be sent.

options: Aside from HTML attributes, this array can contain some specific options—type,
action, url, and default.

When creating a new form for the controller and model to process, this function makes
sure that the <form> tag points to the correct URL and sends the data appropriately. For
instance, you can choose either post or get methods for handling the user data by specifying
the type option in the options array. Or, for creating forms that handle file uploading, the nec-
essary enctype attribute is automatically formatted correctly by specifying the type option as
file. The model parameter ensures that the form data is sent to the appropriate model without
worrying about URLs or other application paths. Possible form types include delete, file, get,
post, and put.

When you need to specify the action to be called when the form is submitted, simply set
the action option to the Cake-relative path of the action. This action must be in the current
controller to work properly.

151

152

CHAPTER 9 = HELPERS

For sending the form to an action outside the current controller, use the url option. This
can be either an array specifying the controller and the action or a Cake-relative path pointing
to the action.

To suppress the default behavior of the form, set the default option to false. When set to
false, the default option tells the form not to submit. This can allow for Ajax processing or
other customized behaviors with the form data. By default, the default option is set to true,
meaning that the form will behave as a normal HTTP request.

If I were to add a form that would submit data to another model, I could set this up with
the $form->create() function like so:

<?=$form->create('Post',array('url'=>"'/tags/add"'));?>

In this example, the submission of this form would be sent to the Add action of the Tags
controller. Generally, forms include only the current model’s name. One thing to keep in mind
is that you can pass along HTML attributes through the options parameter:

<?=$form->create('Post',array('id'=>"add", 'class'=>"form"));?>

end

However, the $form->end() function can conveniently combine into one string the submit
button, which is typically the last form element displayed and the closing </form> tag.

end(options[mixed])

options:When entered as a string, this parameter is rendered as the value of the submit
button; as an array, it passes along HTML attributes to the submit element.

If you use the options array to pass along HTML attributes, use the label option to set the
value of the submit button:

<?=$form->end(array('label'=>"'Submit Form','id'=>"submit btn'));?>
This line will return the following output:

<input type="submit" value="Submit Form" id="submit btn" />
</form>

In conjunction with the $form->create() function, this function closes off forms; a form
at its most basic is condensed into just two lines:

<?=$form->create('Post');?>

<?=$form->end('Submit");?>

secure

To prevent cross-site request forgery (CSRF) attacks, many developers use the hash insertion
technique. In short, the $form->secure() function facilitates hash insertions by generating a
hidden form field containing a hash based on other fields in the form.

secure(fields[array])

fields: The list of fields to use to generate the hash

CHAPTER 9 © HELPERS

The fields parameter is required for the function to work correctly. When formatting the
array, be sure to arrange it by model and field names:

<?=$form->secure(array('Post'=>array('id", 'name'));?>

This will output the hidden input element with a server-side-generated hash:

<fieldset style="display:none;">

<input type="hidden" name="data[Token][fields]" value="1932368593ef664fc975581ew=
92e2df1490401570" id="TokenFields1314770757" />

</fieldset>

The value of the hidden input element will certainly change depending on the
Security.salt value set in the app/config/core.php file and the function’s own randomization
algorithm. This hash is accessible in the $this->data array under the [' Token']['fields] key.

label

This function renders a <label> element and wraps it around a specified input field. The
$form->input() function automatically runs this function when rendering input fields (which
can be suppressed in that function’s options).

label(field[string], text[string], attributes[array])
field: The field around which to wrap the <label> HTML element
text = null: The label’s text

To change the label’s class name or provide other HTML attributes settings, just enter
these customizations in the attributes array:

<?=$form->input('Post.name’, 'Title of Post',array('class'=>"post_label'));?>

input
input(field[string], options[array])

Perhaps no other helper function is quite so versatile as the $form->input() function. This
tool works both to receive and to send data; when receiving data, it will display its contents in
a form element, and when sending it, it will handle all the form fields and naming conven-
tions so that the controller and model can parse the user’s data automatically. Each of the
form input elements is rendered by this function as well. When data validation errors or mes-
sages are sent back to the view, this function also renders those messages and highlights the
field, if desired. By sticking with this function, many of the typical form structures are
reduced to less code (often just one line).

153

154

CHAPTER 9 = HELPERS

Automagic

For the field entered, the $form->input() function will interpret the field and automatically
render a form element based on the kind of data it finds. Most of the time, especially with sim-
ple forms, only the field name is needed:

<?=$form->input('content");?>

In this example, the function would recognize that the matching field in the database
table is a text field and would consequently render a <textarea> element with its necessary
parameters to work with the model. Table 9-2 shows how the $form->input() function
inspects the database field types and what it will return to the browser.

Table 9-2. The $form->input() Function’s Automagic Responses to Database Field Structures

Field Type Returns

Boolean Check box input element

Date Day, month, and year select menus

Datetime Day, month, year, hour, minute, and meridian select menus
String (for example, varchar) Text box input element

Text Text area element

Time Hour, minute, and meridian select menus

Timestamp Day, month, year, hour, minute, and meridian select menus
Tinyint(1) Check box

String or text fields named Password

password, passwd, or psword

By following Table 9-2, you can build the database structure to be automatically recogniz-
able by the Form helper. Making a field the type tinyint and giving it a length of 1 will save you
from having to tell the $form->input() function that the field is a Boolean value and that it
should be rendered as a check box. Of course, if the special needs of the application demand
otherwise, you can specify particulars as well. For instance, suppose you wanted to force the
user to submit a string rather than paragraphs of text without changing the database struc-
ture. You would need to add some options to override the $form->input() function’s auto-
magic behavior.

The Type Option

The type option allows you to explicitly choose the type of form element. For example, you
could show a text box instead of a <textarea>:

<?=$form->input('content’,array('type'=>"text'));?>

To go back to the <textarea> element, you can enter that in the type option (or let the
default behavior do it for you):

<?=$form->input('content’,array('type'=>"textarea"));?>

CHAPTER 9 © HELPERS

Table 9-3 lists the options available to use with the type parameter. When these options
alias another Form helper function, the same options for that function can be used in the
options array in the $form->input() function and will produce the same effect.

Table 9-3. Options Available for Use in the type Parameter in the options Array

Option Description

checkbox Alias for the $form->checkbox() function

date Renders select menus ordered as month, day, and year
datetime Alias for the $form->dateTime() function

file Alias for the $form->file() function

hidden Alias for the $form->hidden() function

password Alias for the $form->password() function

radio Alias for the $form->radio() function

select Alias for the $form->select() function

text Alias for the $form->text() function

textarea Alias for the $form->textarea() function

time Renders select menus ordered as hour, minute, and meridian
Other Options

A plethora of other options allow for more customization and functionality. Many of these
options can be used in the other form input element functions, depending on the context of
the function. Table 9-4 lists these options as well as a general description of how they are used.

Table 9-4. Options for Use in the options Parameter in Many Form Helper Functions

Option Description

before[string] Markup to be injected into the output of the function; comes before the
label element.

between[string] Injected markup that comes between the label and field elements.

after[string] Injected markup that appears after the field.

options[array] Manually specified options for use in a select element or radio group;

may be supplied as a simple array of values or also a key-value pair;
keys are rendered in the value attribute and the value is displayed in the
element.

multiple[mixed] When set to true, select menus are displayed to allow multiple
selections; when set to checkbox, a select type is rendered as check
boxes and not a multiple-select menu.

maxLength[int] Sets the HTML maxLength attribute.
div[bool] = true When set to false, the wrapper <div> tag is disabled.
label[mixed] As a string, results in the text to be displayed as the label; when set to

false, disables the label element.

Continued

155

156 CHAPTER 9 = HELPERS

Table 9-4. Continued

Option Description

id[string] Sets the ID attribute to the value supplied.

error[string] When set, the text here will be displayed in the event of a validation
error; leave blank to allow the default message to appear.

selected[string] The value of the item in a selection-based input element to be selected
when the field is rendered.

rows[int] The number of rows to size the <textarea> element.

cols[int] The number of columns to size the <textarea> element.

empty[mixed] When set to true, the field is forced to remain empty upon submission;

when used with a select menu, a string may be supplied to be displayed
as an empty option (for example, “Please Select One...”).

timeFormat[string] The format of select menus for time-related fields; the only options are
12, 24, none.

dateFormat[string] Like the timeFormat option; the only possible values are DMY, MDY, YMD,
and none.

If you mix and match the available options skillfully, you may find there is no scenario
that the $form->input() function can’t handle.

At times you may need to use a form element function directly instead of specifying the
type in the $form->input() function. Or, perhaps you would just rather organize your views
with functions specific to the types of fields being rendered. In either case, the Form helper
comes with element-specific functions that behave exactly like the $form->input() function.
Other Form helper functions help with other tasks, such as displaying an error or splitting
apart the datetime elements into separate menus. Table 9-5 contains a list of these functions
and their parameters.

Table 9-5. Form Input Element Functions

Function Name and Parameters

button(title[string], options[array])

checkbox(field[string], options[array])

file(field[string], options[array])

hidden(field[string], options[array])

password(field[string], options[array])

radio(field[string], options[array], attributes[array])

submit(caption[string], options[array])

select(field[string], options[array], selected[mixed], attributes[array],=
showEmpty[mixed])

text(field[string], options[array])

textarea(field[string], options[array])

dateTime(field[string], dateFormat[string], timeFormat[string], selected[string],w

attributes[array], showEmpty[mixed])

CHAPTER 9 © HELPERS

Function Name and Parameters

day(field[string], selected[string], attributes[array], showEmpty[mixed])
month(field[string], selected[string], attributes[array], showEmpty[mixed])

year(field[string], minYear[int], maxYear[int], selected[string], attributes[array], =
showEmpty[mixed])

hour(field[string], format[bool], selected[string], attributes[array], =
showEmpty[mixed])

minute(field[string], selected[string], attributes[array], showEmpty[mixed])
meridian(field[string], selected[string], attributes[array], showEmpty[mixed])

error(field[string], message[string], options[array])

Using Other Built-in Helpers

Useful as they are, the HTML and Form helpers are not the only helpers that Cake has to offer.
Cake 1.2 includes a handful of other helpers that extend the available functions that your
application can use. For a list of each helper’s current function set, refer to the Cake 1.2 API
(http://api.cakephp.org). Here, I'll just explain each helper and give an overview of what

it does.

The Ajax Helper

In Chapter 8, you worked with the Ajax helper to create a comments voting system. I
explained that many of its functions require the Prototype JavaScript framework to behave
properly in the view. Be sure that you have that installed correctly to make full use of this
helper. Not only can the Ajax helper simplify using Prototype, but it can also make anima-
tion effects easier to use. (For a more in-depth explanation of the Ajax helper, see Chapter 8;
to see a list of Ajax functions, refer to Table 8-1.)

The JavaScript Helper

This helper is used mainly to simplify coding JavaScript. A common function that you have
already referenced is the $javascript->1ink() function that works as an automator for creat-
ing <script> tags in the view. Other uses of this helper include JavaScript object and event
functions that provide some common JavaScript functions and code. Both this helper and the
Ajax helper can simplify emerging Ajax technologies and implementing advanced JavaScript
methods.

To include this helper in the application, use this:

var $helpers = array('Javascript');

The JavaScript helper comes with the functions listed in Table 9-6.

157

http://api.cakephp.org

158

CHAPTER 9 = HELPERS

Table 9-6. Functions in the JavaScript Helper

Function Description

$javascript->afterRender() Callback for after rendering; writes cached events to the view
or a temp file

$javascript->blockEnd() Ends a block of JavaScript code

$javascript->cacheEvents() Caches JavaScript events created with the event() function

$javascript->codeBlock() Wraps JavaScript code with the <script> tag

$javascript->escapeScript() Escapes carriage returns and single or double quotes for
JavaScript code segments

$javascript->escapeString() Escapes strings to be JavaScript compatible

$javascript->event() Used with the Prototype framework to attach an event to an
element

$javascript->getCache() Gets the current JavaScript cache; also clears JavaScript caches

$javascript->includeScript() Includes a script inside a single <script> tag

$javascript->1link() Links to JavaScript files for use in a web page

$javascript->object() Creates a JSON object from an array

$javascript->writeEvents() Writes cached JavaScript events

The Number Helper

This is a simple helper for dealing with number formats. From currency formatting to making
memory file sizes readable, the Number helper condenses some common tasks into some
handy helper functions. If your application must deal in multiple number formats or if it must
display file sizes, then give some of the functions listed in Table 9-7 a try. To include this helper
in the application, use this:

var $helpers = array('Number');

Table 9-7. Number Helper Functions

Function Description

$number->currency() Formats a floating-point integer into a currency format

$number->format() Formats a floating-point integer according to provided settings

$number->precision() Formats the number based on the specified precision value

$number->toPercentage() Makes a number a percentage

$number->toReadableSize() Returns a number of bytes into a readable size format (for example,
KB or MB)

The Paginator Helper

This helper works together with the Pagination component to break up data into multiple
pages or to sort data by specified parameters. The Paginator helper works in the view to

CHAPTER 9 © HELPERS

manipulate the display of supplied data to fit the customized needs of the application. In
other words, when the Pagination component is used in the controller (which is the case
whenever you create standard actions for a controller in Bake), the data sent to the view is
paginated data. To work through the pages of data, use the Paginator helper. Table 9-8 lists the
functions that let you customize how to display paginated data in the view.

To include this helper in the application, use the following:

var $helpers = array('Paginator');

Table 9-8. Paginator Helper Functions

Function

Description

$paginator->counter()

$paginator->current()

$paginator->defaultModel()

$paginator->first()
$paginator->hasNext()
$paginator->hasPage()
$paginator->hasPrev()
$paginator->last()

$paginator->link()
$paginator->next()

$paginator->numbers()

$paginator->options()
$paginator->params()
$paginator->prev()
$paginator->sort()
$paginator->sortDir()
$paginator->sortKey()
$paginator->url()

Returns a counter string for the current paginated results set
Returns the current page of the paginated results set
Returns the default model of the paginated sets

Returns the first or set of numbers for the first pages of paginated
results

Returns true if the supplied result set is not the last page of
paginated results

Checks whether a given page number has a result set in paginated
results

Returns true if the supplied result set is not the first page of
paginated results

Returns the last or set of numbers for the last pages of paginated
results

Creates a link with pagination parameters
Creates a link to the next set of paginated results

Returns a set of numbers on each side of the current page for
more direct access to other results

Sets default options for all pagination links

Returns the current page of the results set for a given model
Creates a link to the previous set of paginated results

Creates a sorting link for a column in the results set

Returns the direction by which the given results set is ordered
Returns the key by which the given results set is ordered

Creates a pagination URL to access other pages of the results set

The RSS Helper

The RSS helper creates standards-compliant RSS feeds. See Table 9-9 for a list of RSS helper
functions. To include this helper in the application, use the following:

var $helpers = array('Rss');

159

160

CHAPTER 9 = HELPERS

Table 9-9. RSS Helper Functions

Function Description

$rss->channel() Returns the <channel> element

$rss->document () Returns an RSS document contained in <rss> tags

$rss->item() Converts an array to an RSS element

$rss->items() Converts an array of data using an optional callback; maps the array to a set
of RSS tags

$rss->time() Converts a specified time stamp in any format to an RSS time specification

The Session Helper

The Session helper displays session information as provided by its component and controller.
It displays flash messages, errors, and reading session data with convenience functions listed
in Table 9-10. To include this helper in the application, use this:

var $helpers = array('Session');

Table 9-10. Session Helper Functions

Function Description

$session->activate() Turns on session handling if the app/config/core.php file’s
Session.start attribute is set to false

$session->check() Returns true if a session key is set

$session->error() Returns the last error encountered in the session

$session->flash() Renders messages set with the Session component setFlash() function

$session->id() Returns the session ID

$session->read() Returns all values stored in a given session key

$session->valid() Returns whether a session key is available in the view

$session->write() Overrides the Session component write() function; should not be used

in a view but may be called in other helper functions

The Text Helper

When dealing with text, tasks such as truncating and highlighting can require complicated
regular expressions or tedious PHP operations. The Text helper condenses some of these com-
mon web text methods into helper functions. See Table 9-11 for a list of Text helper functions.
To include this helper in the application, use this:

var $helpers = array('Text');

CHAPTER 9 © HELPERS

Table 9-11. Text Helper Functions

Function Description

$text->autoLink() Converts all links and e-mail addresses into HTML links

$text->autoLinkEmails() Provides an e-mail link for given text

$text->autoLinkUrls() Finds text beginning with http:// or ftp:// and wraps a link tag
around it

$text->excerpt() Extracts an excerpt of text by a given phrase

$text->highlight() Highlights a given string of text

$text->striplinks() Removes links from text

$text->tolList() Formats an array as a comma-separated, readable list

$text->trim() Alias for truncate()

$text->truncate() Truncates text to a given length

The Time Helper

Variations when working with date and time strings can be frustrating—60 seconds in a
minute, 60 minutes in an hour, 24 hours in a day, 7 days in a week.... You get the idea. Date
and time methods that compare times or automate date tasks can get confusing or complex
quickly. Add storing dates in a database, and the level of difficulty increases as well. Thanks to
the Time helper, some common date-time methods are easier to manage. From SQL query
string handling to rendering nicely formatted dates, this helper is useful for any Cake applica-
tion that relies on time elements. See Table 9-12 for a list of Time helper functions. To include
this helper in the application, use this:

var $helpers = array('Time');

Table 9-12. Time Helper Functions

Function Description

$time->dayAsSql() Returns a partial SQL string to search for records between two times
occurring on the same day

$time->daysAsSql() Returns a partial SQL string to search for records between two dates

$time->format() Returns a formatted date string; converts valid strtotime() strings or
Unix timestamps

$time->fromString() Returns a Unix timestamp from a given valid strtotime() string or
integer

$time->gmt() Converts a given Unix timestamp or valid strtotime() string to
Greenwich mean time

$time->isThisMonth() Returns true if given datetime string is within this month

$time->isThisheek() Returns true if given datetime string is within this week

$time->isThisYear() Returns true if given datetime string is within this year

Continued

161

http://or
ftp://and

162

CHAPTER 9 = HELPERS

Table 9-12. Continued

Function

Description

$time->isToday()
$time->isTomorrow()
$time->nice()
$time->niceShort()
$time->relativeTime()

$time->timeAgoInhords ()

$time->toAtom()
$time->toQuarter()
$time->toRSS()
$time->toUnix()
$time->wasWithinLast()
$time->wasYesterday()

Returns true if given datetime string is today

Returns true if given datetime string is tomorrow

Formats a datetime string into a readable string

Like nice(), except it condenses the string to less words and digits
Alias for timeAgoInWords(); can also calculate future dates

Compares the difference between a given datetime string and the
current time; expresses the difference in past terms (for example,
three days ago)

Formats date strings to be used in Atom feeds

Returns the quarter for a given date

Formats date strings to be used in RSS feeds
Convenience wrapper for the strtotime() function
Returns true if the given date is within the given interval

Returns true if given datetime string represents yesterday

The XML Helper

As a data storage file format, XML has gained significant popularity in recent years. Some
developers favor it over database engines for its flexibility and ease of use. However you use
XML, this helper can streamline some typical XML processes. See Table 9-13 for a list of XML
helper functions. To include this helper in the application, use this:

var $helpers = array('Xml');

Table 9-13. XML Helper Functions

Function

Description

$xml->elem()
$xml->header ()

$xml->serialize()

Creates an XML element
Generates an XML document header

Converts a model result set, or a Cake-formatted array, into XML

Creating Custom Helpers

An important key to creating the best web applications is making sure the front end of the
program is crisp and well organized. In this regard, helpers are invaluable. The HTML and
Form helpers slash the time required to produce effective forms or HTML displays.
Consider the possibilities of being able to craft your own customized helper functions.
Not only does Cake allow for custom helpers, but it also makes creating them simple. Of
course, the full power of a helper can be extended with more impressive code, and you can
find a wide variety of third-party helpers designed by the most talented Cake developers.

CHAPTER 9 © HELPERS

This section will explore how to create custom helpers and how to use functions from
other helpers. You'll build a helper for your blog application with some specific methods
designed for the blog itself. First, let’s build the App helper.

Using the App Helper

Like the controllers and models, the Helper object that Cake uses to process helpers can have
an overall helper for the application. This is called the App helper, and it is stored in the appli-
cation as app/app_helper.php. Create this file, and copy the contents of Listing 9-2 into it.

Listing 9-2. The Contents of the app/app_helper.php File

1 <?

2 class AppHelper extends Helper {
3

4}

5 2>

Notice that on line 2 of Listing 9-2 the App helper is an extension of the Helper object.
Now, whatever functions you place in this helper can be accessed by any of the helpers you
may create. For now, I've left the AppHelper class empty, but later I'll use it to build some func-
tionality into all the helpers to fit your customizations.

Creating the Helper File

Custom or third-party helper files are stored in the app/views/helpers folder and are named
like elements—just the name of the helper followed by the . php extension. Inside the file, the
helper’s class is specified with the name of the helper and the word Helper as one word,
camel-cased:

class CustomHelper extends AppHelper {

This helper will extend the App helper object, so you include that extension as well. Any
object variables you want to be available to all functions in the helper can be specified like any
class object:

var $variable = true;
Individual functions are created like typical PHP functions:
function myHelperFunction() { }

The helper function will, most of the time, be called by the view. Therefore, you need to
return a value to be used in the view with the return command:

return '<p>Test Helper Function</p>';

The helper will be installed like any other built-in helper I've already discussed. In the
view, the helper will be called as an object following the name specified in the file name and
the class object declaration:

$custom->myHelperFunction();

163

164

CHAPTER 9 = HELPERS

Using Outside Helper Functions

You may want to extend the capabilities of one of Cake’s built-in helper functions, combine
the processes of a few functions, or use a process already defined in a function in your own
custom helper. To do this, just specify the helpers to be used as referenced in the controller
by filling in the var $helpers array:

var $helpers = array('Html','Ajax');

Then, within the helper file, use the outside helper functions with $this->Helper, as
needed:

$this->Html->1ink('Use an Outside Function','/');

Making a Helper for Your Blog

Let’s build some customized functions for your blog. The first function will simplify the dis-
playing of comments with their Ajax voting links. To build this, you'll first need to create the
helper itself. Create a new file named app/views/helpers/blog.php. In it, create the new
BlogHelper class like so:

<?
class BlogHelper extends AppHelper {

}

>

Including the Ajax Helper

Recall that you already built the Ajax voting feature into the comments in the app/views/
posts/view.ctp file. To reduce this comments section into one line in the view, you can bring
them into the $blog->comments() function. Notice, though, that the Ajax helper is already
being used for the voting links. To make this helper’s functions available in the Blog helper,
you'll need to include the Ajax helper before creating the $blog->comments() function. On line
3 of the app/views/helpers/blog.php file, insert the following line:

var $helpers = array('Ajax');

Writing the Comments Function

Now that the Blog helper file is sufficiently prepared, let’s create the $blog->comments () func-
tion (see Listing 9-3). Copy and paste lines 9-23 of the app/views/posts/view. ctp file (the
comments loop) into this function with a little bit of processing around it as a starting point;
then, you'll add some parameters and functionality into this function to make it portable to
other areas of the site, if need be.

CHAPTER 9 © HELPERS

Listing 9-3. The $blog->comments() Function in the Blog Helper

1 function comments($comments=null) {
2 if (lempty($comments)) {

3 $out = null;

4 foreach($comments as $comment) {

5 $out .= '<div class="comment">

6 <div id="vote_ '.$comment['Comment']['id']."">

7 <div class="cast_vote">

8 <wl>';

9 $out .= $this->Ajax->link('<lisup</1i>","'/comments/vote/up/" .=
$comment['Comment']["'id"'],array('update'=>"vote ".$comment['Comment']['id"]),=
null,false);

10 $out .= $this->Ajax->link('down</1i>","'/comments/vote/=
down/ " .$comment['Comment']['id"],array('update'=>"vote '.$commentws
['Comment']['id']),null,false);

11 $out .= '

12 </div>

13 <div class="vote">"'.$comment['Comment']['votes']. </div>

14 </div>

15 <p>".$comment['Comment"']['name"']."'</p>

16 <p>".$comment['Comment']['content']. </p>

17 </div>';

18 }

19 return $this->output($out);

20 } else {

21 trigger error(sprintf('No comments found', get class($this)),w=
E_USER_NOTICE);

22 }

23 }

In Listing 9-3, I've essentially translated the loop from the Posts view to be returned by
the helper function. Using the $out variable, I'm able to loop through the $comments variable
and catch all the iterations into this one array. Then on line 19, the final output of $out gets
returned to the view. Notice that on line 19 I've used the output() function. This is a basic
return function for handling the final output; it can be overridden in other subclasses for
post-processing. When unaffected by post-processing methods, it will return the passed
variable as is.

Line 21 uses the trigger error() function to pass an error if no comments are passed
to the helper function. This line passes the class itself (as $this) to be used in a debugging
message.

Now that you've made the $blog->comments function, let’s use it in the view. In the App
controller load the Blog helper in the var $helpers array:

var $helpers = array('Html','Form','Ajax', 'Javascript’, 'Blog');

165

166

CHAPTER 9 = HELPERS

Next, in the app/views/posts/view.ctp file, replace the comments loop on lines 9-23 with
one line:

<?=$blog->comments($comments);?>

Refresh the Posts view, and you should see nothing change; this is good since it means
that the helper is working properly.

Comparing Helpers and Elements

The current $blog->comments () function is not much different than an element; it essentially
takes a variable and creates some view markup around it, which can be used in multiple views
if necessary. A fundamental difference between helpers and elements should be noted, how-
ever. As it is, the $blog->comments() function really should be placed in an element rather than
a helper for a couple reasons:

» Elements provide display markup to be used across multiple views without much logic;
helpers generally include more logic tests and methods.

» Helpers are usually adaptable for any type of application, whereas elements are more
specific to its application.

* Elements should not include several options to manipulate the displays; this is more
a function of helpers.

Despite these suggestions, it may be more effective to group a series of view functions
together in one helper file than to split them apart into elements. Taking the current
$blog->comments() function from an element to a helper would require expanding the func-
tion to take on more dynamic methods. Right now, $blog->comments () is rather static, so the
next step is to expand it to include more logic and options. By so doing, you make the function
accessible in more scenarios than one, which is probably the best reason for writing a helper
function.

Extending the Comments Function

The aspect of passing options to a helper function allows you to extend the function to include
more customized possibilities. With the $blog->comments () function in particular, there are a
couple of features that could be made custom for use across the application. First, the voting
link might need to change depending on how you may want to use the function. Second, the
voting link itself may need to change with different content from one area to the next. Third,
the update element may also need to be adjusted for different areas in the site. A look into the
built-in helper functions reveals that parameters are often used to allow for these customiza-
tions. Let’s then extend the $blog->comments () function to include more parameters. In a way,
this is the work of building customized helpers—to allow for specific operations to be used
across the application for various uses.

In the $blog->comments () function, you'll allow for an options array that will contain the
following parameters:

CHAPTER 9 © HELPERS

link: The voting link to be used for both up and down votes; optional override for upLink
and downlLink parameters

upLink: The voting link for up votes only
downLink: The voting link for down votes only

text: The contents of the voting links; optional override for upText and downText parame-
ters

upText = 'up':The contents for the up voting links only
downText = 'down':The contents of the down voting links only

update = 'vote '+comment ID:The ID for the HTML element to receive the returned Ajax
response

To build these options into the function, consult Listing 9-4.

Listing 9-4. The Options Array in the $blog->comments () Function

1 function comments($comments=null,$options=array()) {
2 if (lempty($comments)) {

3 $out = null;

4

5 if (isset($options['link'])) {

6 $up = $down = $options['link'];
7 }

8

9 if (isset($options['upLink'])) {

10 $up = $options['upLink'];

11 }

12

13 if (isset($options['downlink'])) {
14 $down = $options['downLink'];
15 }

16

17 if (isset($options['text'])) {

18 $upText = $downText = $options['text'];
19 } else {

20 $upText = 'up';

21 $downText = 'down';

22 }

23

24 if (isset($options['upText'])) {
25 $upText = $options['upText'];
26 }

27

167

168

CHAPTER 9 = HELPERS

28 if (isset($options['downText'])) {

29 $downText = $options['downText'];

30 }

31

32 if (isset($options['update'])) {

33 $update = $options['update'];

34 }

35

36 foreach($comments as $comment) {

37 if (empty($update) || !isset($options['update'])) {

38 $update = 'vote '.$comment['Comment']['id'];

39 }

40 $out .= '<div class="comment">

41 <div id="vote_ '.$comment['Comment']['id"']."">

42 <div class="cast vote">

43 ';

44 $out .= $this->voteUpLink($comment['Comment']['id"],array (=
"upLink'=>$up, 'text'=>$upText, 'update'=>$update));

45 $out .= $this->voteDownLink($comment['Comment']["'id"'],array (=
"downlLink'=>$down, 'text'=>$downText, 'update'=>$update));

46 $out .= '

47 </div>

48 <div class="vote">"'.$comment['Comment']['votes']. </div>
49 </div>

50 <p>".$comment['Comment"']['name']."'</p>

51 <p>".$comment['Comment']['content']. </p>

52 </div>';

53 }

54 return $this->output($out);

55 } else {

56 trigger error(sprintf('No comments found', get class($this)), w=
E_USER_NOTICE);

57 }

58 }

Lines 9-39 of Listing 9-4 are all logic tests to check the options array for values. If values
are present, then these lines pass them into variables to be used when the comments are ren-
dered. If those values are not present, then some important defaults are generated.

Notice that lines 44-45 refer to the $blog->voteUpLink() and $blog->voteDownlLink()
functions. I've constructed these to strip out of the $blog->comments() function the methods
for generating the voting links. You don’t know yet whether you'll use these methods elsewhere
for other views or other helper functions. In any case, it might be a good idea later to have
these operations outside the $blog->comments() function, so let’s build those functions after
this one. See Listings 9-5 and 9-6 for how to create these new functions.

CHAPTER 9 © HELPERS

Listing 9-5. The $blog->voteUpLink() Function

1 function voteUpLink($id=null, $options=array()) {
2 if (isset($options['text'])) {

3 $text = $options['text'];

4 } else {

5 $text = 'up';

6 }

7

8 if (isset($options['update'])) {

9 $update = $options['update'];

10 } else {

11 $update = 'vote '.$id;

12 }

13

14 $up = $options['upLink'].$id;

15 return $this->output($this->Ajax->link($text,$up,array('update’=>=
$update),null,false));

16 }

Listing 9-6. The $blog->voteDownlink()Function

1 function voteDownlink($id=null,$options=array()) {
2 if (isset($options['text'])) {

3 $text = $options['text'];

4 } else {

5 $text = '"down';

6 }

7

8 if (isset($options['update'])) {

9 $update = $options['update'];

10 } else {

11 $update = 'vote '.$id;

12 }

13

14 $down = $options['downLink'].$id;

15 return $this->output($this->Ajax->1link($text,$down,array('update'=>=
$update),null,false));

16 }

Again, in these functions, lines 2-14 of Listings 9-4 and 9-5 manage the options array.
Line 15 returns the Ajax link for voting up and down a comment. Because all three of your Blog
helper functions allow for options, you can now use these functions anywhere you want to
display comments and provide Ajax comments voting.

Now that you've built the options array into the helper functions, you must change the
use of the function in the Posts view. To make the $blog->comments () function work with your

169

170 CHAPTER 9 © HELPERS

application, you'll need to specify the upLink and downLink parameters. Replace line 9 of the
app/views/posts/view.ctp file with the following:

<?=$blog->comments($comments,array('upText'=>"'up</1i>", "downText'=>"'<1li>downw=
</1i>", "upLink'=>"/comments/vote/up/", 'downLink'=>"/comments/vote/down/"));?>

Refresh the Posts view, and you should see the comments all the same—except now, they
are all managed by your custom Blog helper functions (see Figure 9-1).

OO0 The Extensive Blog
(&g http:/ /localhost/blog/posts /view/ 1 B Q- Google

New Functions in 1.2
Author: Peter Parker
Date Published: 2008-01-01 00:00:00
Comments
Great up
I'm excited about the new Cake 1.2 features! 2 down
nother_commenter up
Me too, me too. 0 down
johnny up
Be excited, be very excited... =1 down

Name

Content

s

Figure 9-1. The comments section now displayed by the $blog->comments () function

CHAPTER 9 © HELPERS

Customizing Helper Variables

You've built a custom helper with functions to handle specific operations. But what about
customizing the variables used by built-in helpers? Suppose you want to perform the same
operation that is already written in the HTML helper but you want to change the display of
the HTML helper’s output. Rather than build a completely different helper to fit your cus-
tomized output, you can simply alter the variables the HTML helper uses and then call the
needed function.

Recall that you already created the App helper file in the app/ directory. There, you can
intercept the global variables used by any helper and insert your own code. Open the cake/
libs/view/helpers/html.php file to read the raw HTML helper code. Scroll down to line 47
and see the $tags array (as shown in Listing 9-7).

Listing 9-7. The HTML Helper’s $tags Array

47 var $tags = array(

48-96

97 ‘error' => '<divis>¥s</div>’
98);

I've deliberately skipped over lines 48-96 in Listing 9-7 because the same idea is repeated
throughout the array. The HTML helper uses this array to construct the HTML tags that are
returned with its functions. Changing one of these keys and values will change the output for
the whole HTML helper. In other words, whenever the HTML helper, in any function, displays
the error tag, you can replace its value on line 97 with your own, and all error tags will reflect
the change.

The most direct way to alter the $tags array would be to create your own in the App
helper. However, you would have to specify all tags used by the HTML helper, which would
result in duplication between the App helper and the HTML helper. To trim the amount of
data you supply to affect the $tags array, you can use the Helper object’s loadConfig() func-
tion with the _ construct() function.

In the App helper, insert the contents of Listing 9-8.

Listing 9-8. The _ construct() Function in the App Helper

1 function _ construct() {

2 parent:: construct();
3 $this->loadConfig();
4}

This function will be called when any helper is included in a controller. Line 2 makes
sure that all the default constructions of the Helper object are performed first. Then, on
line 3 you've included the loadConfig() function. By default, this function will search for
the tags.php file in the app/config folder and merge its contents with the $tags array. You
can specify which file to merge by including its name in the function:

$this->loadConfig('blog');

17

172

CHAPTER 9 = HELPERS

In the previous example, the App helper will search for the app/config/blog.php file and
merge its contents with the $tags array.

With the App helper as it is, you still need to create the app/config/tags.php file and write
in the $tags array for the __construct() function to behave properly. Create this file, and
insert Listing 9-9 into it.

Listing 9-9. The $tags Array to Be Used in the App Helper

<?
$tags = array(

'button' => '<div class="button"><input type="%s" %s/></div>’
)

>

Listing 9-9 wraps a <div> element around all input buttons used in the helper, which is
not there by default. You can extend this array to include new tags that aren'’t already specified
or to produce custom elements. In your $blog->comments() function, you do use some tags to
produce the voting links, namely, <1i> tags. In the custom tags.php file, you can insert a tag
called vote with all the necessary markup to create a default tag for the helper to use without
writing the markup in the helper file itself. Rewrite the $tags array in the app/config/tags.php
file to include the contents of Listing 9-10.

Listing 9-10. The $tags Array with the Vote Tag

<?
$tags = array(

'vote' => '<1i>%s</1i>'
)s

>

To use this tag in the Blog helper, go to the $blog->voteUpLink() function. On the last
line of the function where the output is returned, replace the $text variable with the
$tags['vote'] value. In keeping with how the $tags array is organized, you'll need to use
PHP’s sprintf() function to replace the %s character with the contents of $text (see List-
ing 9-11).

Listing 9-11. Replacing the $text Parameter with the Vote Tag
return $this->output($this->Ajax->link(sprintf($this->tags['vote'],$text) ..);

Again, nothing should change in terms of the final output when you refresh the Posts
view. But by building these options and variables into your Blog helper, you allow for more
customization down the road. Now, instead of having to get into the code of the helper itself,
you can edit a configuration file (tags.php) to adjust the displays. Keep this in mind when
building customized helpers. You never know where these functions will end up, especially
when you distribute them through the Internet or pull them into other Cake applications.

CHAPTER 9 © HELPERS

Making as many features of the helpers editable in other areas like a config file or customiz-
able in the views through the use of parameters allows the helper to be more portable and,
ultimately, useful.

The Vote Tag

Listing 9-11 showed how to replace the $text parameter in the $blog->voteUpLink() function with the vote
tag from the tags . php file. In this exercise, do the same for the $blog->voteDownLink () function. You can
also look for ways to generate other tags for use in the $blog->comments () function. Consult the PHP manual
for help with the sprintf() function to extend the capabilities of your custom tags.

Summary

This chapter explored Cake’s built-in helpers. The two used in most Cake applications are
the HTML and Form helpers. Together, they simplify rendering HTML and processing
forms. Thanks to the Form helper, passing along user form submissions is easy and pro-
vides the controller and model with a standardized method for handling data. Several
other helpers are available in Cake. This chapter outlined what these helpers are and what
functions they include. Many times you will want to create your own custom helper. I
showed how to write one for your blog application that renders the comments for the view.
By using this helper, you can reduce the amount of code in the view to a couple of strings.
Customizing helper variables is one way to expand the functionality of the helper. This
chapter also explained how to provide a set of output variables that make the helper more
portable. In Chapter 10, you'll move to routing in Cake and examine how to customize URL
structures for your applications.

173

CHAPTER 10

Routes

0ut of the box, Cake intercepts all URLs and maps them to their appropriate controllers
and actions. This is a wonderful aspect of the framework that improves the speed of develop-
ing applications. Rather than having long strings of passed variables in the URL or creating
dozens of individual scripts to handle every function in the application, Cake’s routing sys-
tem manages all the requests, as you saw in previous chapters. But what about customizing
the routing scheme? Or what if you want to generate non-HTML files such as PDFs, RSS
feeds, or some kind of XML output? And what about search engine optimization? For these
purposes, Cake’s routing features will remove the headache of mapping URLs, handling
dynamic requests, and customizing the paths and URL structure of the application.

Almost all the main routing action will take place in the app/config/routes.php file. All
the routes and their configurations are stored in this file and use a specific syntax. A few
default routes, which serve to handle the main URLSs, are already written to the routes.php
file. By default, Cake parses the passed values listed between slashes and derives a path to
controllers and actions as well as passing parameters to those actions. By using magic vari-
ables, arguments, extensions, parameters, and other features, you can fully manipulate the
routes to fit your application and still maintain the MVC structure.

Caution Remember that the routes. php page is cascading, meaning that the order of routes matters.
If Cake resolves a URL with one route, it will immediate end there and not proceed to check other routes
down the page. Although this generally doesn’t affect the overall application, it can make a difference if you
are working with more complex routes that occur in the same controller or action.

The Basic Route

As you can see in the default routes.php configuration file, the basic route is called as the
Router: :connect() function with a path as well as an array storing route parameters:

Router::connect('/"', array('controller' => 'pages', 'action' => 'display', 'home'));

The previous line is the base route for the application. It connects URL elements to the
Pages controller’s Display action and sends the value home as a parameter to be used in the
action. By specifying another controller and action, you can change the base route so that, by
default, the home page is other than the Pages controller’s Display action.

175

176

CHAPTER 10 © ROUTES

The first value in the Router: : connect () function is the path that the routing engine has
received. If it checks out, then the parameters array will be called, and the user will be taken
to whatever is specified there. Another way of looking at this path is like an if-then statement;
if the URL entered has no parameters but the base URL only, then pass the value home to the
Display action in the Pages controller. You can specify the value by hand or use placeholders
to accept all possible values for that URL parameter:

Router::connect('/articles/*', array('controller'=>'posts','action'=>"index"));

The previous line shows a new method for connecting with the Posts controller in your
blog application. By using the asterisk in the path, you're essentially telling the router to
accept and pass along anything it finds following the word articles. As in the base path exam-
ple, the path will be tested like an if-then statement: if the supplied URL begins with the word
articles, then pass along whatever else follows in the URL to the Posts controller. By default,
the Index action will be called. You've more or less constructed an alias for the Posts controller.
Now, if you wanted, you could enter all your links that point to the Posts controller as if they
pointed to an Articles controller.

Arguments

Traditionally, assigning values to request variables is done in PHP by constructing a serialized
string with arguments:

http://localhost/script.php?variable=value&another var=another val

In the previous code, the arguments in the string are variable and another var. When
a controller action interacts with a variety of arguments and combinations of possible argu-
ments, then it may be necessary to construct the URL string differently than Cake’s default
route pattern.

Arguments in the router appear in the URL with a colon followed by a value:

http://localhost/blog/posts/view/id:5/set:2

In the previous code, the arguments are id and set, and their values are 5 and 2. Usually,
this example would be better managed without the arguments in view, namely, with just the
values. But when the action uses components such as the Paginator, arguments may need to
be passed along for the component to work properly. For instance, in the case of the Paginator,
normal Cake URLs are defaulted to the first page of the data set. But by adding arguments to
the string, the Paginator is able to retrieve another page in the data set:

http://localhost/blog/posts/index/page:2/sort:id/direction:asc

Passed arguments are contained in the passedArgs array. The previous string would store
the values like so:

$this->passedArgs = Array(
'page'=>2,
'sort'=>"id"',
'direction'=>"asc’

);

http://localhost/script.php?variable=value&another_var=another_val
http://localhost/blog/posts/view/id:5/set:2
http://localhost/blog/posts/index/page:2/sort:id/direction:asc

CHAPTER 10 = ROUTES

Arguments are passed to the controller as keys and values in this array unless it is
bypassed in the routes.php configuration file.

One important use for arguments is as Cake’s way of passing variables to the actions.
Notice that because the router has found arguments in the URL string, it does not pass them
as variables in the action:

http://localhost/blog/posts/view/5/comments:false

The previous URL would not result in the second parameter (comments:false) being
passed in the action, like the first parameter:

function view($id=null) {
$displayComments = $this->passedArgs|'comments'];

This distinction between typical action parameters and passed arguments can make
a difference when constructing methods in the controller. The action can still execute without
any passed arguments, which can be an important option depending on the specific needs of
the action.

Reverse Routing

Web applications have begun to prefer friendly URLs to convoluted URL strings. URLs like
www.site.com/cart/item/race_car work better, for example, than www.site.com/index.
php?page=cart8item=race_car. This is happening not just for search engine optimization
purposes or to make the application more accessible for users but to facilitate simple changes
to the overall routing of the application. Consider the difficulty, if a web application were built
on GET variables, in revamping its entire routing structure. New problems would present
themselves in maintaining legacy URLs and at the same time in implementing new ones.
Much would depend on the application itself, but in general, it would take some added func-
tions to reverse URLs.

Lookups

By default, URL lookups run through the router in one direction, meaning that when a link

is clicked, the router performs a lookup and maps the appropriate controller, action, and
parameters. Entering /posts/view/17 will cause the router to look up where the Posts con-
troller’s View action is in the application and pass the parameter to it. But what about lookups
going the other way? Suppose you wanted to write a link and have the router look up how to
construct the link. This would be a reverse lookup, or alookup in the reverse direction.

Rewriting URLs in the Router

In the blog application, suppose that at some future date you needed to stop using the Posts
controller name in the URL. This would mean going through the entire application changing
every instance of a link to the Posts controller to the new route. That would obviously slow
down development and make it harder to change the structure of the site. Or, you could use
Cake’s reverse routing mechanism to rewrite all URLs pointing to the Posts controller.

177

http://localhost/blog/posts/view/5/comments:false
http://www.site.com/cart/item/race_car
http://www.site.com/index

178

CHAPTER 10 © ROUTES

Verbose Linking

To reverse a route, you first must use the verbose method for writing links. Instead of writing
a path string in the $html->1ink() function, you include some URL parameters in an array
like this:

$html->1link('View Post',array('controller'=>"posts', 'action'=>"view',$postes
["Post’]['id"]));

This array does not tell the function what the URL path is but rather gives it the necessary
parameters to construct the path dynamically. Although this array does result in more charac-
ters being entered to put a link together, it allows you to use the router to intercept any links in
the entire application in one place, the routes.php configuration file, and not have to go back
and find links that needed changing.

To complete the reverse route, you need to enter only a new connection string in the
routes.php configuration that changes the route:

Router::connect('/articles/*', array('controller'=>'posts','action'=>"'view"));

Without using the verbose array in the $html->1ink() function, the router would still try
to access the Posts controller and the word posts would still appear in the URL. However, now
that you've specified that you want the word articles to link up with the Posts controller, the
router will construct the paths in the application for you. Wherever links call for both the Posts
controller and the View action, the router will substitute articles in the path. For example, the
link that would normally point here:

/posts/view/25
will be dynamically changed by the router to point here:
/articles/25

Remember that for reverse routing to work across the whole application, you will need to
use verbose linking consistently.

Admin Routing

Many applications require some kind of administrative area to manage web site functions
with a user interface. Making entirely different controllers to manage these administrative fea-
tures would contravene Cake’s conventions. But how do you distinguish between front-end
users and site administrators in building the application? The router can dynamically manage
admin routing for you, which means you can make some actions available only to an adminis-
trator while the URLSs still follow the Cake standard structure.

Rather than build your own controller to manage administrator actions, like so:

posts_admin_controller.php
you can point all links to the following to the Posts controller:
http://localhost/blog/admin/posts

First you must choose an admin prefix and then name your actions and view files
accordingly.

http://localhost/blog/admin/posts

CHAPTER 10 = ROUTES

Choosing an Admin Prefix

The admin prefix can be any one word you like. Most use admin (as in the previous example),
but you could make it webmaster or superuser if you like. The admin routing must be turned
on in the core configuration, and the prefix must also be provided there. Open the app/
config/core.php file, and scroll down to the admin routing preference:

Configure::write('Routing.admin', 'admin');

Around line 69, you should see the preference, commented out; uncomment it to activate
admin routing. Notice that by default, the prefix is set to admin. You can enter any string here
that meets standard HTTP URL syntax as a prefix. The router will map this prefix to the appro-
priate admin actions.

Linking Admin Actions and Views

Once the prefix is defined in the core configuration, you can begin to create administrator
actions. These actions may appear in any controller; they only need to be named with the
prefix included. Suppose you wanted to change the Edit and Add actions in your Posts con-
troller to be accessible via an admin route. You would need to rename the actions in the
controller to admin_edit and admin_add, respectively.

The prefix is attached to the name of the action with an underscore. So, if the prefix
were defined in the core configuration as superuser, then these Edit and Add actions would
need to have the superuser prefix added to the name:

function superuser edit($id=null) { ..

When some actions are changed to be accessed through the admin route, these
actions’ views will need to be renamed as well. The view files need to be named to link
with the corresponding actions. So, the admin_edit action will need its view file to be
named admin_edit.ctp.

These admin actions are not called in the URL with the underscore. For example, the
Admin Edit action is not executed by typing this:

http://localhost/blog/posts/admin_edit/16
but by using the admin prefix before the controller name:
http://localhost/blog/admin/posts/edit/16

To restrict these admin routes, an authentication system must be built to check users
against the database and grant them privileges. At least with this routing mechanism you can
create the necessary paths to differentiate between administrators and front-end users.

Baking Admin Routes

The Bake script automates the process of building admin routes. When creating controllers or
views with Bake and using the “build interactively” feature, you can enter options to build the
actions and views with admin routing. In other words, simply tell Bake when it asks if you
want admin routing what the admin prefix is, and it will not only build the typical CRUD
actions and views but will do so with the admin prefix added to action names and view files.

179

http://localhost/blog/posts/admin_edit/16
http://localhost/blog/admin/posts/edit/16

180

CHAPTER 10 © ROUTES

Route Parameters

You may need to specify which sections of the URL correspond to parameters in the con-
troller. With route parameters, you can tell the router how to parse the URL. Consider the
Posts controller. You may want a particular route to be called only when this controller is
entered in the URL. But what about routes that are called for certain actions without using
the controller name? In this scenario, you would need to specify a route parameter for the
controller; in other words, the router will need to know that the first parameter in the path
represents the controller and the other parameters represent other elements. For example,
if you wanted to affect the View action for all controllers, you could enter a route along
these lines:

Router::connect('/:controller/view',array('action'=>"read"));

Here, whenever a View action is called, it will point to the Read action instead. You've used
the route parameter :controller to tell the router that the first part of the path represents the
controller to map.

Route parameters may be anything as long as they are one word, are preceded by a colon,
and are defined in the parameters array. They can be checked by magic variables or regular
expressions for the route to be activated. Route parameters do not need to be separated by
slashes. Symbols such as slashes, dashes, colons, and ampersands can be used to separate
parameters since the router can detect the route parameter.

Magic Variables

What about passing variables through the routing engine? You can accomplish this in part
with magic variables. These include common action names, date elements, and ID numbers.
In other words, the router will automatically detect months and years in the URL if you want
and will determine where to map those types of requests.

For instance, most blog applications manage their posts by date. To do this, you'd need to
use magic variables in the Router: : connect() function:

Router::connect('/:controller/:month-:day-:year', array('action'=>'view',array(=
'month'=>$Month, 'day'=>$Day, 'year'=>$Year)));

You can see that in the path you've entered some placeholders—specifically a controller,
month, day, and year placeholder between each set of slashes. These are “magic variables,”
and they always begin with a colon. In other words, you've defined the slots in the URL and
have given them a name. The first one will contain the controller name, the second will con-
tain a month value, and so forth. The router will check these slots against the magic variables
used in the parameters array, and if they return true, it will pass them along to the specified
controller’s View action.

Values entered in the place of magic variable slots in the URL are passed to the action
through the $this->params array. In the previous example, the given month would be available
in the array as this:

$this->params['month"]

and so forth. The $this->params array may be checked or called in the controller and the view.

CHAPTER 10 = ROUTES

The available magic functions include the following:
e $Action

e $Day

* $Month

* $Year

e $ID

Each will automatically determine whether the supplied value checks out. For example,
the $Action magic variable checks for common action names such as View, Delete, Edit, and
so on. The $Year magic variable checks for a typical year value, and $ID checks for a valid
whole number.

Using this route in the blog application, the following URL:

http://localhost/blog/posts/12-24-2008
would format the $this->params array like so:

$this->params = Array(
'month' => 12,
‘day' => 24,
'year' => 2008,

)
Custom Expressions

Using regular expressions in conjunction with route parameters, custom logic tests can be
performed before a route is mapped. These are specified in the same array where magic vari-
ables are used.

Router::connect('/:controller/:id/:month-:day-:year',array('action'=>"vien"),=
array('month'=>$Month, 'day'=>$Day, 'year'=>$Year, 'id'=>"[\d]+"));

Here the ID is tested in the route by use of the :id route parameter and the regular expres-
sion definition in the parameters array. If the ID slot contains a value that passes the regular
expression test [\d]+ (and the other slots pass as well), then the route will be mapped. If the
ID slot does not contain a valid integer, then the route will be bypassed, and the router will
move on to the next definition in the routes.php configuration file.

The Pass Key

So far, any values in the URL that are passed by a route that uses a nondefault method are
placed in the $this->params array; arguments are placed in the $this->passedArgs array. But
what about mapping values so that they are passed to the action as a typical parameter? The
Pass key allows you to accomplish this. In the mapping array (which contains the controller
and action definitions), add the Pass key with an assigned array. Then, provide values in the

181

http://localhost/blog/posts/12-24-2008

182

CHAPTER 10 © ROUTES

array that correspond to the route parameters you are using. For instance, the route with
parameters title and id can have their values appear in the action like normal Cake parame-
ters like so:

Router::connect('/posts/:title/:id",array('controller'=>"posts"', 'action'=>"view',=
'pass'=>array('title','id")));

The router will now pass the values contained in the :title and :1id slots to the action
in the function definition:

function view($title=null,$id=null) { ..

This is beneficial because it can save time; you won't have to work through the
$this->params array to work with passed values.

Parsing Files with Extensions Other Than .php

As of yet you have mapped only routes to controllers and actions in Cake. What about other
file types such as RSS or XML files? Because of how Cake’s .htaccess files are constructed, the
server will supply files when they are directly referenced and available on the server. So, you
can feasibly write static files such as RSS feeds, PDF files, or XML files and place these files in
the app/webroot directory, and they can be accessed directly by entering the file name in the
URL. But the router can also parse extensions, which makes it possible to use Cake to
dynamically create and render non-HTML file types.

The Process

Understanding the process of how the router parses extensions is key to building the right
route configurations and other Cake elements. First, you need to tell the router to look out for
any URLs that point to a specific extension. Let’s say you want to dynamically build an RSS
feed for the blog application. Then you would need to use the Router: :parseExtensions()
function for the router to detect when the .rss extension is called in the URL:

Router: :parseExtensions('rss");

Next, you need to tell Cake what kind of MIME type this extension is. Some extensions
already get recognized by default, but others need to be defined. In the case of the RSS exten-
sion, Cake won't need the MIME type to be defined, but to see how this is done, open the App
controller and add these lines:

var $components = array('RequestHandler');
function beforeFilter() {
$this->RequestHandler->setContent('rss', 'application/rss+xml');

}

Now Cake can respond to the browser and the HTTP request with the correct MIME type
definition. But the last step is to create the layout to wrap the standard file contents around
the view. Once the layout is defined correctly, the controller can include actions that output
RSS in the view rather than HTML, and the browser will recognize the route as a file even
though Cake is dynamically creating it.

CHAPTER 10 = ROUTES

Creating the RSS Feed

Knowing the process for the router to parse the RSS extension, let’s build an RSS feed into
the blog. First, write the parse extensions function in the routes.php configuration file
near the top:

Router: :parseExtensions('rss');

Next, run the RequestHandler component in the App controller to filter HTTP requests
through the controller.

Listing 10-1 contains all the contents of the App controller. Notice that this uses the
beforeFilter() function to run the RequestHandler component’s setContent() function
before every controller action is called.

Listing 10-1. The App Controller with the RequestHandler Component in Use

1 <?

2 class AppController extends Controller {

3 var $helpers = array('Html','Form','Ajax','Javascript', 'Blog');

4 var $components = array('RequestHandler');

5

6 function beforeFilter() {

7 $this->RequestHandler->setContent('rss', "application/rss+xml');
8 }

9 1}

10 >

Now that the router and the App controller can handle the HTTP requests that contain
RSS file extensions, you need only to create the necessary layouts and views to generate
the feed.

Extension Layouts

For the RSS extension, the router will look to the app/layouts/rss directory to find the default
RSS layout. Create the default.ctp layout file, and place it in this directory. Paste into this new
file the contents of Listing 10-2.

Listing 10-2. The File Contents of app/layouts/rss/default.ctp

<?=$rss->document (null, $content for layout);?>

With the help of the built-in $rss->document () function, you don’t have to worry about
knowing the format of a standard RSS file. In the event that you use a file type not included
in Cake’s helpers, you would have to supply the proper headers yourself; of course, this will
depend on the appropriate syntax and specifications of the file type in question.

183

184

CHAPTER 10 © ROUTES

The Controller Action

Now, all you have to do is create an action to act as the file name for the parsed extension. For
the blog, you will have the RSS feed be accessible as follows:

http://localhost/blog/posts/feed.rss

So, let’s create the Feed action in the Posts controller (see Listing 10-3). You should not
append the extension in the function definition. This action will be like the Index action in
that you want to provide only the most recent five posts for the feed.

Listing 10-3. The Feed Action in the Posts Controller

1 function feed() {
2 $this->set('posts', $this->Post->feed());
30}

Notice that line 2 of Listing 10-3 references a model function named feed(). Since the RSS
output will require an array formatted with keys and values matching a specific syntax, you
ought to let the model handle the data. In the Post model, paste in the feed() function shown
in Listing 10-4.

Listing 10-4. The Feed Function in the Post Model

1 function feed() {

2 $posts = $this->Ffind('all',array('order'=>"'date DESC', 'limit'=>5));
3 $out = array();

4 foreach ($posts as $post) {
5 foreach ($post as $key=>$val) {

6 if ($key == "Post') {

7 $out[$val['id"']]['pubDate'] = date('D, d M Y H:i:s +0',=
strtotime($val['date']));

8 $out[$val['id']]['title'] = $val['name'];

9 $out[$val['id"']]['description'] = $val['content'];

10 $out[$val['id']]['content'] = $val['content'];

11 }

12 }

13 }

14 return $out;

15 }

Line 2 of Listing 10-4 retrieves the five most recent posts and places them in the $posts
array. The rest of the function cycles through this array and pulls out only the parts you want
to appear in the feed. Notice how lines 7-10 name the key in the output array after the actual
tag names that will appear in the RSS feed. This is because once you code the Feed view, you'll
use the RSS helper to render the tags. The RSS helper will need the array to be formatted this
way to fetch the right data for each tag.

Now that the data is handled correctly and the layout is working right, all you have left is
the Feed view.

http://localhost/blog/posts/feed.rss

CHAPTER 10 = ROUTES

The Feed View

Finally, create the Feed view to match the action (see Listing 10-5). It will need to use the RSS
helper to render the various tags, so be sure to include this helper in the Posts controller or
App controller (see Chapter 9 for more information on including helpers in the controller).
Notice that the Feed view file is stored in a folder in the Posts views folder named rss.

Listing 10-5. The app/views/posts/rss/feed.ctp File Contents

<?=$rss->channel(null,array('title'=>"Extensive Blog','description'=>'My Blog',=
'language'=>"en-us'));?>

<? foreach($posts as $post): ?>

<?=$rss->item(null, $post);?>

<? endforeach;?>

</channel>

The RSS helper here takes care of building the channel and the item tags automatically.
You've passed the $post array that has been formatted correctly in the Post model, and now
the process is complete. Open the new feed in any news aggregator, or use your browser to
subscribe to the feed. You should end up with a valid RSS feed instead of an HTML page
thanks to the router parsing the extension and the controller handling the request properly.

Custom Routes Exercise

This chapter explored some of the methods for building custom routes in Cake. For this exercise, construct a route
that will display blog posts by their date and ID. Providing the correct route configuration is only half the problem;
be sure to rebuild the View action to run the lookup correctly. Also build the admin route to handle editing and
adding blog posts. You have completed the exercise correctly if posts are editable by accessing http://
localhost/blog/admin/posts/edit/{id} rather than with the standard path to edit and add.

Summary

Rewriting URLSs for the application is made much easier by editing Cake’s routing configura-
tion file. Not only can you make URLSs friendlier with the app/config/routes.php file, but you
can even set up reverse routes, or routes that are dynamically mapped by the dispatcher; just
use verbose linking syntax when creating links, and Cake will automatically change all URL
strings for any controllers and actions you specify. The router also includes an admin routing
feature with which you can attach a prefix to any action name and view file, and Cake will map
URLs containing the prefix to these files. This is useful for distinguishing between CRUD
actions that should be accessed only by an administrator and those that are available to a
public user. For applications that create output as non-HTML files, the dispatcher can parse
extensions. For instance, in this chapter I described how to use Cake to generate an RSS feed
as an .rss file. When a URL containing the .rss extension is entered, the router detects this
extension and maps the request accordingly. Now that you understand how to customize
URLs and other paths in Cake, it’s time to explore more of Cake’s advanced features. In
Chapter 11, I'll explain components and utilities, which can dramatically enhance your Cake
application and cut down on several web-related tasks.

185

http://localhost/blog/admin/posts/edit
http://localhost/blog/admin/posts/edit

CHAPTER 11

Components and Utilities

Cake uses helpers to extend the functionality of views. By placing several view functions in
helpers, not only do your views remain light but the application is better organized. There is
no precise method for how to organize functions in a helper other than keeping order and
maintaining consistency in the application. Helpers are to the view what components and
utilities are to the controller. In a way, you could think of components as “controller helpers.”

Why Use Components?

But you may ask, why have components when there’s an App controller? Shouldn’t the App
controller hold all the functions used by multiple controllers? Yes and no. The App controller
does hold more generalized actions, or actions that more than one controller will use. Rather
than employ the requestAction() function to allow a controller to access a function in another
controller, you could just place the function in the App controller and scale it to be brought
across the application into multiple controllers.

Consider the actions in the App controller like you consider display elements in the lay-
out; parts of the view that you want to be visible across all views. Multiple views should be
placed in a layout, and in a similar way, actions that will be used across controllers should be
placed in the App controller. However, there are still helpers for the views that are used for
specific display output tasks. The $html->1ink() helper function, for example, can be used
only in the view because it generates HTML output, but being repeated throughout multiple
views, it makes sense to house this function in a helper file rather than in the layout or in the
controller. Components serve a similar purpose in Cake applications in the sense that they
house specific functions that the controller or multiple controllers can use.

For example, consider the built-in components in Cake. Some of these are the Auth,
Session, and RequestHandler components. Their functions all serve to specifically help the
controller perform actions relating to their specific method; actions in the authentication
component all have to do with helping the controller manage user authentication processes,
and so forth. In a sense, helpers are portable view functions in that they can be distributed and
pulled into any Cake application and work in a specific way to enhance and simplify the
processes the views may need. Similarly, components are portable controller functions that
serve a specific purpose and can be distributed to any controller in any Cake application.

187

188

CHAPTER 11 " COMPONENTS AND UTILITIES

Using Components

All components are stored in the app/controllers/components directory and are pulled into
the controller like helpers, with the $components array. Like other parameters, components
must be camel-cased and separated in the array by commas. Built-in components as well as
custom ones must be included in the $components array to work in the controller, and like
helpers, the App controller can include components for use in any or all controllers. See
Listing 11-1.

Listing 11-1. Including Components in the Controller with the $components Array
var $components = array('Session','RequestHandler');

Once a component is included in the controller, the controller references its functions by
using the $this identifier. Remember to specify the component like you do with models: $this
followed by the camel-cased name of the component and the function in use. Listing 11-2.

Listing 11-2. Running a Component Function in the Controller
$user = $this->Session->read('User');

Components are not intended to work directly with the database, so the component does
not do much more than return a variable, a string, or an array for the controller to use. If data-
base calls are necessary, the controller using the component ought to run these calls through
the model and provide the component with the necessary data. This does not mean that the
components are limited to logic tests or reformatting forwarded data; like the Session and
Cookie components, functions here can write to outside files or process images, and so forth.

Besides allowing for custom components, Cake comes with several built-in components
and utilities. Before building your own components, let’s first examine what Cake has to offer
and explore how these component functions might improve an application.

Using Built-in Components

Like the helpers, Cake has a wealth of component functions that make running processes in
the controller much easier. In fact, some components are intended to work hand in hand
with helpers like the Session component. Running some functions in the controller makes it
easier to organize and format the data forwarded on to the view for use by the Session helper.
Knowing what built-in components can do for your controllers will save you from “reinvent-
ing the wheel” and help you exploit some of the snazzy functions that make Cake such an
attractive framework.

In each of the following descriptions, I'll give a basic overview of what the component
offers and list some of its functions. In the future, more functions may be added to these com-
ponents, and sometimes third-party components will extend them too. Cake’s core compo-
nents are stored in the cake/1ibs/controller/components folder; if you'd like to take a look at
the code itself, refer to the component files there.

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Authentication

The Auth component helps with managing user authentication of the application. Many
times you may want an area of the site to be protected from ordinary users. Common
processes such as logging in to view an area of the site are made easier by the Auth compo-
nent. Like other components, it needs to be included in the $components array to be
available in the controller:

var $components = array('Auth');

With the Auth component, you can require authentication for miscellaneous areas of
the application such as models, controllers, or other objects. Auth also provides methods for
automating logging in and automatically redirecting the user to accessible areas of the site.
A database table containing stored user information is necessary for the Auth component to
work correctly.

Setting Up the Users Table

By default, Auth will look for a table named users with fields named username and password.
Of course, these default parameters can be changed by entering custom parameters into the
component before runtime. Whatever the case, a table somewhere in the database will need to
be present to store all the users and their passwords. The users table doesn’'t need to store only
username and password fields; it can also include roles, privileges, e-mail, and more. You'll
have to tell Auth how to use these types of metadata.

The users table is already built into your blog application. Because the Auth component
hashes all passwords, you'll need to make sure the password field has enough space to store
the hashes. Remember that Security.salt value in the core configuration? The Auth compo-
nent will use this salt value to generate its hashes, so putting a more complicated string in
this preference will improve the security of your passwords.

With the users table ready to store usernames and passwords, you can implement the
Auth component in your blog application. First let’s initialize some parameters in the Posts
controller.

Initializing Variables

Several parameters need to be set for Auth to work correctly. You specify these parameters
by setting variables in the beforeFilter() controller action for the controller that will
require authorization before letting the user access it. In this case, you will want to block
out certain editing and deleting actions in the blog except for logged-in users. In the Posts
controller, you need to tell the Auth component which actions are allowed and where to
redirect the user upon a successful login. Listing 11-3 contains the beforeFilter() action
for the Posts controller.

189

190 CHAPTER 11 " COMPONENTS AND UTILITIES

Listing 11-3. Some Auth Parameters in the beforeFilter() Action

1 function beforeFilter() {

2 $this->Auth->loginAction = array('controller'=>'users','action'=>"'login');
3 $this->Auth->allow('index', 'view"');

4 $this->Auth->redirectlogin = array('controller'=>'posts', 'action'=>"add");
5

}

Notice in Listing 11-3 that each class variable is set like any typical PHP variable. On line
3, Tused the allow function to tell the Auth component which actions don’t require authenti-
cation to be accessed. You do not need to specify the login and logout actions; otherwise, this
will trip up the Auth component; it automatically assumes these functions are accessible to
everyone.

Now that the Auth component has been called in the controller and the beforeFilter()
action sets some parameters for Auth to use; Auth will check each action against what you've
specified. If a request is made for an action that is not allowed, Auth will require the user to log
in for access, which is specified in line 2 of Listing 11-3. In this case, the user will be redirected
to the Login action in the Users controller (which hasn’t been created yet). Auth will not be run
if the user requests the Index and View actions in the Posts controller.

The next step is to create the Login action in the Users controller. Because the Auth com-
ponent does almost all the work, you will need only to create the view with the username and
password fields.

HASHED PASSWORDS

Because the Auth component requires that stored passwords be hashed, setting up user passwords can be
tricky. Using Auth’s password() function, you can pass a string, and Auth will return the hash. This same
hashing process will be applied to whatever the user submits as a password and will be compared to the
database, so you will need to store the hashed version of the user passwords and not a plain-text version.
I've included a password generator with the following line:

$this->set('password',$this->Auth->password($this->data['User']['password']));

Of course, in the view, I'll need to provide a form with an input field named passwoxd for this to work,
as well as a view to display what Auth->password() returns. If a form view elsewhere in the site creates
new user accounts, it must use the Auth->password() function when saving the password.

Logging In

As long as the view that renders the login form is named appropriately (in other words, its
names correspond to the parameters set in the beforeFilter() function), the Auth compo-
nent will automatically check the $this->data array for the username and password and
check it using the userModel and fields settings. Listing 11-4 shows the view file for the
Users Login action.

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Listing 11-4. The app/views/users/login.ctp File

<h1>Log In</h1>

<? if ($session->check('Message.auth')) $session->flash('auth');?>
<?=$form->create('User',array('action'=>"login"'));?>
<?=$form->input('username');?>
<?=$form->input('password',array('type'=>"password'));?>
<?=$form->end('Login');?>

U B W N

Simple enough—the Login view contains a form to render input fields for the username
and password and submits it to the Login action. If there are any errors, like an incorrect
match, they will be displayed in line 2 with the flash function.

To complete the login process, you need only to prepare the Users controller. Listing 11-5
shows the contents of the Users controller with the login function.

Listing 11-5. The Auth Component in the Users Controller

1 <?

2 class UsersController extends AppController {
3 var $name = 'Users';

4 var $components = array('Auth');
5

6 function beforeFilter() {

7 $this->Auth->allow('*");

8 }

9

10 function login() {

11

12 }

You can see that the Login action is empty. This is because the Auth component takes care
of everything for you; you only need to specify the action so that Cake appropriately renders
the Login view. Line 7 shows the use of the asterisk in the Auth->allow() function. This tells
the Auth component to allow all actions in the current controller.

With the Users controller working correctly with the Auth component and the Login
action and view provided, Auth can now manage authentication for the Posts controller. Try
editing a post, and you'll notice that the Auth component requires you to log in.

Logging Out

Logging a user out is even easier than logging one in. Simply add the Auth->logout() function
to the Users controller, as shown in Listing 11-6.

Listing 11-6. The Logout Action in the Users Controller

14 function logout() {
15 $this->redirect($this->Auth->logout());
16 }

191

192

CHAPTER 11 " COMPONENTS AND UTILITIES

Now, whenever the user requests http://localhost/blog/users/logout, they will be
logged out by the Auth component, and the session will be deleted. The user will need to log
back in to access blocked actions.

Checking a User’s Role

The Auth component can check for a user’s role to see whether the user is an administrator. To
do so, you will need to add one more field to the users table: role. See Listing 11-7.

Listing 11-7. The SQL Query for Adding the Role Field in the users Table
ALTER TABLE “users™ ADD “role” varchar(50) DEFAULT 'www'

Because the Auth component does not check user roles by default, you will need to run
your own login process instead. First, in the Posts controller, you must tell the Auth compo-
nent not to perform its default logic:

$this->Auth->authorize = 'controller';

This line essentially tells Auth to look in the active controller for an action named
isAuthorized(). In this function, you'll run your own authorization logic; if it returns true,
then the user is authorized, and so forth. Now let’s create the isAuthorized() function to
check the user’s role. See Listing 11-8.

Listing 11-8. The isAuthorized() Function in the Posts Controller

1 function isAuthorized() {

2 if ($this->Auth->user('role') == 'admin') {
3 return true;

4 } else {

5 return false;

6 }

7}

Line 2 performs the test. Using the Auth->user () function and passing the value role,
you're telling Auth to look for a field named role and see whether it contains admin. If the user
is not given the admin role in the users table, then he will not be authorized to view anything
other than the Index and View actions.

This same check can be accomplished in the model rather than the controller. Rather
than set Auth->authorize to controller, set it to model instead. Then run the isAuthorized()
function in the model rather than the controller. The function will need to include the $user,
$controller, and $action parameters to work in the model (see Listing 11-9).

http://localhost/blog/users/logout

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Listing 11-9. The isAuthorized() Function in the Post Model

1 function isAuthorized($user, $controller, $action) {
2 if ($user['User']['role'] == "admin') {

3 return true;

4 } else {

5 return false;

6

7

}
}

The $user array will contain the Auth component’s retrieval of the user record where
the username and password match, so line 2 uses this array rather than the Auth->user()
function. Both methods for checking a user’s role will work; following the convention of
having larger models than controllers will mean that most of the time you’ll check user
roles in the model.

Using Other Auth Parameters and Functions

The following is a list of other parameters that can be used with the Auth component. They are
used to customize the way in which Auth manages user logins, sessions, and authentication.

deny(actions)

actions: The actions, separated by commas, which should be denied access without
authentication

hashPasswords(data[array])

data: Takes values assigned to keys named password in an array and returns their hashed
equivalents

$userModel = 'User';

Used to customize the table name where users are stored. By default this is set to User.
Be sure to use the model name, not the table name (for example, the bloggers table would
need to be set to Blogger here).

$fields = array('username'=>'username’,'password'=>"password"');

This array can be changed to reflect customized field names for the username and
password.

$loginAction = array('admin'=>false,'controller'=>"users','action'=>"login");

Setting the keys in this array to other controllers or actions tells Auth where to run the
Login action. Admin routing (see Chapter 10) and subsequent actions can be used by setting
admin to true.

$loginRedirect = array('controller's=>'users','action'=>"index");
This parameter tells Auth where to redirect the user after a successful login.

$loginError = 'Login failed. Invalid username or password.';

193

194

CHAPTER 11 " COMPONENTS AND UTILITIES

The error message displayed in the event of a login error can be customized here.
$autoRedirect = true;

If you set this parameter to false, the Auth component will not automatically redirect
the user after authenticating. Other checks can be run in the Login action after a successful
authentication occurs, such as writing information to or checking the contents of a cookie
or checking other session variables.

$ajaxLogin = null;

When doing Ajax-based logins, set this preference to the view the file that should be dis-
played in the event of an unsuccessful login.

Session

The Session component handles various methods for reading, writing, starting, and destroy-
ing sessions.

Some settings may be manipulated to change how Cake saves sessions in the core con-
figuration. The Session.save parameter in the core configuration file contains one of three
possibilities: php, cake, and database. By default, this value is set to php, which means that
sessions will be saved depending on the current PHP settings on the host. Setting this to
cake will tell Cake to write session information in temporary files in the app/tmp folder. The
third option, database, requires that a table be present in the database that has correspon-
ding fields where Cake can save session information. The necessary SQL statements to
generate this table are found in the app/config/sql/session.sql file. Simply run this file
through your database, and a default table named cake_sessions should appear with all the
necessary fields to store session data. Other session settings that the Session component
will use follow the Session.save preference and are fairly self-explanatory.

Reading and Writing Session Variables

Reading and writing variables in a session are easy with the Session component. In the con-
troller, after instantiating the Session component, of course, you can create a new session by
specifying a session name with the create() function:

$this->Session->create('User');
Now, anywhere in the application, this session can be read by using the read() function:
$user = $this->Session->read('User');

This function will produce an array that follows the typical Cake array structure, allowing
you to pull anything you want to store in the session by calling the key:

$password = $user['password'];

Writing to the session is just as simple. With the write() function, supply the session
name and the value:

$this->Session->write('User',$locale);

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Deleting and Destroying Sessions

The delete() and destroy() functions allow you to stop storing session information or kill a
session entirely. With delete(), supply the name of the session key you want to remove. This
will not completely destroy the whole session—only the data associated with the provided key.
The destroy() function, on the other hand, removes all sessions for the current user; it's the
equivalent of PHP’s session_destroy() function.

Cookie

When writing cookies, the Cookie component simplifies the process. Much like the Session
component, the Cookie component creates new cookies on the user’s system, checks for
cookies, and reads and writes to those cookies as well. For the Cookie component to work
correctly, be sure to provide the necessary parameters when setting up the component.

Setting Up the Cookie Component

Three variables are required for this component to run: cookieName, cookieKey, and
cookieDomain. These tell the Cookie component, respectively:

e The name of the cookie

* The string used to encrypt information written to the cookie
¢ The domain with access to the cookie

Other Cookie component preferences include the following:

e cookiePath: The path where the cookie is stored on the server; the default is set to the
entire domain

» cookieSecure: A boolean value set to false by default; tells the component whether to
save cookies over a secure connection

¢ cookieTime: The number of seconds before the cookie will expire; the default value is 0,
meaning that when the browser is closed, the cookie will expire

These settings are called in the controller as class properties, like so:

var $cookieName = 'super duper cookie';
var $cookieKey = '$%sdkj29KA9Ne@@ux1gh';
var $cookieDomain = 'www.domain_name.com';
var $cookieTime = 5400;

Writing to a Cookie

Storing information in the cookie is simple with the write() function and is similar to the
Session->write() function. The first value in the function is the cookie’s key, and the second
contains the value to be written. Remember that this value will be encrypted using the
cookieKey preference.

$this->Cookie->write('User',$user agent);

195

http://www.domain_name.com

196

CHAPTER 11 " COMPONENTS AND UTILITIES

Reading a Cookie

Just like the Session component, reading a cookie is done with the read() function:
$user = $this->Cookie->read('User');

As long as the cookie hasn't expired, the information should be available.

Deleting Cookies

Delete cookies using the del() function. Supply the name of the cookie to be deleted, and the
component will eliminate the cookie for you:

$this->Cookie->del('User");

Email

One of the most common tasks of web sites is to send automated e-mails to users. Whether
it is an e-commerce web site or a marketing tool for spreading the word, automated e-mail
find wide use on the Web. But they can be frustrating to implement, especially when using
HTTP headers in the PHP mail() function. The Email component provides a method for
sending e-mails in your Cake application using layouts and views rather than coding long
strings of e-mail text in the script or controller.

Setting Up the E-mail Layouts

The Email component distinguishes between HTML and plain-text e-mail. To create a layout
for each, you must create the folders in the app/views/layouts/email directory. The HTML lay-
outs are stored in a folder named html, and the plain-text layouts are stored in the text folder.
In each folder, create a default.ctp file with the necessary layout markup surrounding the
$content for layout variable. For example, the HTML layout might include the following:

<IDOCTYPE XHTML PUBLIC "-//W3C//DTD XHTML 1.0 strict//EN">
<html>
<body>
<?=$content_for layout; ?>
</body>
</html>

The plain-text layout will probably not need much more than the $content_for layout
variable itself.

Sending an E-mail

In the controller action that sends the e-mail, provide some settings for the Email component
and then run the send() function to send the e-mail. Available settings include the following:

e $to
e $cc

* $bcc

CHAPTER 11 ©* COMPONENTS AND UTILITIES

e $replyTo
e $from

e $sendAs
e $subject

As you will notice, these parameters are self-explanatory and correspond to typical e-mail
settings. The sendAs setting tells the Email component how to send the e-mail, either as html
or text.

Say you have a basic message you would like to send in the email() action in one of your
controllers. It may go something like this:

function email() {
$this->Email->to = 'foo@bar.com';
$this->Email->cc = 'another@email.com';
$this->Email->replyTo = 'me@sender.com';
$this->Email->from = 'do-not-reply@domain.com';
$this->Email->subject = 'Basic Email Greeting';
$this->Email->send('Glad to see you');

The text passed in the send() function is the body of the e-mail to be sent.

Using a Template for E-mail Messages

Creating e-mail templates and sending those rather than providing the content in the con-
troller is simple. Make elements that are stored in keyed folders to create e-mail templates.
For example, a basic plain-text template would be stored in the app/views/elements/email/
text/hello.ctp file and could contain the following:

Hello! This message is from <?=$sender;?>.
Then, in the email() function, you could set the $sender variable if you want:

function email() {
$this->Email->to = 'foo@bar.com';
$this->Email->cc = 'another@email.com';
$this->Email->replyTo = 'me@sender.com';
$this->Email->from = 'do-not-reply@domain.com';
$this->Email->subject = 'Basic Email Greeting';
$this->set('sender’, 'Me, Myself, and I');
$this->Email->template = 'hello';
$this->Email->send();

Notice that by using the set() function, you were able to pass a value to the $sender
variable in the template file. You also told the Email component which template to use when
sending the message; in this case, you'll need to name the template file hello.ctp.

197

mailto:foo@bar.com
mailto:another@email.com
mailto:me@sender.com
mailto:reply@domain.com
mailto:foo@bar.com
mailto:another@email.com
mailto:me@sender.com
mailto:reply@domain.com

198

CHAPTER 11 " COMPONENTS AND UTILITIES

HTML templates can behave just like other views in Cake and may draw upon images
stored on the web site; remember to use absolute URLs for any graphics because the user’s
e-mail client won't be able to pull relative paths when opening the e-mail.

Other Components

Cake’s built-in components certainly cut down on the amount of code needed to run common
web application methods. Not only does it include the components discussed earlier, but it
also includes others that are more advanced: the ACL (which stands for “access control list”),
RequestHandler, and Security components.

ACL

One of the most complicated methods for building web applications is access control for mul-
tiple users. The Auth component takes care of simple authentication, but what if you wanted
to have multiple layers for users and their access levels? Or, better yet, what about dynamically
altering a user’s privileges across the site? This more complex system for assigning areas for
the user requires access control lists that outline a tree or matrix of who gets access to what
areas in the site. The ACL component simplifies this type of user management with an assort-
ment of functions and methods.

RequestHandler

This component helps with managing HTTP requests and obtaining more client-side infor-
mation. Features such as SSL detection, reading the type of HTTP request, and responding
with a unique MIME type give the RequestHandler a lot of power for making your web appli-
cation accessible to more than one type of user. For instance, web services can be managed
with the RequestHandler, which allows for other web sites to access information and talk to
your application. The RequestHandler can also output information as a MIME type other than
text/html, which allows your application to even work in nonbrowser client applications.

Security

The Security component provides ways for tightening up the security of the web application
and avoiding vulnerabilities. Together with the Auth component, Security can provide extra
mechanisms for checking user authentications and also display more complex error mes-
sages depending on how the user interacts with the application. You can require that certain
actions run only under an SSL-secured request or hash strings with this component. By stick-
ing to secure methods for building your applications and by running the Security component
to protect the site, you more effectively prohibit unwanted intrusions or other attacks.

Utility Classes

As noted earlier, components serve a specific purpose or function that the controller may
need depending on its own actions and processes. Other class functions that are used by the
components themselves, or that are used throughout Cake’s core libraries, perform more

CHAPTER 11 ©* COMPONENTS AND UTILITIES

functions that can be used in a controller or a custom component. These functions are housed
in utility classes and are accessible anywhere in the application through the App: : import ()
function. Several built-in utility classes are available in Cake, but it is assumed that no third-
party utilities will be distributed because these classes are contained deep inside the core
libraries and as a rule should not be manipulated for applications. To create your own utilities,
you would need to create third-party vendor files and bring them into your application using
App: :import() as well (see Chapter 12 for more information on what Cake’s vendors are and
how to install them in your Cake application). You would usually want to program your own
utility class only if you're trying to incorporate third-party software into your application;
otherwise, the solution will generally be found in building one of Cake’s resource files like

a helper or component.

Configure

The Configure utility is responsible for storing global variables. Such variables are generally
stored in the core configuration file and are accessible throughout the whole Cake application.

Reading and Writing Global Variables

Just as you see in the core configuration file, constants or global variables are set using the
Configure: :write() function. The first parameter is the name of the variable, and the second
is the assigned value.

Configure::write('Site.title','My Favorite Web Site');
To read these globals, simply use the Configure: :read() function like so:
$title = Configure::read('Site.title');

The Configure: :read() function can be called in the controller, model, or view.

File and Folder

The File and Folder utilities are especially helpful when writing and reading files on the server
or listing the file names of a folder’s contents. They can also be used to set folder and file per-
missions or delete files and folders. Unlike the Configure utility, the File and Folder utilities
must be imported into the controller or model where they are used with the App: : import()
function by instantiating a new class object.

For the File and Folder utilities to work correctly, the path to the file or folder on the server
must be supplied. As in Listing 11-10, you can perform several operations on this object,
which represents the file. Some of these operations are listed in the following sections.

Listing 11-10. Importing a Utility and Instantiating the Class Object

App: :import('Core', 'File');
$file =& new File('path/to/file');

199

200 CHAPTER 11 " COMPONENTS AND UTILITIES

Reading Files

The read() function extracts the contents of the file:

$contents = $file->read();

Creating New Files

If you instantiate a File object for a file that doesn’t actually exist, you can use the create()
function to create a new, blank file on the server:

$file->create();

Writing to Files
The write() function writes content to a file:
$file->write($filedata);

By default, the method the write() function uses is the PHP w type. The w type over-
writes content previously in the file. Other methods used in PHP’s furite() function can
be provided as a second parameter. For example, the a parameter allows contents to be
appended to the file:

$file->write($filedata, 'a’);

Changing File and Folder Permissions

Using the Folder utility, you can run chmod commands on files and folders. The Folder utility is
instantiated like the File utility:

App: :import('Core', 'Folder');
$folder =& new Folder();

The new $folder object can have its permissions changed with the chmod() function:
$folder->chmod('/path/to/folder',0777);

Other permissions values can be used as well. The chmod() function can also apply per-
missions recursively by using the recursive parameter. One last feature of this function is the
exceptions parameter; if there are any files or folders that should not receive the permissions,
they can be skipped by specifying their names in an array.

$folder->chmod('/path/to/folder',0777,true,array('nested 1', 'nested 3'));

Reading Folder Contents
When the Folder utility is instantiated, a path can be provided:

$folder =& new Folder('/path/to/folder");

This utility can return an array containing the contents of this folder by using the read()
function:

$folder->read();

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Reading Folder Trees

To get an array of nested directories or trees with the files in each directory, just use the tree()
function like so:

$folder->tree();

Copying, Creating, and Deleting Folders

You can copy a folder’s contents to another area on the server with the Folder: : copy() func-
tion. Notice that this function requires an array with some parameters included:

$folder->copy(array('to'=>"/path/to/new/folder"));

Of course, the $folder object represents the current folder.
Creating new folders is done just like the File utility, with the Folder: :create() function.
The second parameter sets the permissions value for the new folder:

$folder->create('/path/for/new/folder',0755);

Deleting folders is also easy. Just run the delete() function, and Cake will remove the
directory, if its permissions allow this:

$folder->delete('/folder/to/be/deleted");

Calculating the Folder Size

To find the current folder's file size in bytes, just run the dirsize() function:

$folder->dirsize();

Finding Files in a Folder

Searching for files by their file name can be tricky, but not with the Folder utility. To search
in a folder, just provide the find() function with a regular expression, and it will return an
array of all matching files in the current directory:

$results = $folder->find('title(.*).pdf");

HTTP Socket

When running HTTP requests or constructing headers, the HTTP Socket utility comes in
handy. Like the other utilities (getting the hang of this?), it's imported in the controller or
model with App: : import ().

App: :import('Core', 'HttpSocket');
$http =& new HttpSocket();

Making HTTP Requests

One of the most useful features of the HTTP Socket utility is its request handling. Not to be
confused with the RequestHandler component, HTTP Socket can perform the nitty-gritty of
HTTP requests such as GET and POST.

201

202

CHAPTER 11 " COMPONENTS AND UTILITIES

To run a POST with the HTTP Socket utility, first create an array that contains the post
variables. The keys in the array correspond with the name attribute in HTML input elements,
and the values match the value attribute.

$post = array('username'=>'cakeuser', 'password'=>"somehashedpassword"');
Then, using the HttpSocket: :post () function, pass the array to a specific URL:
$result = $http->post('http://domain.com/",$post);

A successful POST will return true; an unsuccessful one will return false.

GET methods are also run with the HTTP Socket utility. The serialized set of GET names
and values is generally appended to the URL string, so with the HttpSocket: :get() function
you can provide a GET query as the second parameter. The contents of the GET response are
returned to the variable, so if the server returns some HTML or an error message or HTTP
headers, it will appear as the returned string.

$response = $http->get('http://domain.com/");

To run a page scrape of another web site or to perform other HTTP requests, use the
HttpSocket: :request() function. This function will perform an HTTP request and return the
raw server response, be it a web page or some other text.

$response = $http->request('http://domain.com/web page.html');

Using Other HTTP Socket Functions

Other functions in the HTTP Socket utility include buildHeader (), buildRequestLine(),
builduri(), decodeBody(), delete(), parseHeader(), parselri(), put(), and more. When
considering how to perform HTTP requests or socket methods for your site, consult this util-
ity, and it will likely contain useful functions to minimize the amount of coding you will have
to write.

Localization and Internationalization

For web sites that will have an international audience, translating site content can be difficult.
In recent years some important localization (L10n) and internationalization (I18n) standards
have been implemented for the Web and other software systems. Cake makes use of L10n and
118n standards and methods with their respective utilities.

Note The “10” and “18” in L10n and I18n represent the number of letters between the first and last in
the words /ocalization and internationalization. (Developers use these terms so often that spelling them out
was taking too long.) Cake’s utility classes are named using these abbreviated versions, not the full titles,
so the Localization utility class is named in the core L10n, not Localization.

http://domain.com/',$post
http://domain.com
http://domain.com/web_page.html

CHAPTER 11 ©* COMPONENTS AND UTILITIES

Working with Locale Files

To localize a web site, or in other words, to make the site content fit the language, number
system, currency, and other standards of visitors, use the L10n utility. For example, if a user in
Spain were to need the application, you might want to translate some important titles, but-
tons, links, and other strings into Spanish. To do so, you must first set up Spanish locales or
locale files for L10n to use in translation.

Locale files are stored in the app/locale directory and are arranged in subfolders named
for the language or locale. The names and strings that L10n uses conform to the ISO 639-2
standard (for more information, consult the Library of Congress, which is the official registra-
tion authority for the standard: http://www.loc.gov/standards/is0639-2/). Locale files use
the .po file extension and are arranged by locale.

By default, Cake includes the English locale folder, app/locale/eng. In it you'll see another
subfolder, which contains locale files for translating strings and messages, LC_MESSAGES.

For each language you'd like to localize, create a default.po file and store this in its locale
folder. For Spanish, for example, you would need to create not only the default.po file for the
app/locale/eng/LC_MESSAGES directory but also one for the app/locale/spa/LC_MESSAGES
folder. The next step is to write in these locale files the string you want to be translated.

Translating Strings

Translating strings is made easy by using two keys: msgid and msgstr. In the default.po
locale file, for each line provide one of these keys with an associated value. For example,
in the English locale file, you could include the contents of Listing 11-11.

Listing 11-11. An Example of Content in the English Locale File

msgid "home"

msgstr "Welcome to Our Site"
msgid "contact"

msgstr "Contact Us"

msgid "login"
msgstr "Log In"
msgid "logout"
msgstr "Log Out"

As long as the other locales contain the same msgid values, the L10n utility can fetch
the msgstr values depending on the locale. The default locale is set in the core configura-
tion under Config.language. This value is set by default to English but may be changed to
any locale. When L10n looks up msgid keys, it will first visit the locale specified in the
Config.language setting.

A corresponding Spanish locale would look something like this:

msgid "home"
msgstr "Bienvenidos a Nuestro Sitio"
msgid "contact"

msgstr "Contactarnos"

203

http://www.loc.gov/standards/iso639-2

204

CHAPTER 11 " COMPONENTS AND UTILITIES

msgid "login"

msgstr "Ingresar"
msgid "logout"
msgstr "Salir"

Localizing Content

Once the locale files are in place, localizing content is simple. First, instantiate the L10n utility
class like other utilities:

App: :import('Core','L10n");
$110n =& new L10n();

Then, run the L10n: :get() function to tell the controller which locale to use for localizing.
Now, everything contained in the convenience function, (), will be looked up in the locales.

$lion->get('spa');
__("home");

The previous lines will output the msgstr following the msgid with home as its value. If you
want returned localized strings to be passed along as raw data and not echoed, set the escape
parameter to true:

$form->error('Post.title', ('postTitleError',true));

Sanitize

The Sanitize utility contains functions designed for cleaning up data and text. Stripping white-
space, HTML tags, and references to scripts and style sheets, as well as escaping text for SQL,
can be accomplished with the Sanitize utility.

Remember to instantiate the Sanitize utility first with App: : import () and assign the utility
as a class object for use in the controller or model:

App: :import('Core', 'Sanitize');
$sanitize =& new Sanitize();

Sanitize can strip out HTML tags from a block of text by using the stripTags() function:
$this->set('output',$sanitize->stripTags($output,array('<p>", ', '<div>"')));

Other functions include clean(), escape(), html(), stripImages(), stripScripts(), and
stripiWhitespace(). If you need to clean data, text, or SQL queries, consult the Sanitize utility.

Third-Party Components

Cake’s built-in components and utilities are extremely helpful in extending the functionality of
the controller and model. Even more components are available online through Cake’s open
source service CakeForge (www.cakeforge.org) and the Bakery (http://bakery.cakephp.org).
These third-party components cover all sorts of functions that can reduce the amount of code
you need to write. When running components, remember to follow the instructions supplied

http://www.cakeforge.org
http://bakery.cakephp.org

CHAPTER 11 ©* COMPONENTS AND UTILITIES

by the developer, which usually assume you know how to install a component (which was cov-
ered in “Using Components” earlier). Third-party components available at the Bakery include
Twitter, Image Resizer, LastRSS, SMS Text, Authorize.net AIM Integration, and Yahoo! Weather.
Searching for components first before trying to write a long controller process yourself can
yield excellent results.

Creating Custom Components

Creating your own custom components is simple and follows the pattern shown in earlier
chapters. All components are stored in the app/controllers/components directory and follow
Cake’s naming scheme. If you want to install your own utilities, you will need to install them
as vendor files, since utilities are stored in the Cake core.

The basic component file has a file name that matches its class name. Like controller
classes, these are camel-cased and have the . php extension. See Listing 11-12.

Listing 11-12. The Basic Component File, Named blog. php, Stored in the components Directory

<?
class BlogComponent extends Object {
}

>

The component contains functions like the controller. Because these functions are called
by noncomponents, or in other words, a controller, they will run the return() function to send
back its output. These functions can also have parameters.

Using the Initialize and Startup Functions

To run logic before the controller’s functions are called (like the beforeFilter() function in
the controller), use the initialize() function. This function can contain any logic to be run
before the component’s functions are processed.

Sometimes a component function will need access to its parent controller, meaning the
controller that is currently calling it. Properties like $this->data and $this->params, as well as
any other properties currently in use by the controller can be pulled, into the component. By
using the startup() function, you can provide the component with the controller object and
thus give any component function access to its parent controller. See Listing 11-13.

Listing 11-13. The startup() Function in the Component

function startup(&$controller) {
$this->data = $controller->data;

}

Anything in the controller that appears under the $this object is made available to the
component as $controller, as shown in Listing 11-13. You can set a component class variable
to contain the controller object:

var $controller = null;

205

206

CHAPTER 11 " COMPONENTS AND UTILITIES

and then use the startup() function to instantiate the controller object. Then all functions in
the controller can use $this->controller to access anything in the parent controller.

function startup(&$controller) {
$this->controller = $controller;

}

Now in a placeholder function, you can pull the parameters from the parent controller
and use them in the component:

function test() {
$params = $this->controller->params;
$data = $params['data’];
return $data;

Writing Vendor Files Instead of Components

Remember that the idea behind components is to share code for cross-controller functions
that are portable. In theory, you should be able to distribute any component, and it should
work for any Cake application regardless of how the application is designed. If the code does
not fit in the CakePHP framework, or an MVC model, then you ought to create vendor files
and not components. By adhering to this standard, you ensure that other Cake developers
can benefit from your work, and vice versa.

Like helpers, components are designed to cut down on superfluous code in the controller.
When the controller begins to look more bloated than the model, you will generally want to
find ways to move more code to the model. When code is shared across multiple controllers,
you may want to consider placing that logic in a component and scaling the code to be more
portable than in one specific controller or Cake application. In the long run, your site will be
better organized, cleaner, and lighter—always good reasons for taking the extra step.

Summary

Components extend the controller like helpers extend the view. They provide a set of func-
tions and methods that are specific to a certain overall scheme to the controller and are
designed with portability in mind. In other words, if you've built your components right, you
should be able to distribute them for use in any Cake application. In this chapter, I discussed
how to include a component class in the controller and how to put its functions to work. You
wrote some user authentication methods into your blog application using the Auth compo-
nent to better secure areas of the site and limit access to the general user. This chapter also
explained how to work Cake’s utility classes into your application. Many of these classes con-
dense the time and code involved to perform some typical web-related tasks such as reading
and writing files and folders. I outlined some other utility classes, and I discussed some
important differences between vendor files, utilities, and components. In Chapter 12, I'll go
into more detail about vendors and how to use them in your Cake project.

CHAPTER 12

Vendors

One of the benefits of using Cake is that it is built on PHP, one of the most popular languages
in web development. Thousands of developers from across the globe actively contribute to the
available body of PHP classes and scripts, which makes using PHP advantageous. However, a
major concern of PHP developers choosing a framework is how to port over existing projects
or use those long hours of developing their own classes in the framework.

PHP uses the include() and require() functions to reference external scripts or multiple
files. Why not just run one of these to implement an outside script? Again, Cake’s “convention
over configuration” mantra applies. Cake is concerned not just with providing shortcuts and
automating typical web functions but also with ways of naming and arranging the various
application resources. Rather than arbitrary includes, Cake suggests that any third-party

script or non-Cake objects be organized as vendors.

Using Vendors

Simply put, a vendor is a non-Cake script of some kind. For example, let’s say you want to
include a snazzy PHP class script you found on the Internet that simplifies generating
CAPTCHA! images. You can assume that the developer was not thinking of CakePHP spe-
cifically when building the script, so its functions and classes won'’t be structured to work
in Cake. No problem—you just have to bring the script into the application as a vendor.

The first step is to place the PHP script into the app/vendors folder. By doing so, you
make the script available to the Cake application while keeping all the vendors in one place.
You won't need to rename the file to fit Cake’s conventions.

Next, you include the file’s contents in the controller, model, or view where you'd like to
use the script. You do this by using the App: : import () function (see Listing 12-1).

Listing 12-1. Including a Vendor

<?php
App: :import('Vendor', 'some captcha_script.php');

1. “Completely Automated Public Turing test to tell Computers and Humans Apart”; in other words, by
supplying images that are difficult for a computer to decipher but easy for a human to read, the web
site can differentiate between automated requests and legitimate user form submissions.

207

208

CHAPTER 12 I VENDORS

Notice that in Listing 12-1 the first parameter is Vendor; this tells Cake to import a vendor
file. Also, I've included the standard PHP opening line, <?php, to emphasize where this func-
tion is called: before any class declarations. So if Listing 12-1 occurred in the Posts controller,
the App: :import () function would appear before the class declarations:

<?php
App: :import('Vendor', 'some_captcha script.php');
class PostsController extends AppController { ..

Finally, you can use the vendor’s contents in the controller or view by simply calling its
functions or classes as if it were brought in with the include() function (see Listing 12-2).

Listing 12-2. An Example Vendor Function Being Used in the Controller

1 <?php

2 App: :import('Vendor','some_captcha_script.php');

3 class PostsController extends AppController {

4 function index() {

5 $captcha = new someCaptchaClass();

6 $captcha_image = $captcha->generateImage();

7 $this->set(compact('captcha’, 'captcha_image'));
8 }

9 }

10 >

Remember that Listing 12-2 is a basic example that would require more work to be done
in the view to work properly. But you can see how the vendor is imported on line 2 and how
its class object is brought into the controller on lines 5-6.

Using vendor functions without class objects is just as simple. Let’s assume the contents
of some_captcha_script.php include just one function:

function cleanAmpersands($text=null) {
return str replace('&", '8amp;"',$text);

}

Then, in the action, simply use the function as in a normal PHP script:

function view($id=null) {
$post = $this->Post->read(null,$id);
$text = cleanAmpersands($post['Post']['contents']);
$this->set(compact('post', 'text'));

Referencing outside scripts through the vendor system can be extremely useful, especially
when you want to use available scripts that are not constructed as Cake functions. Using the
App: :import() function makes this a simple task, keeps vendors organized, and manages the
paths to the vendor files.

CHAPTER 12 © VENDORS

Dealing with File Names

The App: : import () function is used for more than just including vendors. Other Cake core
class objects can be brought into a controller or view with this function as well. Because of
this, App: : import () performs some default methods that affect how you specify a vendor file
for inclusion in the application. Cake will automatically include vendor files based on the
name as long as the specified name is all lowercase and matches the file name exactly. This
means you must specify the vendor by using all lowercase letters. If a file name is uppercased,
title-cased, camel-cased, or anything other than all lowercase, the vendor will not be auto-
matically included, and more parameters will need to be provided.

App::import('Vendor', 'Title"); //will not bring in the file Title.php

If the vendor file is in a folder or has any uppercase letters, then you must manually
specify the file name using a parameters array. To bring Title.php into the controller, you
would have to pass along the file name in the parameters array or rename the file itself:

App::import('Vendor', 'title',array('file'=>"'Title.php'));

Dealing with Nested Folders

Suppose the vendor you're importing into the application has an internal folder structure
that needs to be preserved if it is to work properly. The App: : import() function can also take
care of vendors in these folders so long as the path supplied is correctly formatted. Remem-
ber that all paths will be relative to the app/vendors directory.

App: :import('Vendor','title',array('file'=>"'my vendors/title.php'));

The previous line will include the app/vendors/my_vendors/title.php file for use in the
application.

Making No Assumptions for Third-Party Scripts

An important point about vendors must be made: Cake makes no assumptions about vendors.
Doing so would contradict the whole purpose of having a vendor in a Cake application in the
first place. In other words, the main reason you might use a vendor in a Cake application is to
take advantage of a feature, method, or task that Cake cannot already handle by itself. So if
you pull a third-party script into Cake that performs methods Cake doesn’t understand, then
you must accept that Cake cannot help if anything goes wrong.

Simply put, including vendors is a mechanism to give you the flexibility to pull outside
resources into your application without being limited by the framework; but Cake, as a frame-
work, cannot assume to manage the limitations of the vendor. Therefore, the number of
functions and methods provided by Cake to support vendors really goes only so far as includ-
ing them in the application. From there, getting the vendor to work will require understanding
the specific construction of the vendor itself and how it will react with Cake.

Furthermore, naming conventions, patterns, and the MVC structure cannot be
expected to extend into vendors. If you needed to perform controller logic, you ought to
write the code in a controller or component, not in a vendor. I once spoke with a beginning

209

210

CHAPTER 12 I VENDORS

Cake developer who tried to get around learning Cake’s functions and structure by writing
everything as vendor files and pulling in only one or two Cake resources. This not only
defeated the purpose of using Cake in the first place but also resulted in more time being
wasted debugging vendor files.

Should you want to distribute a resource you built in Cake, you'll probably want to keep
it the way it is and not release it as a vendor. In other words, if what you have written is a
helper class, then make it available to other developers as such; they will better understand
what you have in mind with the script, and more important, they will know how to use it in
their applications. Vendor includes are best for libraries or other scripts that were developed
independently of CakePHP for use in a wide variety of applications.

Unidirectional Scripting

Another important point about vendors is that Cake supports them unidirectionally. The
vendor file itself cannot use Cake helper functions, class objects, or other resources. Trying
to pull, say, the Ajax helper into a vendor would be more problematic and would require a
lot of retooling to pull it off. The problems associated with this are apparent; forcing the
vendor to change its behavior cancels out the utility of using Cake. A lot can be said for
vendors, simply because so often beginners to Cake think in terms of include files and not
the other way around. So, remember—Cake can use the functionality of a vendor, but the
vendor cannot use the functionality of Cake. Vendor data flows in one direction, not back
and forth.

Installing a Third-Party Script

Now that I've covered the basics of installing a vendor, let’s use a third-party script in your blog
application. Rather than build a wiki engine from scratch, let’s choose one of the many open
source text-parsing engines: Textile.

First, obtain a copy of Textile, which is available at http://textile.thresholdstate.com.
In this tutorial, I'll be using version 2.0. Once you have downloaded the file and decompressed
it, you'll find the main engine file named classTextile.php. Place this file in the app/vendors
folder for the blog application.

Including Textile

Make the classTextile.php file contents available to the Posts controller by using the
App: :import () function for including vendors (see Listing 12-3). Be sure to place this line
before the Posts controller class instantiation line. Since the file name is not all lowercase,
you must specify the file name in the parameters array.

Listing 12-3. Including Textile As a Vendor

<?
App: :import('Vendor','textile',array('file'=>'classTextile.php'));
class PostsController extends AppController { ..

http://textile.thresholdstate.com

CHAPTER 12 © VENDORS

Now that Textile is included in the Posts controller, the view can use its functions to
parse the post content. Vendors included in the controller will be available in the view, so
you need to add nothing else in the controller. Now, because everything will depend on the
vendor itself and because Cake cannot provide conventions for third-party scripts, this
process may need to change depending on what vendor is being used. Textile itself comes
into play when any kind of text needs to be rendered in the browser following a wiki-style
parser. Thus, this vendor in practice would be executed in the view as the view renders the
contents provided by the database.

Instantiating and Running Textile

In the app/views/posts/view.ctp file, start a new instance of the Textile class by inserting
Listing 12-4 into line 1.

Listing 12-4. Starting a New Textile Class
<? $textile = new Textile();?>

Thanks to the Posts controller and Listing 12-4, the class object functions in
classTextile.php are now available for use in the view. Textile has the TextileThis() function
to filter the final text through its engine and parse out its own unique wiki-style commands.
Line 6 now contains the post’s article content as passed in the $post['Post']['content'] vari-
able. Let’s run this variable through Textile’s TextileThis() function by substituting the
following line for line 6:

<?=$textile->TextileThis($post['Post']['content']);?>

Writing Posts with Textile

Now that Textile is running in your application, you can use its syntax when writing blog posts
to easily add some text-formatting touches. Since Textile works on final output, you don't have
to rework anything in the other Add or Edit actions; simply adhere to the syntax when entering
text, and all should appear correctly.

To test your implementation of Textile, try adding some content in a blog post using some
of Textile’s wiki commands. For example, placing underscores around a word will result in the
 tag being wrapped around the word, and so forth.

Using Other Frameworks with CakePHP

Perhaps one of the most complicated aspects of using a PHP framework is working it into a
large enterprise-level application that runs on multiple frameworks. You may be familiar with
some of the other web frameworks out there; you may even have experimented with a few of
them before trying Cake. The question of how to implement another framework with Cake is
sometimes the most important concern of all.

Because you can't assume that these frameworks are entirely compatible with Cake, con-
ventions for using them have not been arranged or included in the core. To bring them into

211

212

CHAPTER 12 I VENDORS

the application, you must tackle the project on an individual basis; each framework will have
very different methods of working by itself and will certainly require a unique set of parame-
ters and methods to work with Cake.

Zend Framework

One of the most popular PHP frameworks is Zend Framework (http://framework.zend.com).
You may need to take advantage of its functions for your web applications. To do so, you must
use Zend Framework (Zend, or ZF for short) as a vendor in the Cake application.

ZEND OR ZF?

There are some nuances when referring to Zend Framework. The company that created the framework is
called Zend, and the official title of the framework is Zend Framework. On its site and elsewhere, the frame-
work is often referred to as ZF to avoid confusion with the company name. In this section, however, | prefer to
avoid the acronym, so I'll stick with Zend to refer both to the company and to the framework. Be advised that
when reading up on Zend Framework on the Web, you may need to be more specific than just using the com-
pany name.

Fortunately for Cake developers, Zend is less of an MVC framework than a set of libraries
(or as they are often referred by Zend developers, components). Each of its components can
be brought into a stand-alone PHP application through includes. As already noted, using
these components as vendors allows you to integrate Zend with your Cake application. Each
component will have its own specific installation procedures for which you will need to con-
sult Zend’s support web site and documentation. But the general steps when installing a
Zend component in Cake are explained in the following sections. First, let’s see whether you
can use anything that Zend has to offer in your blog application.

Blocking Spam in the Comments Add Action

One of the competitive features of Zend is its web service library. As of version 1.5, Zend
comes with these web services components:

e Akismet

¢ Amazon

e Audioscrobbler (Last.fm)
e Del.icio.us

e Flickr

¢ Nirvanix

e Simpy

SlideShare

http://framework.zend.com

CHAPTER 12 © VENDORS

e Strikelron
e Technorati
¢ Yahoo!

You could take your blog in any number of directions, from doing automatic title check-
ing in Amazon to fetching images from Flickr. However, the most immediate and probably the
most important basic feature of the blog is spam checking. Since the blog provides an arena
where users can enter their own comments, you have opened up the possibility of your blog
being spammed, especially if the blog becomes well known. Thanks to Zend, the Akismet web
service component is already available, and all the hard work has already been done for you.
The trick is just getting it to work in your Cake application.

After doing some homework on what Zend is offering with its Akismet component, you
will find that you will need an API key (common for using any type of web service), which is
provided by Akismet (www.akismet.com). Be sure to obtain this API key; otherwise, the Akismet
component will not run properly. (More information on the Akismet component is available at
http://framework.zend.com/manual/en/zend.service.akismet.html.)

Download the Zend Framework library, and extract its contents. You should find a folder
named Zend that contains all the components for the framework. If you already are running
Zend on your server, then take note of the path relative to the app/vendors folder. Otherwise,
place the Zend folder in the app/vendors directory. As with the Textile installation, write the
App: :import() function in the Comments Add action to include the Zend Akismet compo-
nent (Listing 12-5).

Listing 12-5. Importing the Akismet Component in the app/controllers/
comments_controller.php File

5 function add() {
6 App: :import('Vendor', 'akismet',array('file'=>"Zend/Service/Akismet.php'));

At this point, you will need to deviate from the typical Cake protocol because you are now
dealing with Zend. In line 6 of Listing 12-5, you brought in the Akismet component by refer-
encing the Zend/Service/Akismet.php file. But there is one problem with this script when it is
called in the Comments controller: it runs its own includes relative to the Zend directory. This
will need to change to keep it from conflicting with Cake’s paths. Open the Zend/Service/
Akismet.php file, and insert a new include path definition before any include functions to
fix this:

22 ini set('include path', dirname(dirname(dirname(_FILE))));

Now you can begin using the Akismet component in the controller. Next, instantiate
anew object by calling the Zend_Service Akismet class in the Comments Add action:

7 $akismet = new Zend Service Akismet('*riddioidork! “thitp://localhost/blog');

Notice that to begin a new Akismet object, you must supply the API key in the first
parameter and the URI to the blog in the second. The key, which you should have obtained
from Akismet, is usually a 12-digit alphanumeric string.

213

http://www.akismet.com
http://framework.zend.com/manual/en/zend.service.akismet.html
http://localhost/blog

214

CHAPTER 12 I VENDORS

Because you changed the INI settings to make the include path parameter work for
Zend, you will need to go back and override this exception. After line 7, insert the original
include_path definition (which is stored in the app/webroot/index.php file):

8 ini set('include path',CAKE CORE_INCLUDE PATH.PATH SEPARATOR.ROOT.DS.w
APP_DIR.DS.PATH SEPARATOR.ini get('include path'));

For Akismet to run a spam check, it will need a few important variables:
e The user’s IP address

e The user agent

* The type of comment (for example, blog or contact)

* The comment’s author name

e The comment’s content

Other variables may be passed along as well, including the author’s e-mail, the author’s
web site URL, the permalink location, and so forth. The more variables you can pass to
Akismet, the more effective it will be at filtering spam. Let’s specify these variables by assign-
ing them to the $this->data array (see Listing 12-6). Then, run the Akismet component’s
isSpam() function to perform the spam check.

Listing 12-6. The Rest of the Akismet Component in the Comments Add Action

9 if (lempty($this->data)) {

10 $this->data['akismet'] = array(

11 'user ip' => $_SERVER['REMOTE ADDR'],

12 'user_agent' => $ SERVER['HTTP_USER AGENT'],

13 "comment_type' => 'blog',

14 "comment_author' => $this->data['Comment']['name"],
15 "comment_content' => $this->data['Comment']['content']
16)s

17

18 if ($akismet->isSpam($this->data['akismet'])) {

19 $this->render('add spam','ajax');

20 exit();

21 }

Lines 10-16 contain the keys and values to properly format the array to be sent to
the Akismet component for processing. Notice that the keys adhere to the documented
parameters listed on Zend’s Akismet web page. Then, on line 18, you pass the whole
$this->data['akismet'] array to the $akismet->isSpam() function and check for a true
return value. Line 19, which is called if Akismet determines that the submission is spam,
renders a new view in the comments folder (app/views/posts/add_spam.ctp). Line 20 exits
the controller.

That'’s all! Now you can test the spam check by pasting in some obvious spam mes-
sages, and it should return the add_spam.ctp view. Rather than building your own Akismet
component for Cake, you can take advantage of Zend’s Akismet library, which combines

CHAPTER 12 © VENDORS

the best of both worlds: Cake’s MVC and mature framework structure and Zend’s powerful
web services components.

Tip Depending on your server setup, you may encounter some problems with getting the Zend compo-
nent to instantiate the class properly. A common error is the “cannot access protected property” error, which
is often because of a PHP caching engine or accelerator being turned on. Be sure to check the details of your
setup before turning off the caching engine or PHP accelerator, but a good way to test this problem is by
toggling this setting from on to off. Other issues could be because of conflicts with Zend; check Zend’s
recommendations to resolve the bug.

Outputting Posts as PDF Files

Zend also comes with a powerful PDF component that would be useful for your blog applica-
tion. Let’s create an action that will output the contents of the post as a PDE
In the Posts controller, insert the action shown in Listing 12-7.

Listing 12-7. The PDF Action in the Posts Controller

1 function pdf($id = null) {

2 if (1$id) {

3 $this->redirect(array('action'=>"index"),null,true);

4 }

5

6 $text = $this->Post->read(null,$id);

7

8 App: :import('Vendor', 'pdf',array('file'=>"Zend/Pdf.php"));

9 $pdf =& new Zend Pdf();

10 ini set('include path', CAKE CORE_INCLUDE PATH.PATH SEPARATOR.ROOT.DS.ws
APP_DIR.DS.PATH SEPARATOR.ini get('include path'));

11

12 $page = $pdf->newPage(Zend Pdf Page::SIZE LETTER);

13 $pdf->pages[] = $page;

14 $page->setFont(Zend Pdf Font::fontWithName(Zend Pdf Font::FONT w=»
HELVETICA), 12);

15 $text = wordwrap($text['Post']['content'], 80, "\n", false);

16 $token = strtok($text, "\n");

17 $y = 740;

18 while ($token != false) {

19 if ($y < 60) {

20 $pdf->pages[] = ($page = $pdf->newPage(Zend Pdf Page::SIZE =
LETTER));

21 $y = 740;

22 } else {

23 $page->drawText($token, 40, $y);

215

216

CHAPTER 12 I VENDORS

24 $y-=15;

25 }

26 $token = strtok("\n");

27 }

28

29 $data = $pdf->render();

30 header ("Content-Disposition: inline; file name=blog post.pdf");
31 header ("Content-type: application/x-pdf");
32 echo $data;

33 exit();

34 }

Notice how Listing 12-7 uses the PDF component. On line 8, the component is imported
as a vendor, and then line 9 instantiates a new PDF class object. Line 10 reverts the include
path setting back to the default Cake path (since we will soon change the include path to
work in Zend). Lines 12-33 follow the generic pattern for creating PDF files with the PDF
component.

For more detailed help on using the PDF component, consult the online documentation
(http://framework.zend.com/manual/en/zend.pdf.html). In short, you create a new PDF file
and write new pages to the file. Since lines of text are “drawn” rather than “typed” in a PDF file,
you must manually wrap the lines. This is accomplished on lines 15-27. Lines 29-32 send the
formatted data to the browser with PDF-specific HTTP headings, and then line 33 exits to pre-
vent Cake from rendering any views.

The script cannot work yet unless (as with the Akismet component) you alter the
include path setting for Zend to work correctly. Open the app/vendors/Zend/Pdf.php file, and
place the following line near the top and before any includes:

ini set('include path', dirname(dirname(FILE)));

You're all set. Launch the PDF action, and a basic PDF file should automatically render.
You may want to add a link in the Posts view to output as a PDF file:

<?=$html->1ink('Save as PDF','/posts/pdf/'.$post['Post']["'id"]);?>

Other Zend Components

Many other powerful components are included in the Zend Framework. Aside from some components that make
Zend work in an MVC environment, you ought to be able to bring various components into a Cake application. In
this exercise, try your hand with a couple of unique components that aren’t already available in Cake, such as
Lucene, Translate, or Validate, by bringing them into a Cake application as vendors. Remember to fix the include
paths for Zend to work properly and test the components thoroughly since they are third-party elements.

http://framework.zend.com/manual/en/zend.pdf.html

CHAPTER 12 © VENDORS

Summary

When you must use third-party scripts in your Cake application, it’s best to include them
as vendors using the App: : import () method. Once the script is available, its functions and
objects can be directly called in the application. Of course, because vendors work in Cake
unidirectionally, how you further implement the vendor will depend on the vendor’s own
methods. In this chapter, we discussed using components from Zend Framework to per-
form Akismet spam checks and PDF file rendering. Other web service components can be
used in Cake using similar methods. In Chapter 13, we’ll examine plugins—resources that
allow you to create a mini-application of sorts that can be distributed across multiple Cake
applications.

217

CHAPTER 13

Plugins

In some situations, developers may want to use a Cake application in several other applica-
tions. Sometimes another Cake application may be useful in your project but may be difficult
to fit in because of its independent structure; controllers, models, and such may conflict with
the current project’s namespaces. Plugins are elements that function as mini-applications
inside the main Cake application. They include their own models, views, and controllers, and
they make it possible to reuse an entire application within other applications.

Cake comes with no built-in plugins. Thus, only third-party applications can be used
inside an existing Cake application. Of course, you may build your own plugins to fit your
needs, but be aware that plugins are available online at various locations. The Bakery (http://
bakery.cakephp.org) and CakeForge (www.cakeforge.org) host plugins along with other Cake
applications, components, helpers, and more. The Bakery also hosts articles explaining how
developers wrote their plugins—which can be useful in learning advanced CakePHP methods.

Third-party plugins save time. Because they follow the MVC structure, they can do much
more than a component or helper alone. A plugin may contain its own models and therefore
work with the database in ways that a component or helper doesn't. Often, running a complex
method for an application is as simple as dropping a plugin in the app/plugins directory and
tweaking some settings in the application to get it running.

Installing a Third-Party Plugin

Plugins are fairly simple to install because of their design. Simply put, they are self-
contained folders that can be dropped in the app/plugins directory and referenced in the
model, view, or controller. They should be written so that they require little configuration.
Sometimes a plugin may require a database table to be set up to work correctly, or it may
need you to specify some global variables or settings in the core configuration. Whatever the
case, the plugin will generally come with its own installation notes that should be fairly sim-
ple to follow. I'll show how to install an Ajax chat room plugin by Pseudocoder in your blog
application to show how it’s done.

First, you must obtain the plugin code. Pseudocoder’s Ajax Chat plugin is available at
http://sandbox2.pseudocoder.com/demo/chat. You should end up with a compressed file that
contains a folder with some model, view, and controller files inside.

You should notice that this plugin calls for the Prototype JavaScript library to be running
in the application. I have already gone through installing Prototype in the default layout, so
you shouldn’'t have to change anything in the layout for this plugin to work. However, you may

219

http://bakery.cakephp.org
http://bakery.cakephp.org
http://www.cakeforge.org
http://sandbox2.pseudocoder.com/demo/chat

220

CHAPTER 13 I PLUGINS

still want to double-check that Prototype is running correctly in the application. Open the
app/views/layouts/default.ctp file, and look for the Prototype include line:

<?=$javascript->link('prototype.js');?>

Also make sure the prototype. js file is located in the app/webroot/js folder. With these
two settings in place, the Ajax Chat plugin is ready to be installed.

Place the contents of the downloaded file in the app/plugins folder. The Ajax Chat plugin
also uses its own database table, so you will need to run the SQL query to generate the appro-
priate table and fields. Pseudocoder makes this SQL available on its web page, which you
already may have noticed when downloading the plugin. To save you time, Listing 13-1 con-
tains the necessary SQL to build the table. Be sure to create the chats table in MySQL before
running the plugin in the application; otherwise, errors will occur.

Listing 13-1. The chats Table to Be Used by the Ajax Chat Plugin

CREATE TABLE “chats™ (
“id® int(10) unsigned NOT NULL auto_increment,
“key™ varchar(45) NOT NULL default '',
“handle™ varchar(20) NOT NULL default '',
“text™ text NOT NULL,
“ip address” varchar(12) NOT NULL default '',
“created” datetime NOT NULL default '0000-00-00 00:00:00',
PRIMARY KEY ("id"),
KEY “KEY_IDX" (“key")
);

The plugin is now installed for use in your Cake application. To use it, you will need to call
its actions and such in your own controllers or models, depending on the plugin’s methods.
This particular plugin is run in the view by calling its helper functions. Because the plugin
needs more than just the helper to work, the necessary controllers and models are included as
well, but you won't even notice those because of the way the plugin was designed.

Let’s build a chat action in your application. In the Posts controller, create the chat()
action, and get its view working (app/views/posts/chat.ctp). When accessing this action,
the view should turn up a blank page with maybe a title at the top, so no more is necessary
in the action itself.

The Ajax Chat plugin requires its own helper that must be made available to the controller
like any other helper, so include this in the helpers array along with the Ajax helper:

var $helpers = array('Ajax','chat/AjaxChat');
The last step is to call out the Ajax Chat helper in the view with a simple command:
$ajaxChat->generate('chatroom");

Now when you fire up the Chat action in the Posts controller, the Ajax Chat plugin should
automatically launch an Ajax chat room on the page. Literally, with only a couple lines of code
and a SQL query you were able to launch a mini-application inside your own blog.

CHAPTER 13 © PLUGINS 221
Creating Custom Plugins
Whether you use Cake plugins as add-ons to your projects or you want to contribute to the
Cake community by distributing your own mini-applications, you will need to customize the
plugin beyond what I've already explained. To begin writing a custom plugin, create a folder
named after the plugin in lowercase letters. All the controllers, models, and views will be
stored inside this folder. All plugins will need to have two additional files: the {plugin} app_
controller.php and {plugin} app model.php files where {plugin} is the name of the plugin in
lowercase letters. These files will contain the class names and extensions that allow Cake to
utilize the rest of the plugin’s resources, so naming these files correctly is important for the
plugin to function correctly.
The basic plugin will contain an App controller; an App model; and folders for controllers,
models, and views. The organization mimics the overall Cake application structure, so any
plugin helpers will be stored in the plugin’s views/helpers directory, and so forth (see Listing
13-2). Be sure to replace {plugin} with the name of the plugin.
Listing 13-2. The Basic Plugin File Structure
{plugin root}/
{plugin} app_controller.php
{plugin} app_model.php
controllers/
{controller name} controller.php
models/
views/
Naming Convention for Plugin Elements
Listing 13-2 shows the basic file structure inside the plugin’s root directory. The naming con-
vention for plugin elements is slightly different from the standard convention for naming
other Cake resources. Table 13-1 shows how to name plugin elements.
Table 13-1. Naming Conventions for Plugin Elements
Type File Name Class Extends Example
App controller {plugin}_app_ PluginAppController AppController CalendarApp
controller.php Controller
extends
AppController
App model {plugin} _app_ PluginAppModel AppModel CalendarAppModel
model.php extends AppModel
Controller Same as application Same as application PluginApp EventsController
Controller extends
CalendarApp
Controller
Model Same as application Same as application PluginAppModel Event extends

CalendarAppModel

Continued

222

CHAPTER 13 ' PLUGINS

Table 13-1. Naming Conventions for Plugin Elements

Type

File Name Class Extends Example

Helper

Same as application Same as application Helper CalendarHelper
extends Helper

Component Same as application Same as application Object Calendar

Component
extends Object

Behavior Same as application Same as application ModelBehavior MonthBehavior

extends
ModelBehavior

DataSource Same as application Same as application DataSource CalSource

extends
DataSource

Individual view files do not change naming conventions in plugins. In other words, they
are named just like standard Cake view files. The Events views, for example, would be stored in
the app/plugins/calendar/views/events folder. Individual plugin views are then named after
the action: index.ctp, and so forth.

Not only do some file names for plugins need to be adjusted to work properly; so do the
class names in the files. For the plugin not to conflict with the surrounding Cake application
file names and class names, the naming conventions and syntax must be slightly adjusted.
Instead of naming the class AppController, for instance, the class name will need to be
prepended with the name of the plugin. A plugin named Calendar would need to have its
class names named after the plugin. For example, the App controller would be named
CalendarAppController, and the App model would be named CalendarAppModel. Other ele-
ments used by the plugin should have their class names adjusted depending on what type
of element they are.

Controllers and models extend the plugin’s App controller and App model, respectively
(see Listing 13-3). Thus, the class name must reflect this extension when the plugin classes
are instantiated.

Listing 13-3. An Example of a Plugin Controller Extending the App Controller

1 <?

2 class EventsController extends CalendarAppController {
3 var $name = 'Events';

4 var $uses = array('Event');

5}

6 >

Notice that line 4 of Listing 13-3 shows the plugin controller using the $uses class
attribute to specify the corresponding model. Though Cake should automatically pick up
the appropriate models and views, consistently setting the $uses array will allow the plugin
to be more portable and reduces the risk of the plugin controller conflicting with the sur-
rounding application’s namespaces.

CHAPTER 13 © PLUGINS

Like the plugin controller, the plugin model extends the App model and has its naming
syntax adjusted to work as a plugin (see Listing 13-4).

Listing 13-4. An Example of a Plugin Model Extending the App Model

<?
class EventModel extends CalendarAppModel {
var $name = 'Event';

}

>

Helpers, components, behaviors, and DataSources may also be used as part of a plugin.
Their naming conventions generally remain the same as when used as elements of a Cake
application and not as plugin elements. Refer to Table 13-1 for information on how to name
other plugin classes and what objects they extend.

Running Plugin Actions

Once a plugin is installed in your Cake application, you may access its actions by adding the
plugin name plus the action and parameters to the URL. The Events controller used in
Listing 13-3 could be called in the blog application with the following URL:

http://localhost/blog/calendar/events
Of course, the action and parameters also follow:
http://localhost/blog/calendar/events/view/01/2009

Controllers in the surrounding Cake application can run a plugin’s controller actions
using the requestAction() function:

$events = $this->requestAction(array('controller'=>'CalendarEvents’, 'action'=>w
'getEvents'));

Using Plugin Layouts
By default, the plugin will use the default layout in the surrounding application’s app/views/
layouts directory. Specifying a layout stored in the plugin is simple: just use the $1ayout class

variable in either the action or the controller. Be sure to add the plugin name to the layout set-
ting. Listing 13-5 gives an example of how to do this.

Listing 13-5. Using a Plugin Layout in the Plugin Controller

<?

class EventsController extends CalendarAppController {
var $name = 'Events';
var $layout = 'Calendar.default’;

223

http://localhost/blog/calendar/events
http://localhost/blog/calendar/events/view/01/2009

224

CHAPTER 13 ' PLUGINS

The Calendar Plugin

Now that I've explained plugins and how to create one, let’s build a plugin for the blog applica-
tion. This Calendar plugin will be very simple: the author of the blog will store different events
in the database, and the user will be able to visit a page showing a month with links to each
event. For this plugin to be portable, I will approach writing it from a general standpoint. In
other words, I won't necessarily be thinking of the blog application when writing the plugin,
though ultimately the plugin will be implemented in the blog.

Setting Up the Files and Folders

Remember that the Calendar plugin will need the controllers, models, and views folders as
well as the App controller and App model for it to work properly. In each of these files, the
syntax will have to be adjusted so that they all work as a plugin and not as a Cake application
element.

Create the plugin root folder, and name it calendar after the name of the plugin. In this
folder, create all the basic files and folders:

calendar/

calendar_app_controller.php
calendar_app_model.php
controllers/

events controller.php
models/

calendar_event.php
views/

events/

In the calendar_app_controller.php file, be sure to include the appropriate class names:

<?
class CalendarAppController extends AppController {
}

>
The App model will also need to be named correctly:

<?
class CalendarAppModel extends AppModel {
}

2>

Without the App controller and App model, Cake will not be able to connect to the plu-
gin’s controllers, models, and views. By naming the classes in the plugin’s App controller and
App model files, I've made sure Cake knows how to use the plugin and by what name the vari-
ous elements of the plugin will be called.

The rest of the plugin will be written as though it were a basic Cake application. Of course,
you must remember to name the customized controllers, models, and views according to the
plugin syntax.

CHAPTER 13 © PLUGINS

Create the Events Table

The Calendar plugin will need to store data, so let’s build an events table in the database.
Listing 13-6 contains the SQL needed to create this table.

Listing 13-6. The events Table for the Calendar Plugin

CREATE TABLE “calendar events™ (
“id® int(11) unsigned NOT NULL auto_increment,
“name” varchar(255) NULL,
“date” datetime NULL,
“details® text NULL,
PRIMARY KEY (“id")

);

Notice that the table stores only the event’s date and time with some details. The name
field will contain the text the user will click to read more details about the event. To keep the
records from being duplicated, the table includes an ID field that is set to auto_increment.
Next, connect the plugin to this table by creating a plugin model.

Create the Event Model

The calendar_events table will need a model with which to connect. Because the table is
named with an underscore, the model name will need to be camel-cased. Create a file named
calendar_event.php, and store it in the app/plugins/calendar/models directory. Then paste
into this file the contents of Listing 13-7.

Listing 13-7. The CalendarEvent Model

1 <?

2 class CalendarEvent extends CalendarAppModel {
3 var $name = 'CalendarEvent’;

4 var $uses = array('CalendarEvents');
5}

6 >

Notice that on line 2 this model extends the plugin’s App model, not the surrounding
application’s App model. Line 3 assigns the model a name, and line 4 sets the $uses array to
CalendarEvents, which ensures that the model will connect to the calendar_events table cor-
rectly. Lastly, create the controller that will run the plugin.

Create the Events Controller

The Events controller will contain all the actions for the Calendar plugin since the plugin itself
is going to be fairly basic. To get this controller working inside the plugin, you must extend the
Calendar App controller and provide actions to perform the plugin’s logic. Listing 13-8 con-
tains the initial content of the Events controller. Write this code to a new file called app/
plugins/calendar/controllers/events controller.php.

225

226

CHAPTER 13 ' PLUGINS

Listing 13-8. The Initial Contents of the Calendar Events Controller

<?

class EventsController extends CalendarAppController {
var $name = 'Events';
var $uses = array('CalendarEvent');

To launch this new plugin controller, enter the following URL:
http://localhost/blog/calendar/events

and you should see an error screen asking you to create some actions in the controller. At
this point, you should give some consideration to exactly how the plugin should work. The
Index action, which is the default action, will show the user the current month’s events in a
calendar. The Add action will allow the administrator of the web site to write events to the
database, and the Edit action will provide access to previously saved events. The View action
will have a month and year rather than an ID number, so this action will need to run some
more complex find queries through the model. Each of these actions will require views for
displaying the results.

Building the Add and Edit Actions

To get started with the Events controller, let’s build the actions that allow for adding and
editing events to the database. These actions will follow the standard method used by the
Bake script. Listing 13-9 demonstrates what to add to the Events controller for these actions
to work.

Listing 13-9. The Add and Edit Actions in the Events Controller

1 function add() {

2 if (lempty($this->data)) {

3 $this->CalendarEvent->create();

4 if ($this->CalendarEvent->save($this->data)) {

5 $this->Session->setFlash(_ ('The Calendar Event has been saved'w

, true));

6 $this->redirect(array('action'=>"index"));

7 } else {

8 $this->Session->setFlash(_ ('The Calendar Event could not be =
saved. Please, try again.', true));

9 }

10 }

11 }

12

13 function edit($id=null) {

14 if (1$id && empty($this->data)) {

15 $this->Session->setFlash(_ ('Invalid Calendar Event', true));
16 $this->redirect(array('action'=>"index"));

17 }

http://localhost/blog/calendar/events

CHAPTER 13 © PLUGINS

18 if (lempty($this->data)) {

19 if ($this->CalendarEvent->save($this->data)) {

20 $this->Session->setFlash(__ ('The Calendar Event has been savedw
', true));

21 $this->redirect(array('action'=>"index"));

22 } else {

23 $this->Session->setFlash(__ ('The Calendar Event could not bews
saved. Please, try again.', true));

24 }

25 }

26 if (empty($this->data)) {

27 $this->data = $this->CalendarEvent->read(null, $id);

28 }

29 }

Of course, these actions require accompanying views for them to run properly. These
views, too, will follow the standard method used by Bake. Listing 13-10 shows the code for
the Add action, and Listing 13-11 provides the same for the Edit action. Save these views
in the app/plugins/calendar/views/events directory as add.ctp and edit.ctp.

Listing 13-10. The Contents of app/plugins/calendar/views/events/add.ctp

<div class="calendar events form">
<?=$form->create('CalendarEvent',array('url'=>"'/calendar/events/add"));?>
<fieldset>
<legend>Add Calendar Event</legend>
<?=$form->input('name');?>
<?=$form->input('date');?>
<?=$form->input('details");?>
</fieldset>
<?=$form->end('Submit');?>
</div>

Listing 13-11. The Contents of app/plugins/calendar/views/events/edit.ctp

<div class="calendar_events form">
<?=$form->create('CalendarEvent',array('url'=>"'/calendar/events/edit'));?>
<fieldset>
<legend>Edit Calendar Event</legend>
<?=$form->input('id',array('type'=>"hidden"'));?>
<?=$form->input('name’);?>
<?=$form->input('date’);?>
<?=$form->input('details');?>
</fieldset>
<?=$form->end('Submit");?>
</div>

Notice that in Listings 13-9 and 13-10 the Form helper is used with the URL option set
to the path of the Calendar plugin’s Events controller. This not only makes the plugin work

227

228

CHAPTER 13 © PLUGINS

correctly but also allows the plugin to be more portable. By specifying the path when creating
the form, the plugin will point to itself and not accidentally search for a controller or model in
the surrounding Cake application with which to save the form data.

Launch both the Add and Edit actions to make sure they run correctly. Also, add some test
events to the database for use when building the Index and View actions. You should see a
screen similar to Figure 13-1.

(o o) The Extensive Blog
i ' 4 http: [/localhost/blog /calendar/events fedit/ 1 aQ~ Google

Edit Calendar Event

Name

Official Launch of Blog

Date

[October [$-(3155 2008F%] 1005 0158 [pmis]

Details
We should throw a party.

(Submit

Figure 13-1. Editing an already saved event. Notice that the default layout in the blog application
is applied here, not a layout in the Calendar plugin.

Building the Index Action

Normally the Index action is the easiest to build because it generally displays a list of records
in the database. This plugin, however, is one that will require displaying a calendar of some
sort. Thanks to inconsistencies in the calendar year, generating a calendar will take more work
than simply running through a list of records. The Index action will have to create a table with
rows for each week of the month and then display each day of the week; at the same time, the

CHAPTER 13 © PLUGINS

action must search out any events for the given day and insert those into the cell. Not only the
Index action but also the View action will generate a calendar. This sounds like a perfect situa-
tion for building a helper function because of all the calculations required in the view.

The Calendar Helper

In the app/plugins/calendar/views directory, create a new folder named helpers, and insert
anew file named calendar.php there. This file will contain a couple of custom helper func-
tions that primarily render a month’s view based on the parameters passed to it. In the Index
and View actions, we'll set these parameters and then pass them along to this helper rather
than render a calendar in each view file. Because I intend to perform logic in the view, I had
better organize the Calendar plugin by using a helper instead of an element. Remember that
helpers serve to perform logic in the view, whereas elements make basic displays, or view
templates, for use across multiple views.

Rendering the month will be a two-step process. First, the helper function will cycle
through the weeks of the month, and second, it will cycle through each week. Depending on
the month and the year, the first day of the month will vary, so the helper must create some
variables to figure out on what day of the week the first day of the month lands and then also
figure out the weekends. In the Calendar helper, let’s begin by inserting the lines shown in
Listing 13-12.

Listing 13-12. Initializing Some Variables to Be Used by the app/plugins/calendar/views/
helpers/calendar.php Helper

1 <?

2 class CalendarHelper extends Helper {

3 var $helpers = array('Html');

4

5 function render($events=array(), $month=null, $year=null) {

6 //Initialize variables for this function =>

7 $firstdate = mktime(o, 0, 0, $month, 1, $year);

8 $lastdate = mktime(0, 0, 0, $month+1, 0, $year);

9 $firstday = strftime("%a", $firstdate);

10 $day = 1;

11 $days array = array(

12 1=>'Sun', 2=>'Mon', 3=>'Tue', 4=>'Wed', 5=>'Thu', 6=>'Fri', 7w
=>'Sat"’,

13 8=>'Sun', 9=>'Mon',10=>"'Tue"',11=>"'Wed"',12=>"Thu',13=>"Fri', 14w=
=>'Sat"’,

14 15=>"'Sun',16=>"'Mon"',17=>"'Tue"',18=>"Wed',19=>"'Thu"',20=>"Fri',21=
=>'Sat"’,

15 22=>"'Sun',23=>"'Mon",24=>"'Tue"',25=>"Wed",26=>"'Thu"',27=>"Fri',28=
=>'Sat"’,

16 29=>"'Sun',30=>"'Mon"',31=>"'Tue"',32=>"Wed"',33=>"'Thu"',34=>"Fri',35=
=>'Sat"’,

17 36=>"'Sun',37=>"Mon",38=>"'Tue"',39=>"Wed',40=>"'Thu',41=>"Fri', 42w=
=>'Sat"’

18);

229

230

CHAPTER 13 ' PLUGINS

Line 7 in Listing 13-12 uses the mktime() function to assign a Unix timestamp to the vari-
able $firstdate. Notice that variables named $month and $year are used to pass the timestamp
as month and year values. The first day of the month is used here as well. The last date of the
month is also set as a timestamp and assigned to $1lastdate. This one is a little bit more com-
plicated: essentially, mktime() is told to provide the timestamp for the following month’s day
zero, which is the same as the current month’s last day. Because each month has a different
number of days, this is much handier than trying to specify each month (for example, the last
day of February is the 28th except on leap years, the last day of March is the 30th, but the last
day of April is the 31st, and so on). Now with timestamps for the first day of a given month and
the last day figured out, the helper can iterate through the difference in days and create a table
cell for each one.

The layout of the days of the week will not change; in other words, the cells for Sunday
will always be the first ones of their respective rows, and each row will represent a week. The
trick is to get the dates of the month, which do change from month to month and year to year,
to appear in the correct day of the week. Lines 11-18 are the $days_array array, which is a
static set of days of the week as they will appear in the calendar. This array will be used to
make sure that the helper’s iteration of the days in the month breaks on the weekend at the
same time the table cells do.

Line 10 contains the $day variable, which here is set to 1. This value represents the cur-
rent day in the iteration. Each time a table cell is rendered for a day of the month, the $day
variable will be called to display the date; then the value will increase by 1 for the next day,
and so on.

Line 9 is key to getting the iteration started on the right day of the week. It uses the
strftime() function to get a three-letter representation of the day of the week the time-
stamp $firstdate lands on. Later, this value will be compared with the $days_array values
to make sure the first date is placed in the correct cell.

Rendering the First Week of the Month
Let’s begin the iteration by placing Listing 13-13 into the Calendar helper.

Listing 13-13. Starting the Month Table and Iterating Through the First Week of the Month

19 $out = '<table class="calendar" cellspacing="0">";
20 $out .= $this->Html->tableHeaders(array('Sun', 'Mon', 'Tue', 'Wed", 'Thu',w
"Fri','Sat'));

21 /¥*% WEEK ONE ¥¥*/

22 $out .= '<tr>';

23 for ($i=1; $i<=7; $i++) {

24 if ($day<=1 8& $firstday != $days array[$i]) {
25 $out .= '<td>8nbsp;</td>";

26 } else {

CHAPTER 13 © PLUGINS

27 $out .= '<td>'.$day. '
"';

28 $out .= $this->events($month,$day,$year,$events);
29 $out .= "</td>';

30 $day++;

31 }

32 }

33 $out .= '</tr>';

Throughout the rest of this function, the $out variable will be assigned all the output
data to be rendered in the view. Notice that line 19 in Listing 13-13 instantiates this variable,
and every other time $out is used, new values are appended to its existing contents. Line 19
starts a new table, and line 20 uses the HTML helper to write the table’s header cells. Notice
that these header cells contain text telling the user which column represents which day of
the week.

Lines 22-33 are the first iteration through week one. Notice that this iteration starts with
a table row element (<tr>) and ends with the closing tag to finish the row. Line 23 starts a
loop for each cell in this row, 1 representing the first cell, or Sun, and 7 representing the last,
or Sat. Line 24 checks for where the first day of the month falls. If $day is less than or equal
to 1 (in other words, if at this point in the iteration $day is set to the first date of the month)
and the $firstday timestamp doesn’t equal the current day (as specified in $days_array),
then the element will display a blank cell. Otherwise, it will create a table cell with the $day
value displayed along with any events stored in the database for that day. Such a cell is cre-
ated with lines 27-30. When a day is displayed, the next day will become the new value for
$day, so line 30 increases $day by 1.

Notice that line 28 uses a helper function, $calendar->events(), which has not yet been
created. This function will cycle through the $events array, which will be the results from the
Events controller. These results come from running a find request in the database for associ-
ated events and passed to the helper in line 5 of Listing 13-12. For each event in this array that
matches the current day, month, and year in the iteration of week one in Listing 13-13, the
$calendar->events() function will return to be displayed in the current day'’s cell. Since this
operation of cycling through the $events array will be repeated for other weeks, it’s best to
write it as another helper function rather than write the same operation over again. We'll build
the $calendar->events() function later. For now, the $out variable is set to pass a new table to
the view with one row representing the first week of the month and any events found in the
database for this week.

Rendering Weeks Two and Three

Like rendering the first week of the month, let’s now add weeks two and three to the helper
with Listing 13-14.

231

232

CHAPTER 13 ' PLUGINS

Listing 13-14. Weeks Two and Three in the Calendar Helper

35 /¥F* WEEK TWO ***/

36 $out .= '<tr>';

37 for ($i=8; $i<=14; $i++) {

38 $out .= '<td>'.$day. '
"';

39 $out .= $this->events($month,$day, $year,$events);
40 $out .= '</td>’';

41 $day++;

42 }

43 $out .= '</tr>';

44

45 /¥*¥* WEEK THREE ***/

46 $out .= '<tr>';

47 for ($i=15; $i<=21; $i++) {

48 $out .= '<td>'.$day. '
";

49 $out .= $this->events($month,$day,$year,$events);
50 $out .= '</td>’';

51 $day++;

52 }

53 $out .= '</tr>';

Because each cell of weeks two and three must contain a date (in other words, there are
no months where these weeks have a starting date or an ending date for the month), checking
for the current value of $day is not necessary. The value of $i was last set by week one’s loop, so
week two begins its loop with values between 8 and 14. The rest of weeks two and three closely
resemble what is happening in the loop for week one.

Rendering Week Four

Depending on the year, some months may end on their fourth week. So, for week four, check-
ing for an ending date is necessary. See Listing 13-15 for week four’s loop, and paste it into the
helper.

Listing 13-15. Week Four

55 /*F* WEEK FOUR ***/

56 $out .= '<tr>';

57 for ($i=22; $i<=28; $i++) {

58 if (strftime("%d",$lastdate) < $day) {
59 $out .= '<td> </td>";

60 } else {

61 $out .= '<td>'.$day. '
"';

62 $out .= $this->events($month,$day,$year,$events);
63 $out .= "</td>';

64 $day++;

65 }

66 }

67 $out .= '</tr>';

CHAPTER 13 © PLUGINS

Week four is similar to the other weeks except for lines 58-59 of Listing 13-15. Line 58
checks to see whether the timestamp saved in $1lastdate is less than the value for $day. If so,
it will output a blank cell (line 59).

Rendering Weeks Five and Six

Not all months will have a fifth week, but some will. In some exceptional cases, there will be
months that have a sixth row, so the helper will at least have to accommodate such occur-
rences. Notice that Listing 13-16 contains loops for weeks five and six and that these are almost
the same as previous loops. Where they differ is in checking whether the current month has a
fifth or sixth week. If not, the loop won'’t be performed.

Listing 13-16. Weeks Five and Six

69 /*¥*% WEEK FIVE ***/

70 if ($day < strftime("%d",$lastdate)) { /* check if there is a fifth row */
71 $out .= '<tr>';

72 for ($i=29; $i<=35; $i++) {

73 if (strftime("%d",$lastdate) < $day) {

74 $out .= '<td>&8nbsp;</td>";

75 } else {

76 $out .= '<td>'.$day. '
";

77 $out .= $this->events($month,$day,$year,$events);
78 $out .= '</td>’';

79 $day++;

80 }

81 }

82 $out .= '</tr>';

83 }

84

85 /¥¥% WEEK SIX ¥/

86 if ($day < strftime("%d",$lastdate)) { /* check if there is a sixth row */
87 $out .= '<tr>';

88 for ($i=22; $i<=28; $i++) {

89 if (strftime("%d",$lastdate) < $day) {

90 $out .= '<td>8nbsp;</td>";

91 } else {

92 $out .= '<td>'.$day. '
";

93 $out .= $this->events($month,$day,$year,$events);
94 $out .= "</td>';

95 $day++;

96 }

97 }

98 $out .= '</tr>';

99 }

233

234

CHAPTER 13 ' PLUGINS

Rendering Event Details

Notice that Listing 13-6, which contains the SQL for creating the Calendar Events table, calls
for a field named details. This is so that when an event appears in the calendar, the user can
click it, and more details will be provided. So far, the $calendar->render() function has taken
care of rendering the calendar and displaying events matching each day of a given month.
However, the details saved for each event must be provided by the helper, which has not been
written yet. Next, close out the month table now that the iterations through each week have
been written in the function; then output the contents of the details field for each event
using Listing 13-17.

Listing 13-17. Rendering Event Details

101 $out .= '</table>’;

102

103 /*** RENDER EVENT DETAILS ***/

104 if (isset($this->Details)) {

105 foreach ($this->Details as $id=>$detail) {

106 $out .= '<div id="event details '.$id.'" style="display: nonews
;" class="_cal event detail">";

107 $out .= ''.$detail['name'].'";

108 $out .= '<p>'.date('g:i a',strtotime($detail['date'])).'</p>";
109 $out .= '<p>'.$detail['details'].'</p>";

110 $out .= '</div>’;

111 }

112 }

Listing 13-17 uses a class attribute that hasn’t been specified yet called $this->Details.
This is because the $calendar->events() function, which was used to fetch matching events in
the $events array earlier, will also pull the contents of details for any matching records and
place them into the $this->Details array. Listing 13-17 then loops through the details array
and outputs a <div> element for each set after the calendar. Notice that line 106 assigns the
unique $id value to the <div> element’s ID and uses the style attribute to hide the whole ele-
ment. In the link provided for each event in the calendar, later you'll use this $id value to
display the matching hidden <div>, thus displaying the details for the event when clicked.

The rest of this loop prepares the contents of the details array to be readable in the view.
All that’s left for the $calendar->render () function is to output the contents of the $out vari-
able. See Listing 13-18 for how to close out this function.

Listing 13-18. Closing Out the $calendar->render () Function

113 return $this->output($out);
114 }

Before setting up the $calendar->events() function, the class variable $Details must be
defined in the helper class. Scroll up toward the top, and insert the following line after the
$helpers array definition:

var $Details = array();

CHAPTER 13 © PLUGINS

Now when the $calendar->events() function is used by the $calendar->render() func-
tion, it will propagate the $Details array with each event’s contents of the details field. The last
step for the Calendar helper is to build the $calendar->events() function.

Building the Events Function

As the $calendar->render () function loops through the various weeks for a given month, it
uses another function to fetch any matching events from the $events array. Listing 13-19
shows this function; paste it into the Calendar helper after the $calendar->render() function.

Listing 13-19. The $calendar->events() Function

116 function events($month=null, $day=null, $year=null, $events=array()) {

117 $stamp = mktime(0,0,0,$month,$day,$year);

118 $out = '’;

119 foreach($events as $event) {

120 $event stamp = strtotime($event['date']);

121 $event stamp = mktime(0,0,0,date('m',$event stamp),date('d’,=
$event_stamp),date('Y',$event_stamp));

122 if ($event_stamp == $stamp) {

123 $out .= '<a href="#" onClick="$(\'event details '.$eventw
['id"']."\").style.display = \'inline\";">";

124 $out .= ''.$event['name']."'</lir";

125 $this->Details[$event['id']] = $event;

126 }

127 }

128 $out .= "';

129 return $this->output($out);

130 }

This function takes a preformatted $events array and detects any of its values that match
the provided $month, $day, and $year. When the function finds a matching event, it copies the
contents of the event’s details field to the class array $Details, thus making the details avail-
able for any function in the Calendar helper. These details are displayed in the view in lines
104-112 of Listing 13-17. The function also generates an HTML list element and returns the
list to its parent function (which so far is only the $calendar->render() function). Because it
is currently used by the $calendar->render() function, this list of events will appear within
the day cell in the month’s table as the View and Index views render the month.

Notice that two timestamps are created to detect matching events: $stamp and
$event stamp. The $event stamp represents each event’s date value; if this value matches
the timestamp of the given $month, $day, and $year values, then the function will add the
event to the list and its details to the $Details array. The actual loop through the $events
array happens on lines 119-127. Remember how the $calendar->render() function gener-
ated the hidden <div> elements for displaying event details? Well, line 123 contains the
necessary JavaScript for the event’s link to display the corresponding hidden <div> ele-
ment. You could change this to include an animation effect such as scrolling down,
depending on your own taste, but at least line 123 shows how the helper provides the user
with the requested details. All that is left now is to complete the Index action and view.

235

236

CHAPTER 13 © PLUGINS

Finishing the Index Action

With the Calendar helper able to render a calendar with events, links, and details, the Index
action is now ready to request events from the database and pass them through the Calendar
helper in the view. Listing 13-20 shows the Index action for the app/plugins/calendar/
controllers/events_controller.php file.

Listing 13-20. The Index Action in the Events Controller

1 function index() {

2 $events = Set::extract($this->CalendarEvent->find('all',array(=
"conditions'=>array('MONTH(CalendarEvent.date) '=>date('m"), 'YEAR(CalendarEvent.w
date)'=>date('Y")))), '{n}.CalendarEvent');

3 $this->set(compact('events'));

4}

Line 2 of Listing 13-20 may look a little confusing, but actually it is just a typical find
request for the model. It uses the Set: :extract() function to clean up the array for the
helper. I've opted to use this to demonstrate one method for cleaning up arrays. Recall that
Cake automatically formats model results into arrays that follow a specific structure. To sim-
plify the code in the $calendar->events() function, you can use Set: :extract to take the
results from the find() function and remove the CalendarEvent key from the array. For
example, if the find returned two events, the result array would by default be formatted
something like this:

$events = Array(
[0] => Array(
[CalendarEvent]=> Array(

[id] => 1

[name] => Test Event 1

[date] => 2008-12-25 01:00:01
[details] => Merry Christmas
)

)J
[1] => Array(

[CalendarEvent] => Array(
[id] => 2
[name] => Test Event 2
[date] => 2009-01-01 01:00:00
[details] => And a happy new year
)

)5

If you passed this same result set through Set: :extract() with the following command:
$events = Set::extract($events,'{n}.CalendarEvent');

then the resulting array would be formatted like this:

CHAPTER 13 © PLUGINS

$events = Array(
[0] => Array(
[id] => 1

[name] => Test Event 1
[date] => 2008-12-25 01:01:00
[details] => Merry Christmas
)J
[1] => Array(
[id] => 2
[name] => Test Event 2
[date] => 2009-01-01 01:00:00
[details] => Happy New Year
)

Simply put, Set: :extract() cleans arrays by reformatting the array. Here in the Calen-
dar plugin, this method of invoking Set: :extract () makes looping through the $events
array a little easier. More than anything, be advised that Set: :extract() is available in your
Cake applications or plugins and can help clean up nested arrays. Alternatively, in many
cases, you would have to produce your own loops to sift through nested arrays.

Line 2 also uses some SQL syntax to search the date field. Notice that the query searches
for events that match the current month and year. By wrapping MONTH() around the field
name, Cake knows to run the right SQL query for datetime fields. In other words, by providing
an integer representing the current month, the model will search the database for a matching
month in the date field without needing a full datetime string. Wrapping YEAR() also works to
find the correct year in the date field. The result set will be limited to just those events that
occur this month and year.

Line 3 sends the results as the $events array in the view. In the app/plugins/calendar/
views/events/index.ctp file, you can now use the $calendar->render() function to take this
array and place its contents in the calendar with one string of code. First, make sure the
Events controller has access to the Calendar plugin by including it in the $helpers class array
near the top of the controller:

var $helpers = array('Calendar');

Next, create the app/plugins/calendar/views/events/index.ctp file, and paste
Listing 13-21.

Listing 13-21. Contents of the Index View

<h2><?=date('M")." '.date('Y');?></h2>
<?=$calendar->render($events,date('m'),date('Y"));?>

Launch the event’s Index action in the browser, and you should see a calendar rendered
with any test events you may have saved for that month (see Figure 13-2). Remember that this
calendar is displayed in the surrounding application’s layout, not its own layout. Therefore, if
you want to change the styles for the calendar, you will need to edit the application’s styles,
not the plugin’s styles. Of course, you could build into the plugin a layout with its own styles,

237

238

CHAPTER 13 ' PLUGINS

but this could get in the way of another application’s views should you distribute the plugin.
It’s better to stick to the surrounding application’s layouts and style sheets than to force the
plugin to look a certain way regardless of its parent application.

The Extensive Blog
-1—;!‘ http: //localhost/blog fcalendar/events r'“fo.' Google 3
January 2009
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
. Test Event
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Figure 13-2. The $calendar->render () function at work with the Index action view

Building the View Action

Most of the work for the View action was done while building the Index action. Where this
action differs from the Index action is that it bases its calendar on passed month and year
values. The same process of formatting the calendar around the result set from the Calendar
Events database occurs in the View action as well, so the $calendar->render() function is ref-
erenced all the same. Listing 13-22 contains the View action to be added to the app/plugins/
calendar/controllers/events_controller.php file.

CHAPTER 13 © PLUGINS

Listing 13-22. The View Action for the Events Controller

1 function view($month=null,$year=null) {

2 if (!$month || !$year || !is numeric($month) || !is numeric($year)) {
3 $month = date('m");

4 $year = date('Y'");

5 }

6 if ($month > 12 || $month < 1) {

7 $month = date('m");

8 }

9 $events = Set::extract($this->CalendarEvent->find('all',array(=

conditions'=>array('MONTH(CalendarEvent.date)'=>$month, 'YEAR(CalendarEvent .w
date)'=>$year))), '{n}.CalendarEvent"');
10 $this->set(compact('events', 'month', 'year'));
11 }

Notice that line 1 includes passed parameters that will come from the URL represent-
ing a month and year. Lines 2-5 check to make sure these values exist; if not, it defaults to
the current month and year. Line 6 makes sure that the provided month value is between
1 and 12; if not, it sets $month to the current month. Line 9 is identical to Listing 13-20’s
line 2 except that it uses $month and $year instead of the current month and year. Line 7
also differs from Listing 13-20’s line 3 in that it passes along $month and $year to the view.

The corresponding view will also be similar to the Index view. Create the app/plugins/
calendar/views/events/view.ctp file, and paste Listing 13-23. This will complete the plugin
and allow the parent application to provide calendar views by requesting plugin actions or
pointing links to the plugin.

Listing 13-23. The View Action’s View

<h2><?=date('M',mktime(0,0,0,$month,1,$year))." '.$year;?></h2>
<?=$calendar->render($events, $month, $year);?>

Launch the View action by providing a month and a year as parameters, and check for test
events to appear in the correct dates. You should be able to enter any integer for the month
and year, and the plugin will render a calendar for those values (see Figure 13-3).

239

240

CHAPTER 13 ' PLUGINS

The Extensive Blog
1 ‘r;\" http: /localhost/blog/calendar/events fview/1/2025 ﬂQ‘ Google Y
Jan 2025
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Figure 13-3. The Calendar plugin using the View action to render a calendar for January, 2025

Summary

Plugins are like mini-Cake applications that you can bring into any other Cake application.
They are useful as third-party resources like Pseudocoder’s Ajax Chat plugin but can also
help with in-house applications that may need to use the same processes in several Cake
projects. I explained how to build a custom plugin by writing the Calendar plugin, which
renders calendars for any Cake application based on an events database table. This plugin
uses controllers, models, views, and helpers to create a simple calendar view and can extend
other Cake applications to handle calendar processes. The next chapter will discuss how to
extend one of the most challenging but also efficient aspects of web application develop-
ment: data handling. Using behaviors and DataSources, you will be able to connect your
Cake applications to new data sources and work with data more efficiently.

CHAPTER 14

DataSources and Behaviors

cake’s core set of resources strictly adhere to the MVC paradigm, meaning that all output

is configured by the view, all data handling is managed by the model, and all business logic is
handled by the controller. At this point, however, you're aware of how much the model, view,
and controller work together to run as an application. The view doesn’t act alone without the
controller providing needed variables, the controller doesn'’t process its logic without the help
of the model, and so on. The degree to which these resources work together depends on the
unique processes employed by the application. Because the MVC elements work together
(more or less simultaneously), you could possibly manipulate one element to perform the
work of another. For instance, the model could create output strings to be passed to the view,
like HTML tags and form fields. This might work in the short run, but if you were to distribute
this application later, it would prove difficult for other Cake developers to work with. Keeping
Cake applications portable requires sticking to the MVC structure as much as possible.

But having only model, view, and controller files presents one potential problem: these
files could get overdone, meaning that the more complex the application becomes, the
more disorganized these resources could appear. True, all data handling is restricted to the
model, but what if you want to work with multiple sources of data, such as an XML file here
and two different database systems there? In this situation, the model would need to
include a large number of connection functions, not to mention find, read, delete, and
other necessary data-handling methods. Before long, the MVC structure would begin to
lose one of its key advantages: lightweight organization, especially in cases where the
application is more elaborate.

Rather than accept the need for very large model, view, and controller files, the Cake
developers built into the framework resources that extend the MVC structure. I've already
discussed a couple of these extensions, such as helpers and components, in previous chap-
ters. By extending the MVC structure, model operations are kept to the model, and view and
controller operations are kept to their respective places—but the model, view, and controller
files don’t get overloaded with functions and data that are repeated throughout the program.
Just as basic application procedures (such as working with data and supplying output to the
user) get separated by using models, views, and controllers, more complicated procedures
(such as producing dynamic views) get separated from their respective resources. In other
words, helpers and components provide a second layer to working with views and controllers,
respectively. Table 14-1 illustrates resources in Cake that extend the MVC layout.

24

242

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Table 14-1. Cake Resources That Extend the MVC Layout

Main Layer Resource Background Layer Resource(s)
Model Behavior; DataSource

View Helper

Controller Component

By using helpers, you keep the individual views from getting too bloated, and you make
detailed output procedures available to other views across the application. Helper functions
are processed in the background layer, or while the view is being rendered. Components pro-
vide a similar service to the controller by separating out a suite of functions that perform
detailed operations. Figure 14-1 shows how the helper extends the view.

link($parameters)

function link($p) {
View Helper <€<«—— ---

7\/

<a...> @

Figure 14-1. The helper extends the view by housing more elaborate functions that would
otherwise clutter the view.

}

This is the process:

1. The view calls the $html->1ink() function to render a link and provides variable
parameters for the helper.

2. The 1ink() function processes the passed parameters and pieces together the final
output to be used in the view.

3. The HTML helper sends the final <a> element with all the text and attributes back to
the view.

The example in Figure 14-1 shows how the view is trimmed down by placing the repetitive
task of generating links into the helper. In other words, rather than place the $html->1ink()
function’s procedure into the view, Cake keeps it in one place, thus making it accessible to the
whole application and at the same time minimizing the amount of code in the view file. This
chapter explains how to use two resources that extend the model in the background layer just
as helpers and components extend the view and controller.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Extending the Model with DataSources
and Behaviors

The first of these resources are DataSources.! These are resources that connect to extra data-
sources in the background and provide data to the model. By using DataSources, you allow the
model to work normally, without filling it up with connection, find, read, and other data-han-
dling operations. The model can reference DataSource functions rather than perform the extra
connecting itself.

The second resources that extend the model are behaviors. These are classes that allow
the data used by the model to “behave” differently. In short, some data-processing methods
go beyond table associations and simple callbacks; they may perform multiple tasks with the
data as the data is saved, for instance. Behaviors are invoked when several updates need to
be performed simultaneously across the database. Later, I'll describe how to use some of
Cake’s built-in behaviors to apply a tree structure to the blog application’s tags.

Because extending the model is generally the most complicated of resources, this chap-
ter will probably include some of the most difficult concepts to master when learning Cake.
Just remember what the overall goal of the resource is and why it’s available in Cake in the
first place. Your application may not call for an added behavior for your model or a data-
source beyond the typical MySQL setup, but knowing what these resources can do and how
they work in Cake will almost certainly come in handy at some point.

Working with DataSources

So far in this book we've used only MySQL to work with data, but there certainly are other
ways to store data for the application. PostgreSQL, Sybase, Oracle, and Microsoft SQL Server,
to name a few, are some of the most popular database systems, and getting Cake to work with
them may be important if the project requires it. Fortunately, Cake comes with some built-in
DataSources that allow the application to connect to these other systems.

DataSources not only help with other database engines, but they also can be customized
to work with other data formats. Reading XML, CSV, or other formats may be accomplished
with DataSources. The application can also use other server systems such as LDAP or IMAP
through DataSources. Many web applications use some kind of web service API to work with
client-side programs that do not use HTML. Combining the power of a Cake application and
client-side software can be done with DataSources as well.

The main goal of DataSources is to handle all the connection methods for the model and
to provide the model with convenience functions to keep the amount of code in the model as
low as possible. These convenience functions, though, do relate to talking with the datasource
and not just any model-type procedure. In other words, you want the model to be able to stick

1. Defining DataSources can be tricky in Cake. In general, a datasource (lowercase) is any source for
supplying or saving data. So, MySQL is a datasource, as is an XML file or pulling data from an LDAP
server. Cake’s method for connecting to these datasources is through a resource file called a
DataSource, which is not the same as the source of data. To provide consistency in this chapter,

I'll stick with DataSource, the camel-cased word, to refer to Cake’s resource file and the lowercase
word, datasource, to refer to the actual source of data. Simply put, in Cake you use DataSources to
connect to datasources such as MySQL, XML files, and LDAP servers.

243

244

CHAPTER 14 I DATASOURCES AND BEHAVIORS

to the read() function rather than have to perform the step-by-step process of reading a
record in whatever unique way the current datasource may require. As much as possible, the
model shouldn’t have to change its current methods to accommodate a particular datasource.
For example, Figure 14-2 shows how the MySQL DataSource extends the model so that the
model doesn’t have to figure out the necessary SQL query strings and perform the connection
methods for the database.

“SELECT * FROM table
find($value) WHERE field=$value”
g— o
Model DataSource
S— i

7\/@ T\/CD Database

Sarray = (
[Records]

)’

Figure 14-2. The MySQL DataSource pieces together the connection strings and database queries
for the model.

Here’s the process:

1. The model runs one of its functions, which gets sent to the DataSource; in this case,
find() is invoked, and the contents of $value are sent.

2. The DataSource pieces together a query string based on the language of the source,
connects to the source, and runs the query; in this case, the MySQL DataSource runs
a query like "SELECT * FROM table WHERE field=$value".

3. The datasource returns a result set; here, the MySQL DataSource performs some
mysql fetch array() functions and loops through the result set from the database
to get the final results.

4. Once the final results are obtained, the DataSource formats the set for use in the
model. This will usually be an array of some kind.

5. The formatted array or result set is sent back to the model. The model then uses the
data for its own purposes.

Using Built-in DataSources

Cake’s built-in DataSources include support only for relational database systems. Because
they act as a layer between the model and the database, no additional DataSource functions
are invoked in the model. To change from one DataSource to another, simply adjust the data-
base configuration file.

The first step in changing the main DataSource for the application is to set the driver
parameter in app/config/database.php. Open this file, and you'll find the DATABASE_CONFIG

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

class; it should contain the original settings you used when first setting up the blog applica-
tion (see Listing 14-1).

Listing 14-1. The DATABASE_CONFIG Class in app/config/database.php

1 class DATABASE CONFIG {

2 var $default = array(

3 "driver' => 'mysql’,
4 'persistent’ => false,
5 "host' => 'localhost’,
6 "port' = "',

7 'login' => 'root',

8 'password' => 'root’,
9 'database’ => 'blog',

10 ‘schema’ => "',
11 "prefix' = '',
12 "encoding’ => "'
13)s

14}

Lines 2-13 of Listing 14-1 contain the $default variable that tells Cake where to connect
to the default datasource. The blog application currently connects to MySQL through the
built-in MySQL DataSource. This is set in line 3 with the driver parameter. By changing this to
another driver, Cake will use the new corresponding DataSource instead of MySQL. Table 14-2
shows a list of available driver options that you can use depending on the DataSource you
want to connect with.

Table 14-2. Driver Options Available for the DATABASE_CONFIG Class

Minimum PHP Version

Driver Parameter DataSource Requirement
db2 IBM DB2, Cloudscape, and Apache Derby PHP 4
mssql Microsoft SQL Server 2000 and higher PHP 4
mysql MySQL 4 and 5 PHP 4
mysqli MySQL 4 and 5 improved interface PHP 5
oracle Oracle 8 and higher PHP 4
postgres PostgreSQL 7 and higher PHP 4
sqlite SQLite PHP5
adodb- [drivername] ADOdb interface wrapper PHP 4
pear-[drivername] PEAR::DB wrapper PHP 4

To get an idea of how these DataSources work with their respective systems, you can open
the files themselves. The cake/1ibs/model/datasources/dbo folder stores the DataSource files
that Cake uses when you change the driver parameter to one of those listed in Table 14-2.
Should you set driver to something other than what is stored in this directory, you would
need to manually provide the DataSource code for Cake to work. When building a custom

245

246

CHAPTER 14 I DATASOURCES AND BEHAVIORS

DataSource, which I'll describe in this chapter, consulting these built-in DataSources can
sometimes be helpful. In them are great examples of how to preserve the model layer; all the
models behave the same regardless of the DataSource being used.

Building a Custom DataSource

Writing a custom DataSource requires a little more than writing other resources in Cake.
You may be used to the usual routine of creating Cake files—first, create a new file with the
appropriate file name and in the appropriate location; second, type the correct class name
in the file; last, add to the file your customizations and methods. With DataSources, how-
ever, a couple of additional tasks are required to get them working in your application.
You'll need to define the DataSource in the application’s database configuration file: app/
config/database.php. Then you'll need to define the DataSource in the model that calls it.

To walk you through writing a custom DataSource, let’s build an XML DataSource for
the blog application. This DataSource will open an XML file that is formatted to include
stories for the blog and will prepare the file’s contents for inclusion in the database. In a
more ambitious (theoretical) project, this process could be amplified to include saving all
the blog’s information; you could bypass using a database altogether in favor of writing
everything as XML to a file. Here, though, the DataSource will remain simpler and allow
for simple updates. For instance, you may want to write your blog posts in an external edi-
tor and not directly to the database through a web browser. In your word processor you
could export the posts as XML files and then import them to the blog with the XML
DataSource in this chapter. Whatever the case, building the XML DataSource will at least
demonstrate how to extend the capabilities of the model and how to customize a
DataSource in the first place.

Creating the DataSource File

DataSources are stored in the app/models/datasources folder and are named in lowercase with
_source.php appended to the end. To give the DataSource a title with more than one word, be
sure to use the underscore character as a separator in the file name.

Create the XML DataSource file, and open it for editing:
app/models/datasources/xml_source.php. The DataSource must be set up as a class object
extending the DataSource object. Copy the contents of Listing 14-2 to the new app/models/
datasources/xml_source.php file.

Listing 14-2. The XML DataSource Class

1 <?

2 class XmlSource extends DataSource {

3 var $description = 'XML DataSource';
4}

5 ?>

Line 3 of Listing 14-2 contains the $description variable. Use this variable to provide a
one-line description of the DataSource.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Starting with a Minimum Skeleton

DataSources differ from other resources in that they require several functions to be present,
even if those functions do not contain any logic. Without this “skeleton” of basic functions, the
model class will encounter errors. After line 3 of the xml1_source.php file, paste Listing 14-3,
which contains the necessary DataSource functions.

Listing 14-3. The Main Skeleton for DataSource Files

5 function _ construct($config=null) {

6 parent:: construct($config);

7 $this->connected = $this->connect();
8 return $config;

9

}
10
11 function _ destruct() {
12 $this->connected = $this->close();
13 parent:: destruct();
14 }
15
16 function connect() { }
17
18 function close() { }
19
20 function read() { }
21
22 function query() { }
23
24 function describe() { }
25
26 function column() { }
27
28 function isConnected() { }
29

30 function showLog() { }

Each of these functions may be called by the model as both the DataSource and the
model work together. Even though the functions listed on lines 16-30 of Listing 14-3 don’t yet
contain any logic or parameters, their being entered in the DataSource keeps the model from
calling a function that doesn't exist. True, when the model calls read() or query(), for instance,
it will receive a null response, but this at least won't potentially result in a Warning: Function
does not exist error. Later, you'll extend these skeleton functions as needed.

Two functions, however, not only are present as part of the skeleton but are key for the
DataSource to work at all: __construct() and _destruct(). These functions are written in
Listing 14-3 as lines 5-14. More could be included in them, but for the moment they contain
the very basics for the DataSource to work. When the DataSource object is instantiated,
Cake needs to pass along parameters from app/config/database.php to the object. In a
sense, Cake “binds” the DataSource through the construct() function and the $config

247

248

CHAPTER 14 I DATASOURCES AND BEHAVIORS

variable. If _construct() isn’t working with $config, Cake will not establish the binding cor-
rectly, and consequently the model won't be able to “talk” to the DataSource. In a minute you'll
configure the $config variable in database.php, but for now the _ construct() function has to
include the basic code to handle the DataSource configuration Cake will use later.

Lines 6 and 13 of Listing 14-3 call out the parent object as part of this binding process.
Notice that the parent object’s constructor and destructor functions pass along the $config
variable. By using these functions in this way, you keep settings in Cake’s core configuration
from conflicting with any existing DataSource parameters. In other words, Cake will link the
right settings with the right DataSource.

Both _ construct() and _ destruct() use other functions—connect() and close(),
respectively—which as yet don't do any connecting or disconnecting. This is only the case
here because the actual method of connecting to the datasource is specific to the source
itself. In this example, connect () will later open the XML file and will return a true or false
result depending on how effective it is at finding and opening the file. This could change if,
for example, this DataSource connected to a database—the method of connecting would be
entirely different and therefore would require a different set of instructions for connect() to
be able to establish a connection and return a response.

The object variable $connected in line 7 is referenced by the model to determine the sta-
tus of the DataSource. When true, $connected tells the model that the DataSource is working
correctly. Later, the destructor will set $connected to false, which will be the last method
called for the DataSource. Together, _construct(), destruct(), and the $connect object
variable establish a connection with the datasource, indicate the status of the connection,
and terminate the connection.

Setting Up the Database Configuration to Include the DataSource

As mentioned eatrlier, just creating the DataSource file and including the minimum skeleton of
functions doesn’t automatically include the DataSource in the application. Like the helper, the
DataSource must be included with some code elsewhere in the application to work correctly.
Though including helpers is done in the controller, DataSources differ in that they are
included in the DATABASE CONFIG class in app/config/database.php.

Paste the array in Listing 14-4 into app/config/database.php after the $default array to
provide the necessary DataSource configuration.

Listing 14-4. The $xml Configuration Array

1 var $xml = array(

2 'datasource’ => 'Xml',
3 'file' => 'data.xml’
4)

Line 1 of Listing 14-4 instantiates a new object variable named $xml. This could be named
whatever you like, but remember to link the datasource parameter in line 2 to the name of the
DataSource. I've named the XML DataSource class XmlSource (see line 2 of Listing 14-2), so Xml
is the necessary value to be set in the datasource parameter. The rest of the $xml array con-
tains any keys and values you want to pass to the DataSource. Lines 5 and 6 in Listing 14-3 use
the $config variable; this will be the same as the matching array from database.php, which in
this case is the $xml array. This DataSource will need to connect to the XML file data.xml.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Later, you'll provide this file as app/webroot/files/data.xml. By specifying this parameter in
the database configuration file, I've adhered to the consistency in the Cake application; all
the datasource connections are defined in one place, the database.php file. Now that the
database.php file includes the configuration settings for the XML DataSource, the model
can work with the DataSource.

Using the DataSource in the Model

A couple of key setup routines have to be accomplished before the DataSource and model can
begin working together:

1. The DataSource file must be appropriately named and placed in the app/models/
datasources folder.

2. The DataSource class must be appropriately named and set to extend the DataSource
object.

3. The DataSource file must include at least a minimum set of functions outlined in
Listing 14-3.

4, The database configuration file must define the DataSource in an object array.

5. This same object array must be referenced by the setDataSource() function in the
model.

6. The DataSource object must be instantiated in the model with the getDataSource()
function.

At this point, you've completed steps 1-4 in setting up the DataSource. Notice that steps 5
and 6 are accomplished in the model. Let’s open the app/models/post.php file and get the XML
DataSource working there.

Listing 14-5 contains the xm1FindAl1() function to be placed in the post.php file. This
function uses the XML DataSource to return an array of values in the data.xml file.

Listing 14-5. The xm1FindA11() Function in the Post Model

1 function xmlFindAll() {

2 $this->setDataSource('xml");
3 $xml = $this->getDataSource();
4 return $xml->findAl1l();
5}

Notice that lines 2-3 of Listing 14-5 accomplish the last steps of the DataSource setup
routine. Line 2 uses the setDataSource() function to link the $xml array in app/config/
database.php to the model. When this line is called, the XML DataSource __construct()
function is automatically run, and the $xml array is passed to this function as the $config
array. The setDataSource() function not only links up the model to the DataSource but also
makes it the main driver for the model. In other words, the MySQL driver/DataSource is no
longer being run in the model while the XML DataSource is being used. Whenever the con-
troller calls on the model to connect to the default DataSource, this instance of the XML
DataSource object is destroyed, and the __destruct() method is automatically invoked.

249

250

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Line 3 assigns the XML DataSource object to the variable $xml. From now on in the model,
any function in the DataSource file may be run by referencing the new $xml object, which is
done in line 4; the $xml->findAl1() function will be the same as the findA11() function you'll
later insert into the DataSource.

When the controller calls the xm1FindAl1() function, the model will return a set of values
to be used in the controller and view. Notice that this model function doesn’t have all the con-
nection code that will soon appear in the DataSource. This will keep the model trim and able
to deal with the data rather than managing all the connections to the datasource.

Reading the XML File

Now that the setup routine is complete and the model is ready to begin using DataSource
functions, you're ready to put the DataSource to work. Right now the findA11() function does
nothing. Before it can do any reading, the connect() function on line 16 in Listing 14-3 must
connect to the XML file and fetch its contents for use in the DataSource. Replace connect ()
with Listing 14-6 to provide the DataSource with the necessary connection method.

Listing 14-6. The Improved connect () Function in the XML DataSource

16 function connect() {

17 App: :import('Core', 'File');

18 $this->FileUtil =& new File(WwW ROOT.'files/'.$this->config['file']);
19 $this->File = $file->read();

20 if ($this->File) {

21 return false;

22 } else {

23 return true;

24 }

25}

Throughout the DataSource file, the configuration array defined in app/config/
database.php will be available as the object variable $config. Don’t confuse this variable with
the $config variable used by the _construct() function from Listing 14-3. In fact, the result
of the constructor method—or, in other words, the returned value in the __construct() func-
tion—is assigned to the standard object variable $config for the DataSource. This means that
anywhere in the rest of the DataSource (except the __construct() function), the configura-
tion values returned by the constructor are available as $this->config. It just so happens that
__construct() performs the necessary method to fetch the $xml array from app/config/
database.php and return it as $this->config for the DataSource to use. The connect() func-
tion in Listing 14-6 uses $this->config to retrieve the datasource’s file name. Notice that line
18 calls for this file name in the File utility. Using the WWW_ROOT global variable, line 18 also
contains the path to the file relative to Cake. In this case, the file will need to be stored in the
Cake file system as app/webroot/files/data.xml. Of course, $this->config['file"] corre-
sponds to $xml['file"] defined on line 3 of Listing 14-4.

Thanks to the File utility class, reading the contents of app/webroot/files/data.xml is a
snap. Line 18 grabs the file itself and assigns it as part of the File utility’s class object. Then,
on line 19, the File utility’s read () function is used to read the contents of the file and assign
them to a class variable named $File. You may have noticed that this variable hasn’t yet been

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

defined; do that by inserting the following string under the $description class variable
shown in line 3 of Listing 14-2 (or in line 3 of the current XML DataSource file):

var $File = null;

Assigning the contents of the file to an object variable as opposed to a standard variable
is important for making sure that all the other functions in the DataSource have access to
this file. For this same reason, the resulting File utility object ought to be made available to
the rest of the DataSource as well. This is done in line 18 by assigning the new File object to
the instance variable $FileUtil. This, too, needs to be defined in the class to work correctly.
Insert this definition near the $File definition:

var $FileUtil = null;

Later, the _destruct() and close() functions will close the data.xml file to keep the
application’s load on the server to a minimum. These functions will need the File utility object,
which is accessible outside the connect () function because I've assigned it to the $FileUtil
instance variable.

The connect() function has essentially performed a connection method by providing
the file contents of data.xml to the rest of the DataSource. All that’s left for this function is to
return a true or false result to the constructor. Lines 20-24 check for any content in the $File
variable and return this result. Now that the data.xml file has been opened and its contents
made available to the rest of the DataSource, you're ready to move on to the findA11() func-
tion called by the model.

Disconnecting from the XML File

For good measure, the DataSource should include a method for disconnecting from the
source. The _ destruct() function defined in Listing 14-3 already does this, except that the
close() function it calls has nothing in it yet. Replace the close() function (which should now
appear on line 29 of the app/models/datasources/xml_source.php file) with the contents of
Listing 14-7.

Listing 14-7. The Improved close() Function

29 function close() {

30 if ($this->FileUtil->close()) {
31 return false;

32 } else {

33 return true;

34 }

35}

The result of this function may seem backward only because a false result usually means
that the method failed. In this case, returning false sets the $connected class variable to the
proper value; it tells the model that the connection status is disconnected, or zero.

Line 30 of Listing 14-7 uses the File utility class function close() to close the data.xml file.
Simply put, if this is accomplished, then all close() has left to do is report false to the
destructor, which is done on line 31.

251

252 CHAPTER 14 I DATASOURCES AND BEHAVIORS

Parsing the XML File

Before the DataSource parses the XML file, let’s give it something with which to work. Paste
something like the contents of Listing 14-8 into the app/webroot/files/data.xml file. Notice
that Listing 14-8 is formatted as XML 1.0 standard tags named after fields in the current posts
table in the database.

Listing 14-8. Contents to be Added to the data.xml File

<?xml version="1.0" encoding="UTF-8"?>
<blog>
<post>
<id></id>
<name>Writing Posts in XML is a Snap</name>
<date>2008-11-08 12:00:01</date>
<content>Using the XML utility class in Cake with the Set::reverse()w
function makes parsing XML easy.</content>
<user_id>1</user_ id>
</post>
<post>
<id></id>
<name>More XML Posts, Not so Bad</name>
<date>2008-11-08 12:00:02</date>
<content>Using the XML utility class in Cake with the Set::extract()w
function makes parsing XML easy.</content>
<user_id>1</user_ id>
</post>
</blog>

Aside from the XML specification string on line 1 of Listing 14-8, the tags used here are
structured hierarchically like the posts table: the <blog> tag is named after the name of the
database; <post> is used for each row in the posts table; <id> corresponds to the ID field, and
so on, through <user id>. Once these tags are parsed by the findAl1() function, an array will
be passed to the model just like when the default MySQL DataSource passes a result set from
the database.

Currently, this same content in Listing 14-8 is assigned to $File upon connecting to the
data.xml file. All the read() function has to do is parse through these XML tags and format the
array for the model accordingly. Listing 14-9 contains the findA11() function that parses the
XML. Paste this into the XML DataSource file.

Listing 14-9. The findA11() Function

37 function findAl1l() {

38 App: :import('Core', 'Xml");
39 $xml = Set::reverse(new Xml($this->File));
40 return Set::extract($xml, 'Post');

41}

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Thanks to the XML utility class (which is imported into the function on line 38 of
Listing 14-9), parsing through all those XML tags is made much easier. Line 39, for
instance, creates a new XML utility class object from the contents of $File, which currently
contains the contents of the data.xml file. With this object, XML utility functions are avail-
able to the DataSource such as counting the number of child nodes for a particular tag,
pulling names and values from the XML data, and so forth. A handy method for cutting
down on the number of loops through all those tags and nodes is to use the Set utility class,
which is done on lines 39 and 40.

The Set utility contains several functions for working with result sets of data. Cake’s
core libraries use this utility when constructing the arrays that make $this->data and
$this->params, which has proven useful in earlier chapters when we explored the Form
helper and managing form submissions. Using Set not only cuts down on the number of
operations needed to construct Cake-friendly data arrays but can be used with the XML
utility to piece together an array of data from the XML file that matches the standard
arrays used in the model.

On line 39, Set: :reverse() is used together with a new instantiation of the XML utility
class object to create a Cake-friendly array out of the XML tags. The Set: :reverse() function
is used here because it converts objects into arrays.

This array would vary in its structure depending on the hierarchy in the XML file and
can even be inconsistent depending on how many <post> tags appear in $this->File. To
guarantee that the same structure is applied to the array, the Set::extract() function is
used on line 40. In short, Set: :extract() takes the $xml array formatted by Set: :reverse()
on line 39 and looks for array keys named Post. It then extracts each of those nested arrays
and constructs a new array out of the results. This array is then forwarded to the model with
the return command.

If you wanted to get more elaborate with this XML file, you could explore the XML util-
ity in more depth and use more of its functions. Assigning attributes to tags, for example,
could extend the XML file to include more types of data, not to mention more associations
within the file with the use of other tags (like <user> or <tag> to match the users and tags
tables in the current database). For the moment, the XML DataSource parses the data.xml
file for use in the controller and view. All that’s left is to display the data and make it accessi-
ble for the user.

Viewing the Data

The XML DataSource and the model are now working correctly. Viewing the XML data in
data.xml is now as simple in the controller and view as fetching data from the database.
In the Posts Index action in app/controllers/posts_controller.php, use the xml1FindAll()
function from the Post model to run a “find all” query of the new datasource by inserting
the following line:

$this->set('xml',$this->Post->xmlFindAl11());

The parsed XML is now available in the Index view as $xml. Use the debug() function to
view its contents. You should get the following results:

253

254

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Array
(
[0] => Array
(
[Post] => Array
(
[name] => Writing Posts in XML is a Snap
[date] => 2008-11-08 12:00:01
[content] => Using the XML utility class in Cake with the =
Set::reverse() function makes parsing XML easy.
[user id] => 1
)
)

[1] => Array
(
[Post] => Array
(
[name] => More XML Posts, Not so Bad
[date] => 2008-11-08 12:00:02
[content] => Using the XML utility class in Cake with the =
Set::extract() function makes parsing XML easy.

[user id] => 1

)

This array looks just like those you're used to in Cake. In the Index view, you can add these
results to the list by running a loop just like the current loop for the $posts variable. Of course,
in the app/webroot/files/data.xml file, I left the <id> tags blank; you'll have to set those man-
ually or build an auto_increment method into the DataSource to provide a unique ID for each
post in the XML file.

Not only can DataSources connect with external files, but they can also be used for
pulling data from just about anywhere, such as a web service, e-mail, or some legacy system.
This tutorial explored using XML as an external datasource and demonstrated how extending
the model in this way actually improves the code and maintains better order throughout the
framework. Third-party DataSources by other developers are already available online; you
might want to try installing one as practice for using DataSources in your Cake applications.

Working with Behaviors

Another way to extend the model is with behaviors. Behaviors provide “rules” for models, like
the rules you may set on your mail program to apply to your incoming mail. For example, you
may want the model, when updating a record in the database, to perform multiple calcula-
tions of the data on the fly and not only update one record or a couple of associated records
but perform a series of updates across the database. Using a behavior, rather than building

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

into the model all the necessary functions to manage this kind of updating, keeps repetitive
tasks in a separate resource file and makes the model more versatile by allowing multiple
models to access more complicated processes without bogging them down. Cake comes with
four built-in behaviors: ACL, Containable, Translate, and Tree. In this chapter, I'll explain how
to use the Tree behavior to improve how the blog categorizes posts. Creating custom behaviors
is actually simpler than making your own DataSources; understanding how the built-in
behaviors work will make crafting your own behaviors much easier.

Using the Tree Behavior to Categorize Blog Posts

The blog application uses the tags table to manage multiple tags to be applied to a post.
What if you wanted to create a hierarchy of tags, or a “tree” of data of some kind? One tag
could then become a “parent” of another tag, and a series of tags could be assigned as
“children” to one tag. Then, once a tag is assigned to a post, by clicking the parent tag, all
the associated posts for that parent tag and its child tags would be listed for the user. This
method for working with hierarchical data is more effective than building several relational
databases to manage the hierarchy. Fortunately, Cake comes with the Tree behavior that
maintains a tree of data dynamically.

Inserting Required Fields into the Tags Table

Using the Tree behavior requires that the database table associated with the behavior be
organized a certain way. In this case, the tags table will need to include a couple of extra fields
for the Tree behavior to save its own parameters. Wherever you use the Tree behavior, remem-
ber to provide these three fields:

* parent_id
o 1ft
* rght

The left and right fields, or 1ft and rght, are used by the Tree behavior to organize the
position of the node in the tree. The parent_id field links with the ID of the record in the
table that behaves as the parent node of the current record. Currently, the tags table doesn’t
include these fields. To prepare the blog to use the Tree behavior, replace the tags table fol-
lowing the specifications in Listing 14-10.

Listing 14-10. The Tags Table with Required Fields for the Tree Behavior

CREATE TABLE “tags™ (
“id® int(11) unsigned NOT NULL auto_increment,
“parent _id” int(11) unsigned default NULL,
“left™ int(11) unsigned default NULL,
‘right® int(11) unsigned default NULL,
“name” varchar(255) default NULL,
PRIMARY KEY('id')

);

255

256 CHAPTER 14 I DATASOURCES AND BEHAVIORS

Notice that Listing 14-10 doesn't call the left and right fields by their default values 1ft
and rght; these may be set to whatever name you choose, and here I've opted for left and
right. Later, when calling the Tree behavior in the model, I'll specify these field names.

Baking a New Tags Controller and Views

Now that the tags table includes the required fields for the Tree behavior to function correctly,
the Tags controller and views will need to be regenerated. Use Bake to create a new controller—
make sure not to use admin routing, scaffolding, additional components, or additional helpers;
do make sure to use sessions and to create the basic view methods (index, edit, add, view). The
new Tags controller should have the code shown in Listing 14-11, or something very similar.

Listing 14-11. The Baked Tags Controller

1 <?php

2 class TagsController extends AppController {

3

4 var $name = 'Tags';

5 var $helpers = array('Html', 'Form');

6

7 function index() {

8 $this->Tag->recursive = 0;

9 $this->set('tags', $this->paginate());

10 }

11

12 function view($id = null) {

13 if (1%id) {

14 $this->Session->setFlash(_ ('Invalid Tag.', true));
15 $this->redirect(array('action'=>"index"));

16 }

17 $this->set('tag',$this->Tag->read(null,$id));

18 }

19

20 function add() {

21 if (lempty($this->data)) {

22 $this->Tag->create();

23 if ($this->Tag->save($this->data)) {

24 $this->Session->setFlash(_ ('The Tag has been saved', true));
25 $this->redirect(array('action'=>"index"));
26 } else {

27 $this->Session->setFlash(_ ('The Tag could not be saved.w=
Please, try again.', true));

28 }

29 }

30 $posts = $this->Tag->Post->Ffind('list');

31 $this->set(compact('posts'));

32 }

33

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

34 function edit($id = null) {

35 if (1$id && empty($this->data)) {

36 $this->Session->setFlash(_ ('Invalid Tag', true));
37 $this->redirect(array('action'=>"index"));

38 }

39 if (lempty($this->data)) {

40 if ($this->Tag->save($this->data)) {

41 $this->Session->setFlash(_ ('The Tag has been saved', true));
42 $this->redirect(array('action'=>"index"));

43 } else {

44 $this->Session->setFlash(_ ('The Tag could not be saved. =
Please, try again.', true));

45 }

46 }

a7 if (empty($this->data)) {

48 $this->data = $this->Tag->read(null, $id);

49 }

50 $posts = $this->Tag->Post->find('list");

51 $this->set(compact('posts'));

52 }

53

54 function delete($id = null) {

55 if (1$id) {

56 $this->Session->setFlash(_ ('Invalid id for Tag', true));
57 $this->redirect(array('action'=>"index"));

58 }

59 if ($this->Tag->del($id)) {

60 $this->Session->setFlash(_ ('Tag deleted', true));
61 $this->redirect(array('action'=>"index"));

62 }

63 }

64 }

65 >

Next, use Bake to create the Action views for the Tags controller. You should end up with
the app/views/tags folder with add.ctp, edit.ctp, index.ctp, and view. ctp files inside. With
the Tags controller and views working properly, the blog now has a basic interface for adding,
editing, and deleting tags. The Tag model already has the “has and belongs to many” relation-
ship built into it, so tags can also be associated with specific blog posts. Here is where the Tree
behavior will come in—rather than build into the application a mechanism whereby the user
can click a tag and retrieve a list of related posts, the Tree behavior will be used as well. Thus,
when clicking a tag, the user will not only get a list of associated posts but also a list of associ-
ated tags’ posts.

Using the Tree Behavior in the Model

With the database ready to handle the Tree behavior and a baked controller with views, the
model is ready to call out the behavior. This is done using the $actsAs property in the model.

257

258

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Open app/models/tag.php, and insert the $actsAs property near the $hasAndBelongsToMany
property. The value set in $actsAs corresponds to the behavior being used; in this case,
$actsAs is set to Tree. Once you have entered the $actsAs property, your Tag model should
appear like Listing 14-12.

Listing 14-12. The Tag Model with the Tree Behavior Included

1 <?

2 class Tag extends AppModel {

3 var $name = 'Tag';

4 var $actsAs = array('Tree'=>array(

5 "left'=>"left',

6 'right'=>"right'

7));

8 var $hasAndBelongsToMany = array('Post');
9 }

10 >

Lines 5 and 6 in Listing 14-12 show how I've specified the left and right field names.
Since I didn't use the default names 1ft and rght, I've had to assign an array to Tree on line 4
and include the left and right parameters shown in lines 5-6. The values assigned to these
parameters correspond to the field names of the left and right fields in the tags table, which
in this case is left and right, respectively.

To attach multiple behaviors to the model, simply continue the $actsAs array. For
example, if I wanted to attach a custom behavior as well as the Tree behavior to the Tag
model, I would enter something like this:

var $actsAs = array('Tree', 'MyBehavior');

Each behavior name in the array can also include a set of parameters like those shown
in Listing 14-12; just assign an array as a value to each behavior name:

var $actsAs = array(
'Tree'=>array(
"left'=>"left’,
'right'=>"right’
))
'MyBehavior'=>array(
'recursive'=>1
)
)s

Now that the $actsAs property is set to Tree, and the appropriate field names for the left
and right fields are set in the parameters array, nothing else needs to be done in the model.
All the Tree behavior’s functions are accessible in the controller or model, which is the next
task for getting the tags organized hierarchically.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Adjusting Views

When the Tags views were generated by Bake, they included behavior fields (parent_id, left,
and right). These might conflict with the Tree behavior if they stay as part of a form submis-
sion, so it’s important they be removed from the views. Find the Form helper functions in each
of the baked views that call one of the behavior’s fields, and remove them from the file. You
should be left with the name field only and, in some instances, the id field.

Next, to give a tag a parent node, the Add and Edit views must have a way of selecting
a parent ID. To do this, place a select menu containing a list of Tags in the Add and Edit
views. For this menu to work, you will first have to generate a Tags list in the controller and
then use the Form helper to render the select menu in the view. Open app/controllers/
tags_controller.php, and add the following line to the Add and Edit actions:

$tags = $this->Tag->Ffind('list');

Now that a list of tags is available as the $tags array, pass the variable to the view by
rewriting the set () function to include both $posts and $tags:

$this->set(compact('posts’, 'tags'));

In the Add and Edit views, use the Form helper to provide the select menu. Remember
that it will need some added parameters to work correctly with the controller. Listing 14-13
includes the $form->input () function that renders the select menu. Add Listing 14-13 to
app/views/tags/add.ctp and app/views/tags/edit.ctp in place of where Bake wrote the
parent_id form input field.

Listing 14-13. The parent_id Select Menu in the Add and Edit Views

1 echo $form->input('parent id',array(
2 'label'=>"Parent Tag',

3 "type'=>"select’,

4 'options'=>$tags,

5 "empty'=>"'- No Parent Tag -'

6)

Notice that on line 1 of Listing 14-13, the field name passed to the Form helper is
parent_id, which corresponds with the parent ID field in the tags table. The rest of List-
ing 14-13 contains parameters that tell the Form helper to render a select menu (on line 3
with the type parameter), to use the $tags array passed by the controller as the options in
the menu (on line 4 with the options parameter), to make the first and NULL option of the
menu - No Parent Tag - (online 5 with the empty parameter), and to give the menu the
label Parent Tag instead of the default label (on line 2 with the label parameter).

To test the Tags Add and Edit views, let’s add some categories to the tags table. For your
information, I've included the following names with their respective IDs in Table 14-3; of
course, you can enter whatever values you like.

259

260

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Table 14-3. Some Sample Tags to Test the Controllers, Views, and Eventually the Tree Behavior

ID Name
CakePHP
PHP
Programming
Web

Frameworks

Qs W N

Table 14-3 shows tags that can be easily ordered into a data tree. For example, “CakePHP”
relates to “PHP” as a child node; “PHP” is a child of “Programming,” as are “Web” and “Frame-
works.” The Tree behavior will allow you to assign the parent tags to each tag accordingly.
Before it can do this, however, you'll have to make sure that the $this->data array contains the
right parent ID name and value for the model to pass along the results of the select menu cor-
rectly. If $this->data['parent_id'] isn't set in the first place, no tags will have parents, and the
Tree behavior won't be able to manage the data as you want. So, in the Edit action, use the
debug() function to display the contents of $this->data, like so:

<? debug($this->data);?>

Next, open a tag record in the Edit view by entering a URL that matches one of the tags,
something like http://localhost/blog/tags/edit/1. You should see the debug() function dis-
play $this->data, as shown in Listing 14-14.

Listing 14-14. The Contents of $this->data After the parent_id Field and Select Menu Has
Been Added

1 Array

2 (

3 [Tag] => Array

4 (

5 [id] => 1

6 [parent 1d] 2

7 [left] =

8 [right] =>

9 [name] => CakePHP

10)

11 [Post] => Array

12 (

13 [0] => Array

14 (

15 [id] =

16 [name] => New Cake 1.2 Functions
17 [date] => 2008-01-01 01:01:01

18 [content] => Some snazzy new functions are now available in =

1.2 that you should check out!
19 [user id] => 1

http://localhost/blog/tags/edit/1

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

20 [PostsTag] => Array
21 (

22 [id] =>

23 [post id] => 1
24 [tag id] => 1
25)

26)

27)

28)

Notice that the associated post shows up in the $this->data['Post'] array (lines 11-27 of
Listing 14-14) because of the hasAndBelongsToMany association already set up in the Post and
Tag models. This array would be much larger if more posts were associated with the current
tag, but Listing 14-14 at least shows how $this->data will contain these associated records.
What I'm looking for in this array, however, is not the associated posts but the parent_id field.
So, since I already selected a parent node from the Parent Tag select menu and saved the tag,
$this->data shows that the value was saved properly; line 6 of Listing 14-14 shows that the ID
value of 2 is now saved in the parent_id field for this current record.

Now that the Parent Tag select menu is working in the Edit view and saving the selected
value in the parent_id field, paste the same line of Form helper code into the Add view file:

echo $form->input('parent id',array('label'=>'Parent Tag','type'=>'select',w
'options'=>$tags, 'empty'=>'- No Parent Tag -'));

Fetching All Related Posts When a Tag Is Viewed

The Add and Edit views now support assigning parent tags, which the model saves in the
parent_id field. Because the model is behaving like a data tree (see Listing 14-12), the Tree
behavior automatically analyzes the tags table and each tag’s parent node ID value and then
assigns a left value and a right value. When creating and editing tags, you can now choose
each tag’s parent from a list of existing tags, and the Tree behavior does all the rest of the
work. The only remaining task is to use the Tree helper to retrieve associated posts when a
tag is called by the user.

Use the children() function to perform a find request of the provided tag ID and all of its
associated tags. Depending on what parameters we provide, children() can also retrieve not
just a list of these tags but all of their related posts as well. Replace the current View action in
app/controllers/tags_controller.php with Listing 14-15.

Listing 14-15. The View Action with the children() Function Included

function view($id = null) {

if (1$id) {

$this->Session->setFlash(_ ('Invalid Tag.', true));
$this->redirect(array('action'=>"index"));

$children = $this->Tag->children($id,null,null,null,null,null,1);
$tag = $this->Tag->read(null,$id);

1

2

3

4

5 }
6

7

8 $this->set(compact('children','tag', 'list'));
9

261

262

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Notice on line 6 of Listing 14-15 how the Tree behavior function children() is being used
like any other model function. If the $actsAs property were not set to Tree in the Tag model,
then this line would break; or, at least, the model would search for a custom function in app/
models/tag.php named children(). But because the Tree behavior has been applied to the
current Tag model, all of its functions are accessible in the controller by referencing the model,
asin line 6 of Listing 14-15.

Let me explain the children() function. This function is how the Tree behavior performs
the find request described earlier to return child nodes for a given record.

children(&$model, id[mixed], direct[bool], fields[mixed], order[string], =
limit[int], page[int], recursive[int])

id: The ID of the parent node record.

direct = false:Whether to return only the direct, or all, children. When set to true,
returns only the direct child nodes, not child nodes of children also; when set to false,
will return any and all child nodes of current parent.

fields = null: Either a single string of a field name or an array of field names; used to
limit the returned fields from the find query.

order = null: SQL order conditions, for example, name DESC; defaults to the order in
the tree.

limit = null: Used for calculating the number of items per page of data; entered as an
SQL LIMIT clause.

page = 1:The page number; used for accessing paged data.

recursive = -1:When fetching associated records, used to specify the number of levels
deep to be returned; corresponds to the recursive parameter used in model functions like
find() and read().

On line 6 of Listing 14-15, the children() function is invoked using the id and recursive
parameters. By entering null values for the other parameters in between, I've told the Tree
behavior to stick with its defaults otherwise. Without changing the recursive parameter, the
function would have provided the controller only with an array of child tags, not an array of
those tags and their associated posts. So, you can see that line 6 sets the recursive value to 1
rather than the default value of -1.

The Tags controller now provides the view with an array of related tags and their associ-
ated posts. Let’s loop through this array in the app/views/tags/view.ctp file to display the
posts. Somewhere in this file (around line 16), insert Listing 14-16, which contains this loop
and displays an HTML link for each associated post.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Listing 14-16. Displaying Each Related Post As a Link in the View

1 <? if (isset($children)): ?>

2 <? foreach($children as $child): 2>

3 <? foreach($child['Post'] as $post): ?>

4 <?=$html->1ink($post['name'],array('controller'=>"posts', action'=>w=
'view','id'=>$post['id']));?>

5 <? endforeach;?>

6 <? endforeach;?>

7 <? endif;?>

You can see that Listing 14-16 is a loop through the $children array passed by the con-
troller (as shown in Listing 14-15). Because I'm interested only in displaying all related posts
to the supplied tag, I've looped through each post contained in each tag record, so both lines
2 and 3 contain a foreach() function. Lines 1 and 7 are a way for testing whether anything is
present in the $children variable to begin with. Using the HTML helper on line 4 let me ren-
der a link for each post that is reverse-routed and contains the post’s name. To adjust how
each post is displayed, just retool line 4 to meet your own styles; the full contents of the post
record are available as $post at this point in the process.

That's it! Thanks to the Tree behavior and its children() function, all related posts, includ-
ing those of related child tags, are displayed in this view. By applying this same process to
other areas of the blog, the user could more quickly access categorized posts. And since the
Tree behavior is managing the hierarchy, the work for the administrator is reduced by having
only to set the parent ID value in the Tags Add and Edit views. The Tree behavior also let me
bypass writing my own set of functions to find the child nodes and their associated posts.

Using Other Tree Behavior Functions

Like the children() function, other Tree behavior functions may be called in the model or
controller by referencing the model. This is done in the controller by entering the model
name and calling out the Tree behavior function desired, not by entering the name of the
behavior:

$this->Model->children($id); // this will work
$this->Model->Tree->children($id); // this will not work

In the model, the model name is left out, as with referencing other model functions,
like so:

$this->children($id); // this will work
$this->Tree->children($id); // this will not work
$this->Model->children($id); // neither will this

childCount

The childCount() function returns the number of child nodes for a given parent ID.
childCount(&$model, id[mixed], direct[bool])

When id is set to false, all top-level nodes will be read; otherwise, it will read only the
supplied ID node as the parent; when direct is set to true, only direct children are counted.

263

264

CHAPTER 14 I DATASOURCES AND BEHAVIORS

generateTreeList

This function is a convenience method for returning a hierarchical array to be used in making
HTML select boxes or breadcrumbs.

generateTreelist(&$model, conditions[mixed], keyPath[string], =
valuePath[string], spacer[string], recursive[int])

conditions = null: SQL conditions as a string or as an array (similar to conditions used
in the find() model function)

keyPath = null:A string path to the key, for example, {n}.Tag.name
valuePath = null: A string path to the value; similar to keyPath

spacer = ' ":For each level that a node falls under the parent, this character will be
placed before the returned list item; for example, the grandchild of the parent node
would be returned with two spacers in front of the name

recursive = -1:The recursive value for the returned data

moveUp and moveDown

To reorder a given node without changing its parent, use the moveUp () and moveDown ()
functions.

moveUp(&$model, id[int], number[mixed])
moveDown(&$model, id[int], number[mixed])

These functions move the node id, or in other words, dynamically adjust the left and
right fields, based on the value set in number. If number is set true, moveUp () will set the node
to the topmost, or first, position; moveDown () will set the node to the last position.

getParentNode and getPath

To fetch the parent of a given child node, use getParentNode(). Simply provide an ID for a
given node, and this function will find its parent and return the contents. To retrieve the path
to a given node, supply the ID of the record, and getPath() will return an array of the topmost
node down to the current one. This function is handy for displaying breadcrumb links.

recover, removeFromTree, setParent, setup, and verify

Recovering a corrupted tree, meaning that the left and right fields are realigned by the Tree
behavior, is done with the recover() function. No passed value is necessary when calling
recover(); just make sure that the database table in question is set up properly in the
$actsAs property.

To remove a node from the tree, use removeFromTree (). Simply provide the node ID, and
this function will remove the node from the tree and re-parent all the remaining children up
one level.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Normally, as already demonstrated in this chapter, the Tree behavior automatically
assigns the parent so long as parent_id is properly set up in the view and passed to the
model through $this->data. However, the setParent() function is available as a backward-
compatible method for assigning a parent manually. When used, setParent() takes the ID
value provided as its first parameter and assigns the matching record as the parent of what-
ever record is currently being saved. This function should be used when the model is
undergoing a save.

To manually adjust the settings used in $actsAs in an action or model function, use the
setup() function. The first parameter must be an array with the same structure as the $actsAs
property; in other words, set an array just as you would format the $actsAs property and pass
it to setup(). Then the new settings will be applied to the model when invoking behaviors.

To test whether a model has a valid tree, use the verify() function. No parameters here
are necessary. Simply call out this function in the model or controller, and it will return a true
value if the model has a valid tree.

Using the ACL and Translate Behaviors

So far, I've explained the Tree behavior at length to demonstrate how to use a behavior in your
Cake application. Without adding any more than one line of code (specifically, setting the
$actsAs property), you were able to extend the model to behave differently. On the fly, the Tree
behavior adjusts the tags to include associations between them, and you don’t have to write
any more functions in the model to maintain the data tree (unless, of course, you want to beef
up the tree to include more methods and structures). But, in relatively little time, you can add
basic tree structures to your database.

Other behaviors work in a similar fashion, meaning that they perform similar tasks for the
model that make it easier to move data around. Unfortunately, the other two built-in behaviors,
namely, ACL and Translate, are much more complicated than the Tree behavior. (The Containable
behavior is easy to use, but I'll get into more detail on this behavior in a moment.) The very nature
of managing access control lists (which is what ACL stands for) is one of the most complex tasks
of establishing user control in an application. Delving into this behavior would certainly be useful
for many developers, but it would also go beyond the scope of this book. I'll simply bring it to
your attention and encourage you to take a look at this built-in behavior if your application calls
for a detailed hierarchy of various user groups and individual users.

The Translate behavior also involves more complicated methods for working it into your
application. A tutorial for this behavior would go beyond the general purpose of this book
because it would require knowledge of another language (as well as English). So, keep in mind
that if your project requires complicated data mapping for changing language settings, the
Translate behavior is your best bet for working with those methods in a dynamic fashion. In
short, Translate can map field names, routes, and more on the fly.

Using the Containable Behavior

By supplying the model with specific find conditions, you can effectively search through the
database and filter out exactly what you don’t want in the result set. Not only can you avoid
writing and looping through complex queries by sticking with Cake’s model functions, but you
can work with a normalized database and expand your application to accommodate more

265

266

CHAPTER 14 I DATASOURCES AND BEHAVIORS

elaborate schemas. But with all of these possibilities, you may notice that constructing find
conditions that work with the database to give you precisely what you need can become diffi-
cult in its own right. Or, worse yet, you may find yourself writing complex loops or helper
functions to filter through the data in the view, especially when you end up with elaborate
many-to-many associations.

It’s best to let the model provide the controller and view with the exact pieces of data,
but when complex associations are used, extra find methods must be employed. This is
where the Containable behavior comes in—it applies filtering methods to associated
models and records that allow you to be more specific when retrieving associated data.

As with all other behaviors, Containable must be included in the $actsAs property. To
illustrate how Containable works, consider how some of our blog application’s tables are
arranged: posts have many comments, tags have and belong to many posts, and users have
many posts. Now, consider this scenario: suppose you wanted to fetch a post based on a
specific comment author from the Post model. Containable makes this operation simple.
In the controller, you could enter the following:

$this->Post->find('all', array('contain'=>'Comment.name = "Superman"'));

This string would return all posts that contain a comment whose name value is set to
Superman.

Containable can also “contain” associated models, meaning you can restrict the result
set to a specific model without using unbindModel () or changing the recursive parameter.
For example, if you wanted to retrieve all the posts in the database but only the associated
comments (not associated tags), Containable could simplify that operation with the
following:

$this->Post->find('all',array('contain'=>"'Comment"'));
Without Containable, you'd need to use unbindModel () to produce the same result, like so:

$this->Post->undbindModel (array('hasAndBelongsToMany'=>'Tag"));
$this->Post->find('all");

Containable can also return specific fields in associated result sets. For instance, you may
want only the name of the post’s author and not the additional fields in the users table (like
password and role). Using the following:

$this->Post->find('all',array('contain'=>"User.username'));

will still provide you with the associated user for each post but include only the username
and id fields. An example array for one returned post using Containable in this way would
look like this:

Array

(
[Post] => Array

(
[id] => 1
[name] => A Sample Post Title

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

[date] => 2008-12-01 00:00:00
[content] => Sample content.

)
[User] => Array
(
[id] => 1
[username] => sampleuser
)

Notice that only the ID and username have been returned in the User array. With Contain-
able, you can apply more specific rules to the find operations the model performs and signifi-
cantly reduce the amount of data that gets passed around your application, not to mention
the amount of work done in the controller or view to process the result sets.

Attaching and Detaching Behaviors

Whenever dealing with data, any application can get inundated with information. Not just
in web development but in programming in general, managing memory and CPU load is
essential for keeping the program running at optimum performance. In the case of web
development, anything you can do to decrease the load on the server will improve the user
experience, especially since speed is a factor when considering how a user interacts with
the site. The model trims the amount of data that gets pulled from across the datasource
by making use of detailed find conditions, recursive settings, and its bindModel() and
unbindModel() functions. In a similar way the model can curb its load on the server by effi-
ciently attaching or detaching behaviors. Other reasons for attaching and detaching behav-
iors exist that generally center on streamlining the application, whether to decrease server
load or to clean up code. A few functions are built into the model to manage how much it
uses behaviors and which behaviors get used.

Detaching and Disabling Behaviors

There are two ways to trim down a model’s use of a behavior: make the model “turn off”
all a behavior’s callbacks or make the model stop completely from adopting the specified
behavior. The disable() and detach() functions, respectively, perform these tasks. Simply
provide an array containing the name of each behavior to be either disabled or detached
from the current model. The only catch is that these functions are called through the
Behaviors class:

$this->Tag->Behaviors->detach(array('Tree'));

So, to completely remove a behavior from working in the current model, use the
detach() function; to limit the callback responses the behavior will send to the model, use
the disable() function. When disable() has been used, model functions may still use the
behavior’s functions. Just remember that automatic callback processes, such as when a
record is saved to the database, will not run; these processes will have to be called manually
in the model.

267

268

CHAPTER 14 I DATASOURCES AND BEHAVIORS

Attaching and Enabling Behaviors

Just as with detach() and disable(), you can tell the model manually when and where to use
certain behaviors. With enable(), you tell the model to allow the behavior to begin working
during callbacks. This means that the model will automatically consult the behavior as it per-
forms callback methods such as saving to the database or deleting a file from the database.
The attach() function is used to start the behavior. Settings here are passed along just as in
the $actsAs array. Simply format an array as you would the $actsAs property, and place it as
the first parameter in this function.

To test whether a specific behavior has been enabled or disabled (not necessarily
attached or detached), use the enabled() function. This contains the name of a behavior and
checks whether it is enabled in the model. The enabled() function will return either a true
value or a false value indicating whether the specified behavior is enabled.

Writing Custom Behaviors

Conventionally, behaviors are used for extending the model, so they should not contain any
logic that would normally appear in a controller or component. Here’s a simple checklist for
determining whether the particular task or set of tasks ought to be performed by a behavior:

* Does the task involve handling data for the model?
¢ Does the task do more than perform data validation?
* Does the task perform more than one query when fetching data?

¢ Does the task work with present data (in other words, it doesn’t need to perform con-
nection methods that ought to be managed by the DataSource)?

¢ Does the task involve more than a basic save, read, update, or delete method (in other
words, are multiple updates required when dealing with one record of data, and so on)?

If you answer “yes” to all of these questions and you can't find a built-in or third-party
behavior that matches the task, then you ought to write a custom behavior. Unlike Data-
Sources, behaviors don’t require a specific skeleton to work. They only need to be named
conventionally, stored in the right directory, and called appropriately in the model. The
model can use behavior functions in much the same way as the controller uses component
functions. However, by writing certain callback functions in the behavior, you can run spe-
cific processes whenever the parent model does any of its own saves, updates, or deletions.

Setting Up the Behavior File

Like other resources in Cake (which you are probably used to creating by now), behaviors
follow a specific convention. First, the file name follows the same naming convention as
models: it has a lowercase name, with multiple words separated by underscores, and the
.php extension. Second, the file must be stored in the app/models/behaviors directory.
Lastly, the behavior must have the correct class name written; see Listing 14-17 for an
example of a basic behavior.

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

Listing 14-17. An Example of a Basic Behavior File

<?
class UpdateBehavior extends ModelBehavior {
function setup(&$model, $config=array()) {

}
}

>

Notice that the behavior class extends ModelBehavior and includes the setup() function.
This function is called as a startup function when the behavior is instantiated. The parent
model as an object is accessible in this function through the use of the &$model parameter,
meaning that throughout setup(), everything in the parent model including its properties and
functions can be called with $model. For example, $model->data in the setup() function would
contain the current model’s $this->data array. Performing data methods such as saving to the
database or running a query can be done in the behavior by using the standard model func-
tions, like so:

$rows = $model->find('all',array('conditions'=>array('id'=>$config['id'])));

Using DataSources in Behaviors with ConnectionManager

If your custom behavior must use a DataSource other than one available in the $model
class object, then you must use the ConnectionManager utility to create an object of the
DataSource. Listing 14-18 demonstrates the easiest way to do this.

Listing 14-18. Using the ConnectionManager Utility to Instantiate a DataSource in a Behavior
$db =& ConnectionManager::getDataSource($model->useDbConfig);

Notice that Listing 14-18 used the parent model object; this can be done only if the
behavior function using ConnectionManager has the &$model setting as its first parameter.

With Listing 14-18, $db becomes the DataSource object to be used in the behavior. Just as
the model uses a DataSource, the behavior can now work directly with the DataSource. For
example, the behavior can invoke the XML DataSource you built earlier in the chapter with
the following:

$xml =& ConnectionManager: :getDataSource($model->useDbConfig['xml']);

and then run a find-all operation with the $xml->findA11() function.

Performing Callbacks in the Behavior

The Tree behavior, as you probably noticed, performed some functions when the model saved
tags. By simply providing the model with a parent _id value when saving a tag, the Tree behav-
ior automatically assigned the record a parent value and ordered the tree. These kinds of
automatic methods are performed when using certain callback functions in the behavior. In
other words, for all saves that the parent model will perform, the behavior will execute the

269

270

CHAPTER 14 I DATASOURCES AND BEHAVIORS

beforeSave() callback function, so long as the behavior is attached to and enabled in the
model. You can have the behavior automatically perform any logic for the model by using
callback functions listed in Table 14-4. Remember that the parent model is available in
the callback function as &$model.

Table 14-4. Callback Functions in the Behavior

Function Name When Called

afterDelete(&$model) After the model successfully deletes a record or set
of records.

afterFind(&$model, $results, $primary) After the model performs a find; can be used to

modify results returned by find(). If the model is
being queried through an associated model, then
$primary will be set to false.

afterSave(&$model, $created) After the model successfully saves a record or set
of records; $created is set to true if a new entry was
saved.

beforeDelete(&$model, $cascade) Before the model deletes a record; if $cascade is set

to true, records depending on the current one are
also deleted.

beforeFind(&$model, $query) Before the model performs a find; $query is an array
containing the find conditions.

beforeSave (&$model) Before the model saves a record or set of records.

beforevValidate (&$model) Before the model validates data.

Things to Keep in Mind When Writing Behavior Functions

Behaviors are simple to build, though they can be as complex as any other Cake resource.
Generally, they will contain only functions and some properties, or class variables, that
simplify handling data for the model. These functions behave like helper functions in that
they finish by returning either a set of values, an array, or a boolean value. Only when the
ConnectionManager is used to connect to a DataSource or certain callback functions are
written will the behavior interact directly with the datasource. The rest of the time, the
behavior serves to house processes that would otherwise bog down the model.

Summary

Conventionally, the model deals with all the data while the controller handles all the logic of
the application. To better extend the model, Cake includes two resources that separate out
repetitive functions: DataSources and behaviors. Through DataSources, you can provide the
model with all the connection and querying processes in a background layer of sorts and
allow the same finding, updating, saving, and deleting methods to appear in the model with-
out changing the code there.

In this chapter I explained how to build a simple XML DataSource that automatically
opens an XML file, parses the XML, and displays each record there as a blog post. Through

CHAPTER 14 ' DATASOURCES AND BEHAVIORS

behaviors, you can provide the model with more complicated data-handling methods or
methods that happen simultaneously without bogging down the model. By using the built-in
Tree behavior to better organize tags, the blog application now has a more efficient hierarchy
of categories. The user also benefits by you using the Tree behavior; when clicking a category,
not only does the user see a list of posts directly associated with the tag but all posts associ-
ated with child tags as well. The Containable behavior, which is used to “contain” associated
models—or, in other words, restrict the result set in specific ways to provide you with exactly
the data values you want—also allows you to extend the functionality of the model. I showed
some simple ways of using Containable in your application.

Writing custom behaviors allows you to house these types of model functions in a type of
extension and thus streamline your application even more. Now that you've used all of Cake’s
resource files and have worked in the MVC structure, all that’s left is to wrap up the blog
application.

27

CHAPTER 15

Wrapping Up the Application

At this point, you've thoroughly explored the fundamentals of developing in Cake. With the
blog application as your first advanced project, you built custom resources such as con-
trollers, models, and views; and you extended those resources with others such as compo-
nents, behaviors, DataSources, and helpers. But you are probably aware that the current blog
application is not production-ready (you wouldn’t make it available to any real users yet).

The blog does already have the main methods that allow you to add posts, tags, and users
to the database and other methods that provide visitors with a way to comment on and read
posts. Bringing the application into production just requires that you tie up a few loose ends.

In this chapter, I'll explain the final routines to consider when wrapping up a Cake appli-
cation and making it ready to deploy. I won't go through the code line by line, but I will direct
you to common tasks that put the finishing touches on your Cake projects. Consider the rou-
tines outlined here as exercises that will help you practice.

Designing the Home Page

Until now, I've pointed you to areas of the application by specifying a direct URL. For instance,
when telling you to edit a certain action, I would write the path to that action with the full URL
(like http://localhost/blog/posts/view/1). You will need to create a home page that contains
all these URLs or at least a page that lists how to navigate to all the features you've built into
the blog. Many novices begin with the home page before building the features of the applica-
tion, which can lead to a cluttered starting point for their visitors. Design considerations aside,
Cake, by its architecture and convention, promotes using dynamic methods as much as possi-
ble to generate site content. You can take advantage of what you've already built into the blog
application to create the links that will direct the user to all other areas of the site.

The first step is to create a starting point. Then, you provide content and navigation that
takes the user through the interface from that point to the next. You have two options for cre-
ating this starting point, or home page: you can use Cake’s built-in Pages controller or choose
an action to be the starting point, such as the Posts Index action.

Using the Pages Controller to Produce a Single View

Areas of the application that don’t necessarily perform any logic or that assemble various
methods from several controllers, like a home page, may need a view only. For your blog
application, home needs to include only a couple of posts that link to their full-story view and
the categories links you built in Chapter 14 with the Tree behavior. I would normally do this by

273

http://localhost/blog/posts/view/1

274

CHAPTER 15 " WRAPPING UP THE APPLICATION

adding onto the Posts Index action (which I'll describe in a moment) because I want some
posts to appear on the home page. But what if I didn't want to display any posts on the home
page or if the home page was a simple one with just a few links to the main areas of the site? In
that case, it might be easier to write a simple view in static HTML.

The Pages controller is invoked out of the box; it is the method that renders the Cake wel-
come screen. Notice that in app/config/routes.php the default home page is listed as the top
route:

Router::connect('/', array('controller' => 'pages', 'action' => 'display', 'home'));

You'll recognize from our discussion in Chapter 10 that this route connects the base
path (/") to the Pages controller’s Display action. It also passes the parameter home to the
action, thus rendering Cake’s default home page, which is the welcome screen. Changing
home to another value or creating a view file named home.ctp in the app/views/pages direc-
tory will point this base route to your own custom view. The Pages controller is already built
into the core, so you do not need to create an app/controllers/pages controller.php file by
hand. Simply pass along the name of the view you want to render and create the correspon-
ding view file (with the .ctp extension), and the Pages controller will automatically render
the view for you.

Once you've created your own home. ctp file or created a custom one, you should be able
to go to http://localhost/blog, and that view will be displayed. Simply add links in this view
file that point to the Posts Index action and other areas of the site, and the user will be able to
navigate through the blog just fine. Elsewhere in the site, you'll be able to point back to this
home page by using the base path or by using more verbose links, like this:

$html->1ink('Sample Link',array('controller'=>"pages"','action'=>"display', "home"));

Making an Action the Starting Point

To make the Posts Index action the home page, simply change the base route in
app/config/routes.php. One way you could do this would be with the following route:

Router::connect('/', array('controller' => 'posts', 'action' => 'index'));

Now, when the user comes to the home page, the Posts Index view will be rendered,
rather than the Cake welcome screen. Then, in the app/views/posts/index.ctp file, you could
provide all the navigation to access other areas of the site. The benefit of using an existing
action as the starting point for your application is that the logic needed to pull together vari-
ous methods is already in place. Creating dynamic content like categories links is possible
because the controller and model are already at work fetching that data. I prefer this method
for building my home pages, but I have used the other methods in the past for specific rea-
sons relating to the project at hand. Most important, however, is that you provide a home
page or starting point that easily provides the necessary navigation and displays from across
the application dynamically. Most of the time you won't want to manually update the home
page, so the more you can allow the application to do that for you, the better.

http://localhost/blog

CHAPTER 15 " WRAPPING UP THE APPLICATION

Generating Dynamic Navigation

More complex navigation will likely require creating some kind of menu system in the appli-
cation. The blog is already equipped to handle categories and rendering posts. It’s easy to
make a menu that is rendered in every view. (Displaying a menu is a good time to use an ele-
ment instead of a layout or a helper.)

You could create a menu element like I've done with Listing 15-1 and call it in the various
views throughout the site. Notice that I've checked the Session component to see whether
the user is logged in, changing what links are available to the user accordingly. Of course, the
login process would need to be built, preferably with the Auth component, but the element
does work well for adjusting the interface to supply the links based on the status of the user’s
session.

Listing 15-1. The app/views/elements/menu.ctp Element

<div class="menu">

<?=$html->1ink('Home</1i>","/",null,null,false);?>
<?=$html->1ink('Posts</1i>",array('controller'=>"posts’, 'action'=>w
"index'),null,null,false);?>
<?=$html->1ink('<1i>Tags</1i>",array('controller'=>"tags", 'action'=>=
"index'),null,null,false);?>
<? if (!$session->check('User')): ?»>
<?=$html->link('Log In</1i>',array('controller's=>'users',=
'action'=>"login'),null,null,false);?>
<? else: 2>
<?=$html->1link('<1i>Add Post</1i>",array('controller'=>"'posts’,w
"action'=>"admin_add'),null,null,false);?>
<?=$html->1link('<1i>Edit Posts',array('controller'=>'posts’,w=
'action'=>"admin_index'),null,null,false);?>
<?=$html->link('Log Out</1i>",array('controller'=>"users',w=
"action'=>"logout"'),null,null,false);?>
<? endif;?>

</div>

Remember to call out your menu element in the view with the $this->element() view
function:

$this->element('menu');

275

276

CHAPTER 15 " WRAPPING UP THE APPLICATION

Customizing the Overall Design

When preparing the application for production and when improving existing methods in the
process, you will likely need to change the design of the views, usually on an individual basis.
One important routine when wrapping up the application is to go through each view and
interact with the site. Then, adjust the design as needed.

In this book, I stuck with Cake’s built-in style sheet and HTML markup as much as possi-
ble. You will undoubtedly want to change the design to fit your needs. Most of the time, you'll
work with CSS and HTML to tweak the design as you build the application. In the case of your
blog application, now is a good time to go in and apply your own CSS and graphics to the
design. Maybe you'll want to hire a graphic designer to do this part.

In any Cake project, reviewing the design and improving it where possible is an impor-
tant routine when wrapping up the application. Sometimes you'll create new layouts, views,
elements, and helpers at this stage to better separate the display elements and maintain a
consistent structure for the code. Remember, where possible, to make sure that repeatable
design elements are saved in a single place in the code. This is the programming principle
called DRY—Don'’t Repeat Yourself. In this way, you're thinking ahead for any possible
adjustments you may need to make in the future that will save you time.

Debugging the Application

Let’s hope your Cake applications are built without too many errors creeping in. Neverthe-
less, an important routine when finishing the application is to double-check for any bugs.
Testing deeper resources such as models, components, DataSources, and behaviors can be
tricky when calling actions in the browser through the controller. Cake comes with a help-
ful test suite that allows you to run tests on models and components with sample data. You
will need to have your app/config/database.php file correctly set to link with a test data-
base and then run unit tests through what Cake calls fixtures. But performing unit tests
with sample data can ultimately cut down on the amount of time you spend making your
application’s models error-free, especially if you build a lot of custom model functions. As
you explore ways to work better with Cake, consult the online Cake community for details
on running the test suite. Many features are still in development with some promising
methods set for later release. (Mariano Iglesias has written an excellent tutorial on model
testing with the built-in test suite at http://bakery.cakephp.org/articles/view/testing-
models-with-cakephp-1-2-test-suite, which will help you get started working with fix-
tures; you can check out other test suite articles at http://bakery.cakephp.org/tags/view/
test.)

http://bakery.cakephp.org/articles/view/testing-models-with-cakephp-1-2-test-suite
http://bakery.cakephp.org/articles/view/testing-models-with-cakephp-1-2-test-suite
http://bakery.cakephp.org/articles/view/testing-models-with-cakephp-1-2-test-suite
http://bakery.cakephp.org/tags/view

CHAPTER 15 " WRAPPING UP THE APPLICATION

Running the Application on a Remote Host

Once your application is ready for use on the Web, your final routine will be to move the
project from your localhost environment to a remote host. If the remote host has the same
settings as your localhost, you should be able to upload the parent application folder “as is”
to a remote directory, and it should run just fine. You will need to run a MySQL dump file of
some kind to mirror the remote and localhost databases.

To secure your application, you should place the Cake libraries and app folder outside the
document root on your remote server. This requires that you make a couple of adjustments to
the folder structure of the application and that you change a couple of global variables.

The three main folders you can move around on the server are cake, app, and webroot.
The main catch when you do change the folder structure of the application is that the web-
root folder must be available in a public directory or document root. Let’s assume that my
remote host is set up with a home folder (outside the document root) and www as the docu-
ment root, while the domain points to user/home/www. To better secure the application,

I place the Cake libraries and the app folder in user/home, and I take webroot out of the app
folder and place it in user/home/www. Cake can handle this structure, but I must change
some variables in user/home/www/webroot/index.php before it will compile correctly.

I open the webroot/index. php file and scroll to where I see three global constants: ROOT,
APP_DIR, and CAKE_CORE_INCLUDE_PATH. Table 15-1 shows the path on the remote host that each
constant should be assigned, given my current folder structure.

Table 15-1. Paths for My Remote Setup

Constant Server Path
ROOT /user/home
APP_DIR Www
CAKE_CORE_INCLUDE PATH user/home

Cake uses DS as the directory separator. So, I reassign these constants to their new paths
following Table 15-1 and end up with what is shown in Listing 15-2. (Normally, there are a few
comment lines in this file; I've omitted them from the listing.)

Listing 15-2. Changing the webroot/index. php File to Work on My Remote Host

if (!defined('ROOT")) {
define('ROOT', DS.'user'.DS.'home");

}

if (!defined('APP DIR")) {
define('APP_DIR', 'www');

}

if (!defined('CAKE_CORE_INCLUDE_PATH')) {
define('CAKE_CORE_INCLUDE_PATH', DS. 'user'.DS. "home");

}

277

http://www.To
http://www.Cake

278

CHAPTER 15 " WRAPPING UP THE APPLICATION

Summary

This chapter explained some important routines to consider when completing your Cake
projects. Remember to provide a starting point in app/config/routes.php and to create navi-
gational methods throughout the application to improve the user experience with the blog
and any of your other Cake applications. Also, don't forget to check thoroughly for bugs in the
code and to alter the design of the views to fit your methods. When deploying the application
to a remote host, be sure to place the Cake libraries outside the document root and to adjust
the webroot/index.php file accordingly.

PART 4

Appendixes

APPENDIX A

Installation Issues

The best way to set up your development environment is to configure a localhost server
on your computer. Let me explain what that means. When you access a web site, you're
sending and requesting information from another computer through an Internet connec-
tion. That server can communicate and process the information in a plethora of possible
configurations. For example, when you buy a computer, you have the option of getting a
Mac or Windows-based machine. Or, if you want, you could run Linux, Unix, or even DOS.
All these possibilities mean that for you, the user, the experience will depend on which
operating system you choose. But let’s say you want to print a document. Well, regardless
of the operating system or how that operating system prints something, once the docu-
ment is printed, it doesn’t really matter what configuration the computer had; it’s all the
same to the reader of the document.

The Internet is a lot like this example. The computer/server at the other end that will be
processing the requests and creating output could run just about anything. But the final out-
put will be a web page of some sort or some kind of web output. For you, the developer, the
configuration will matter a great deal. In fact, it will affect everything you do to create and
serve a web site.

Developing in a Localhost Environment

When you set up a localhost, you're actually setting up a server on your own computer.
You'll fire up a web browser like Firefox or Safari and type in something like http://
localhost to access the server like the user would if the web site were live. In effect,
you're tricking the computer into thinking that it’s talking to a web server when really
it’s talking to itself.

Using the Localhost First, Remote Last

As long as your configurations on your localhost are the same as the configurations of the
remote web server where the site will be hosted, you can develop on your own computer.
Once the site is running well, you'll move the entire contents of your root directory or appli-
cation to the server, and you're done. If you've done it right, the site should run all the same
on the remote server.

281

http://localhost
http://localhost

282

APPENDIX A © INSTALLATION ISSUES

Why Doing It All Remotely Is Bad

Should you circumvent the localhost setup, you'll be forced into developing everything
remotely. That’s fine, I suppose, if the following things don’t bother you:

e Running a continuous FTP session

¢ Uploading every time you want to test the slightest alteration to your code

¢ Timeouts because of your Internet connection occurring during program executions
» Users accidentally stumbling on your half-baked programs

* Buying up test domains to keep users from accidentally stumbling on your half-baked
programs

¢ Eating into your own bandwidth (which for some hosting plans may be tight as it is)

Setting Up a Localhost

Whatever operating system you're running on your computer, installing a localhost environ-
ment is easy. If running on a Mac, I recommend installing Living-e’s MAMP. If on a Windows-
based PC, install XAMPP.

Normally, creating a localhost setup will require installing various server programs via a
command-line interface that takes a good understanding of PHP, MySQL, Apache, ProFTPd,
and other server technologies. What MAMP and XAMPP do is simplify these complex server
setups so that essentially you run an installer program and the setup is complete.

Setting Up on a Mac

Mac OS X already comes with a localhost setup built in. But if you want to run MySQL and
upgrade PHP to version 5.0 or higher, you'll need to install each element manually, which can
be a little tedious. Running MAMP will likely save you a lot of time. The following sections out-
line how to do it.

Step 1: Download the Software

Go to http://www.mamp.info, and locate on the home page the MAMP download link. It will
ask you whether you want MAMP Pro, and if you do, go ahead and pay the $49 to download it.
Otherwise, download the latest free version of MAMP.

Step 2: Open the Disk Image and Install the MAMP Folder

This step is simple enough. It will ask you to drop a folder into the Applications folder. This is
necessary for the localhost setup to work properly. Make sure you do not use any subfolders or
rename the MAMP folder to anything else. If you dislike having to do this, you may want to
consider more elaborate localhost setup methods.

http://www.mamp.info

APPENDIX A © INSTALLATION ISSUES

Step 3: Run the MAMP Application Program

At any time you can manage your localhost setup by running the application /Applications/
MAMP/MAMP. The main screen looks like Figure A-1.

060 MAMP

e MAMP

manage your v

Status

Stop Servers

%) Apache Server

Open start page

) MysSQL Server

NNV N\

(
C
(" Preferences...
C

Quit

Figure A-1. The MAMP main application screen

This program, when you click Start Servers, will maintain the localhost environment.
You now can begin executing PHP code, but you have to know where to access the localhost
on your hard drive.

Step 4: Configure the Localhost Root Folder

By default, any file contained in the /Applications/MAMP/htdocs folder can be accessed in
the localhost environment. This isn't too bad, altogether, but I personally prefer having my
web sites outside my Applications folder. Changing this setting is as simple as going into
the Preferences area of the MAMP application.

Click Preferences to open the Preferences area. Click the Apache tab, and you'll find a
field called Document Root. It should read /applications/mamp/htdocs or something simi-
lar. Click Select to change the document root to something else. In this case, I'll select the
~/Sites/ folder (if my Mac OS X username is dave, then the path will look like /Users/dave/
Sites). Now, from here on out, any folder or file places in the Sites folder will be executed
by the MAMP localhost setup and not Mac OS X’s default web sharing.

Step 5: Change the Localhost Ports

Now click the Ports tab, still in the Preferences area. It lists the Apache port and the MySQL
port. The values in these fields are set to 8888 and 8889, respectively, by default. To better

283

284

APPENDIX A © INSTALLATION ISSUES

mimic a typical remote web server, these should be changed. In the Apache port field, type 80,
and in the MySQL port field, type 3306. (You can also click the Set to Default Apache and
MySQL Ports button.)

Because these ports are configured this way, you can now open Safari and type http://
localhost instead of http://localhost:8888 whenever you want to execute scripts and files.
Also, when configuring programs to work with MySQL, you can simply enter localhost in the
server setting instead of localhost:8888.

Step 6: Make the Localhost Easier to Manage

It can’t get much easier than this to get a localhost environment running on a Mac. But one
flaw with the MAMP application is that it must be running for the localhost environment to
be running. So if you quit MAMP, you will no longer be able to run PHP code via the local-
host. Fortunately, Living-e provides a Dashboard widget that does exactly what the MAMP
application does to keep the localhost active. Simply launch the Mamp Control.wdgt file, and
click Start Servers to make the localhost active. It will now run in the background through
Dashboard.

Setting Up on Windows

Windows XP Pro has Microsoft’s web server built into it, known as Internet Information
Server (IIS). Installing IIS is pretty easy to do. However, most PHP and MySQL scenarios are
more easily handled in a bundled localhost installer available from Apache Friends

called XAMPP. The following sections outline the steps to take when installing and configur-
ing XAMPP on your PC.

Step 1: Download the Software

You can download XAMPP from the Apache Friends web site. As of the printing of this book,
a direct link is right here:

http://www.apachefriends.org/en/xampp-windows.html

You can download an installer application, a ZIP file, or a self-extracting 7-ZIP archive.
The easiest option is to just run the installer application. So, scroll down to the download
area of the page, and click Installer. The download should immediately commence.

Step 2: Run the Installer Program

The program will walk you through installing XAMPP. It will ask for a destination folder for
XAMPP, and the default location is at c: \xampp. I recommend sticking to this configuration
since you will likely want XAMPP to be able to access any area of your C drive. Click Next, and
on the following screen leave the Service Section check boxes blank. To wrap it all up, click the
Install button at the end. It will extract all the necessary files and leave you with a convenient
localhost environment in the c: \xampp folder.

http://localhost
http://localhost
http://localhost:8888
http://www.apachefriends.org/en/xampp-windows.html

APPENDIX A © INSTALLATION ISSUES

Step 3: Open the XAMPP Control Panel

After installation is complete, you'll be taken to the XAMPP Control Panel. This panel
is accessible in the future by clicking the shortcut icon on the desktop or by going to Start/
Apache Friends/XAMPP/XAMPP Control Panel. The screen looks something like Figure A-2.

Mercury Start o

83 XAMPP Control Panel Application E|@|['z|
XAMPP Control Panel [Service.., J [SCM...]
Modules
Elfve goacn
2
D Svc FileZilla

XAMPP Control Panel Version 2.5 (9. May, 2007)
Windows 5.1 Build 2600 Platform Z Serwice Pack 2
Current Directory: c:\xampp

Install Directory: c:\xampp

Status Check OR

Figure A-2. The XAMPP Control Panel screen

Clicking the Start buttons starts those important web server services such as Apache,
MySQL, and more. Start up Apache and MySQL using the Start buttons, and fire up your
web browser. In the URL field, type http://localhost. You'll be taken to the XAMPP wel-
come screen.

Step 4: Secure the Localhost

Unfortunately, XAMPP doesn’t come preinstalled with a more secure localhost environment.
In some ways this may be a good thing, but for right now, the last thing you want is to compro-
mise your network or your computer. If you think there is little to worry about other users
accessing your localhost (which is really only the case in a work environment when other
co-workers are using the same subnet or network), then you can bypass this step. If there is
any chance of other users having access to your localhost in the least, then you may just want
to take a moment to make XAMPP more secure. On the left side of the XAMPP startup web
page is the Security link. Click it, bringing up the security information page. Most items, if not
all, will be marked “unsecure.” Let’s make those all light up green.

285

http://localhost

286

APPENDIX A © INSTALLATION ISSUES

A link below the main table called http://localhost/security/xamppsecurity.php takes
you to some fields that will allow you to secure the localhost. Change the MySQL root pass-
word, and click Password Changing. Below the MySQL root password fields is another set of
fields to protect the XAMPP directory (.htaccess). Put in a username and password there. For
both, make sure you do not save the passwords in a plain-text file.

From here on out, you will be asked to log in to access the XAMPP control pages. Restart
Apache and MySQL to propagate the settings you've created.

Running MySQL

The most powerful web-based tool for setting up and running MySQL is called PHPMyAdmin,
another open source application that comes installed with MAMP and XAMPP. The startup
screens for both localhost environments contain a link to PHPMyAdmin. This is the quickest
way to begin working in MySQL, since we've already installed a localhost that has the program
preconfigured and ready to go. Many developers prefer PHPMyAdmin over other desktop-
based MySQL applications because it's web-based and free and, quite honestly, a great appli-
cation. I prefer desktop-based applications because of their speed, and I can avoid screen
refreshing, which PHPMyAdmin is locked into because it’s a web application.

Where to Find Other MySQL Tools

If you'd like to use a desktop application to manage your databases, you can find some listed
in the following sections. They will likely require an extra level of configuration to get them
working with your localhost environment. I'll list them and then explain some of the neces-
sary settings to get them working right.

CocoaMySQL

On the Mac, probably the simplest freeware application for running MySQL is CocoaMySQL.
It’s available by going to http://cocoamysql.sourceforge.net.

MySQL Query Browser

On both Mac and PC, MySQL Query Browser is a reliable and easy freeware application that
lets you navigate MySQL through a graphical interface (see http://dev.mysql.com/downloads/
gui-tools).

HeidiSQL

This is much like CocoaMySQL on the Mac, except built for Windows. The layout is, in
some ways, much easier to navigate than MySQL Query Browser and will require less
MySQL prowess to get started. It, too, is open source, so giving it a try can’'t hurt (visit
www.heidisql.com).

http://localhost/security/xamppsecurity.php
http://cocoamysql.sourceforge.net
http://dev.mysql.com/downloads
http://www.heidisql.com

APPENDIX A © INSTALLATION ISSUES

Typical Settings When Running MySQL

No matter what application you decide to use, each one will need some parameters before
it can connect to MySQL. The following sections highlight the common ones that get you
connected.

Host

This will almost always be just localhost, even when you're setting up a script to run on your
remote server. If you are trying to access a remote database, it might be the domain name of
the site, but you'll need to have the details provided from the web-hosting provider. With the
configurations outlined earlier, simply enter localhost. Should this not work, just identify the
IP address of your computer, which is usually defaulted to 127.0.0.1.

User and Password

MySQL supports multiple users and groups for administering and maintaining databases.
These can be added or changed once you've logged into your application and accessed the
necessary areas to add or change an account. In this example, this will be both root for the
username and password, unless you entered something different instead. Sometimes web
hosts will set up shared hosting accounts for you; in these cases, you may need to add a pre-
fix to the username, like cake .

Socket

When MySQL is running, the connecting point for the application and PHP is called the
socket. The default path for this is /var/mysql/mysql.sock, but with these quick and easy local-
host setup configurations, this will be a dead end. If you know that the MySQL socket is stored
in its default location (like on most hosting setups), then you can leave this setting blank. On
the localhost, you'll have to specify the path. On the PC, the defaults connect correctly if you
followed the tutorial. On a Mac, Table A-1 contains the path strings, if necessary.

Table A-1. Path Strings for Connecting Your Application to the MySQL Socket

Web Server Software Path

Mac OS X Server /

MAMP /applications/mamp/tmp/mysql/mysql.sock

XAMPP /applications/xampp/xamppfiles/var/mysql/mysql.sock
Port

The default port for MySQL is 3306. Enter this only if the application asks you or if you some-
how altered the port number to something else.

287

APPENDIX B

How CakePHP Compares with
Other Frameworks

To give you a sense of what to expect from Cake, this appendix compares it to some other
popular web frameworks.

PHP Frameworks

Currently, the most popular PHP frameworks include the following:
e CakePHP (www.cakephp.org)
* Codelgniter (www.codeigniter.com)
e Symfony (www.symfony-project.org)
e Zend Framework (http://framework.zend.com)

Each of these frameworks is built in the PHP language, but they differ in their methods
and libraries. Other frameworks could be listed here as well (PHP has a large and growing
number of frameworks compared to other languages), but I'll stick with these four. No doubt
others will emerge, but I expect these to continue to be the most dominant players in the PHP
frameworks market. For a comparison of some of these frameworks’ basic information, see
Table B-1.

Table B-1. Basic Information

Framework Official Support Group Latest Version'
CakePHP Cake Software Foundation 1.2 rcl
Codelgniter EllisLab 1.6.2

Symfony Sensio Labs 1.1rc2

Zend Framework Zend Technologies 1.5.2

1. As of the writing of this book.

289

http://www.cakephp.org
http://www.codeigniter.com
http://www.symfony-project.org
http://framework.zend.com

290

APPENDIX B ©* HOW CAKEPHP COMPARES WITH OTHER FRAMEWORKS

Using the Various Frameworks

Each of these frameworks has been released as open source projects, which means that a
lot of the development work relies on community support. Tracking bugs, writing support-
ing documentation, and providing general support are tasks that involve developers like
you. Many times, regardless of the framework you choose, you'll go to the online commu-
nity for help. The size of the community and the available online resources may have an
impact on how well you experience the framework.

In the following sections, I discuss some of the current features of each framework’s
online community and how they assist their users in developing software. I'll also describe
some basic observations when using the various frameworks and compare each one to
Cake. I recognize that much more could be said about each framework, but my aim is to
give you an overview of the user experience relative to Cake, not to write an exhaustive
comparison of all the frameworks. You'll get a general sense of what it’s like to move from
one of these frameworks to Cake and where to begin when considering making Cake your
primary development framework.

CakePHP

Throughout the book, I've mentioned some main web sites where you can participate in the
Cake community. Table B-2 lists these and other web sites to check out for more information
on CakePHP.

Table B-2. CakePHP Community Web Sites

URL Details
www . cakephp.org Home page of CakePHP
http://bakery.cakephp.org The Bakery; contains articles, code, and other

announcements about CakePHP

http://groups.google.com/group/cake-php Discussion group; contains thousands of
discussions about the framework and is a great
resource for getting questions answered

www.cakeforge.org Repository for open source CakePHP projects;
great resource for downloading third-party Cake
applications and plugins

http://trac.cakephp.org Cake’s support web site and tracking system; here,
you can view and submit tickets related to releases
of Cake

http://live.cakephp.org The Show; a live Internet radio podcast for all
things CakePHP

irc://irc.freenode.net/cakephp Main IRC chat room for discussing CakePHP

The amount of activity on the web sites and chat room listed in Table B-2 is high; to date,
Cake has been downloaded more than 680,000 times and remains one of most often searched

http://www.cakephp.org
http://bakery.cakephp.org
http://groups.google.com/group/cake-php
http://www.cakeforge.org
http://trac.cakephp.org
http://live.cakephp.org
irc://irc.freenode.net/cakephp

APPENDIX B © HOW CAKEPHP COMPARES WITH OTHER FRAMEWORKS

web frameworks.? The discussion group has almost 9,000 active members and has an archive
of more than 54,000 moderated threads. At any given moment, the IRC chat room usually has
between 100-200 visitors.

Duplication throughout the community is kept to a minimum, so expect to be directed
to a thread or blog post that someone has already used to address the same topic when ask-
ing a question or requesting support. You will also probably sense a feeling of perfectionism
in the community. What I mean by that is this—the Cake Software Foundation, which man-
ages Cake’s development, could have easily taken shortcuts when developing the frame-
work. Compared to other frameworks, Cake would already be considered a version 3.0 or
4.0, but it’s currently at 1.2. This is due more to really tightening up the framework rather
than cooking up something fast that could perform a large plethora of methods. The result
of this strategy is that Cake really is more robust, mature, and well written than it otherwise
would be, and you can count on it maintaining its robustness as it takes on more fancy
methods. I, by no means, am diminishing the large quantity of built-in methods that rival
any other framework’s functions; I'm merely pointing out that one of Cake’s key advantages
is its architecture, or, in other words, its methodology—which has been very carefully
designed and tested.

Perhaps Cake’s most competitive feature is its find methods for data handling. In this
book, I've explained how to use the find() model function to easily fetch database records
without writing SQL or other data source queries. By setting find conditions and other
parameters effectively, you cut down on the amount of looping and matching thanks to how
the model neatly returns result sets. Codelgniter, unfortunately, comes with basic database
helper functions that require you to still write most of the queries in SQL. Symfony uses
rather complicated criteria syntax to set find conditions in the model layer that only mar-
ginally improve upon PHP’s database functions. And Zend Framework relies almost entirely
on your knowledge of SQL syntax to use its database adapter classes. Because Cake’s find
methods are designed independently of a data source, they don’t have to follow a specific
query language, which makes running finds through the model much easier.

Codelgniter

Codelgniter’s community is relatively small when compared to CakePHP but does have a good
support network online. Its user guide (www.codeigniter.com/user guide) is well designed and
has a nice layout for navigating through the table of contents. Many of the concepts used by
Cake are also used by Codelgniter, such as the MVC structure, helpers, routing, scaffolding,
and caching. The support network is great, with a forum that boasts more than 66,000 topics
and more than 400,000 posts. However, a lot of the topics there aren’t directly related to code
development issues like Cake’s discussion group. In a sense, Codelgniter’s forums and wiki are
more like combining Cake’s discussion group, Bakery, and CakeForge. The number of web
sites built on Codelgniter is smaller than that for Cake, but Codelgniter is off to a good start
and will likely become a more popular framework in the future.

2. When compared to other frameworks using Google’s Trend History tool (www.google.com/trends). Of
the PHP frameworks, CakePHP is searched the most.

291

http://www.codeigniter.com/user_guide
http://www.google.com/trends

292

APPENDIX B ©* HOW CAKEPHP COMPARES WITH OTHER FRAMEWORKS

Starting a Codelgniter application takes less time than setting up a Cake application;
however, some configuration methods that come preinstalled with Cake are left out with
Codelgniter. For example, setting up routes to behave like they do in Cake will require that
you manually write an .htaccess file to pass paths through a similar routing engine. By
default, Codelgniter is more lightweight than Cake, which is one of its chief selling points.
However, as you expand your Codelgniter application, expect to have to perform an extra
step here or there to achieve the same functionality you get from Cake.

The MVC structure in Codelgniter is similar to Cake’s. Because of this, the general process
of creating models, views, and controllers is nearly identical to what you learn when building
Cake applications. Aside from minor differences in passing data around the application and
naming conventions, running Codelgniter is largely the same experience as in Cake. However,
where Cake wins is with its powerful core classes, helpers, routes, and data-handling methods.
The available resources and built-in functionality are more robust in Cake and, frankly, more
cohesive. In other words, Cake developers will probably think they have taken a step backward
when fully immersing themselves in Codelgniter, though they will undoubtedly think they are
in familiar territory. That’s not to say that Codelgniter isn’t already a fabulous framework; it’s
just that it separates methods into its several resources less effectively than Cake. In a nutshell,
the Cake paradigm is more about making the model fat and spreading out the various meth-
ods; Codelgniter makes for very large controllers.

Symfony

Symfony entered the PHP frameworks arena early on and has remained popular. Its commu-
nity is also large with developers groups, forums, a chat room, a wiki, and more. All of the
main links to these various online groups and sites are available on Symfony’s community
web page (www.symfony-project.com/community).

Symfony actually is much different from CakePHP in its approach. In this book, I
showed how to create a Cake project by renaming a folder and placing it on your server or
localhost. In Symfony, you learn important commands that you run through a Symfony
console script, much like using Bake. You can install Symfony manually by downloading a
packaged file and configuring its files to work with your server, or you can use PEAR to
have an installation script handle most of the work for you. I find that getting Symfony to
work correctly generally requires more time than Cake, simply because so many steps are
required for both the server and the console to work right with the whole framework. But
once these configurations are in place, starting a new Symfony application is as simple as
entering a one-line command.

After you have successfully begun a Symfony application, you will need to initialize
your data source connections using the command line as well as perform other setup
tasks. Generating the scaffolding is also done in the console, but the final result is similar
to Cake’s scaffolding. Building models is primarily done using YAML-based configurations
together with the symfony console script. If you prefer YAML to JSON or XML for configur-
ing your database schema, then Symfony will probably suit you well. Cake really doesn'’t
compare in this regard because its methods for connecting to a data source don’t involve
the command line (even though you can use Bake to write your database.php configuration
file and build models).

http://www.symfony-project.com/community

APPENDIX B © HOW CAKEPHP COMPARES WITH OTHER FRAMEWORKS

When extending the Symfony application to take on more methods, many of the same
concepts that make Cake effective are used. The learning curve is steeper when going from
Cake to Symfony, mainly because the benefits Symfony offers are usually found in its
command-line interface. However, Symfony users shouldn’t find learning Cake all that diffi-
cult. It may take some getting used to running fewer commands in the console, but on the
whole, you shouldn’t have to perform any more steps to build your Cake applications than
you would expect for a Symfony application.

Zend Framework

Zend Framework was arguably the first framework to be built for PHP. Its corporate sponsor,
Zend Technologies, has a long history with the PHP language itself; its founders include two
of the original authors of PHP, Andi Gutmans and Zeev Suraski. Much of what has made PHP
one of the most popular web programming languages started with Zend Technologies and its
contributions to the language. That being said, no wonder Zend Framework has had early
success and continues to be a major player in the PHP frameworks market.

In terms of community support, Zend Framework has probably the largest online fol-
lowing of any of the PHP frameworks. Its documentation is extensive and thorough, and
unofficial blogs and forums make it possible to get online support for just about any ques-
tion. Code submissions to the core are passed through rigorous testing methods, which
makes Zend Framework an incredibly robust framework. However, Zend Framework is
much more of a large set of libraries than a lightweight MVC framework. For instance, its
main library folder is almost 16MB, more than three times the size of Cake’s libraries. Get-
ting Zend Framework off the ground requires much more customization and configuration,
whereas Cake has adopted more of the “convention over configuration” paradigm. You
could likely use Zend Framework with just about any PHP project, which I demonstrate
in Chapter 12 when explaining how to use Zend libraries in Cake, but the trade-off is that
you'll have to write or at least configure much of what Cake does automatically with its
dispatcher methods.

Zend Framework has no single development paradigm like Cake, Codelgniter, and
Symfony, and that appeals to many developers. Patterns like MVC are therefore possible in
Zend Framework, but these require you to manually write configuration methods, which are
automatically built into Cake and other frameworks. Cake is certainly ahead of Zend Frame-
work in how the framework cuts down the amount of code needed to extend it. Learning
Zend Framework is generally more time-consuming than learning Cake, mostly because of
the design of the framework. Getting an MVC variant of Zend Framework off the ground is
usually more difficult for a beginner than Symfony, not to mention Cake.

True, Zend Framework is more well known than Cake in most PHP circles; it’s the veteran
on the team, if you will. But Cake is proving to be more like the rising star that moves faster
and is strategically sounder. Given Cake’s effective implementation of the MVC structure and
its structural design, it will likely continue to attract former Zend Framework developers and
remain the top player in the PHP frameworks arena.

293

Index

Symbols & Numerics

$actsAs property, 257-258, 266
: (colon)

arguments and, 176

magic variables and, 180

route parameters and, 180
$components array, 188
.ctp file extension, 33
<div> element, 118
$html->link() function, 35
$post variable, debug() function

displaying contents of, 82

.profile file, 62
$rss->document() function, 183
.1ss file extension, 182
$scaffold attribute, 59
 element, 118
$this->data, 75-77
$this identifier, 188
$this->params array, 180-181
.thtml file extension, 33
_ (underscore) character, 33
__(function, 70
$xml configuration array, 248
403 HTTP server error, 11

A
access control lists, managing, 265
ACL behavior, 265
ACL component, 198
action parameters, passed arguments
compared to, 177
actions
See also Index action; View action
Add
Comments controller, 121-122
Events controller, 226-228
file upload feature, 131-132
Posts controller, 75, 100-101

add() scaffolded, 59
admin, linking with admin views, 179
App controller and, 187
beforeFilter(), 189-190
callback, 92
Comments Add, blocking spam in,
212-215
delete() scaffolded, 59
Edit, 78-79, 100, 226-228
edit() scaffolded, 59
Events controller
Add and Edit, 226-228
Index, 228-238
View, 238-239
Feed, 184
getList(), 91
index() scaffolded, 59
Login, 190-191
Logout, 191
naming, 38
overview of, 90
plugin, running, 223
Post controller
beforeFilter(), 189
Chat, 220
Edit, 78-79, 100
PDE, 215-216
Posts Index, home page for
application, creating with, 274
Read, 107
requesting, 91
Text, 132-133
variables, using in, 90
View, with children() function, 261
Vote, 127-128
activating admin routing, 179
$actsAs property, 257-258, 266

295

296

INDEX

Add action
Comments controller, 121-122
Events controller, 226-228
Posts controller
file upload feature, 131-132
overview of, 75, 100-101
save() function, 101-102
Add Comments form, 120-121
Add link (Users controller), 45
Add view, adjusting and testing, 259
add() scaffolded action, 59
addCrumbs function (HTML helper),
148-149
add_success.ctp file, 122
admin routing, 178-179
afterFilter() callback action, 92
Ajax Chat plugin (Pseudocoder), installing
and using, 219-220
Ajax framework
asynchronous sequences and, 113-114
frameworks, 114
jQuery framework for
installing, 131
overview of, 130
uploading files with, 131-134
overview of, 5, 113, 134
Ajax helper
Add Comments form, 120-121
App helper for blog and, 164
Comments controller
Add action, 121-122
render() function, 122-123
displaying comments, 118-119
functions, 115-116
link() function
copying CSS, 125-126
overview of, 124
in View, 126
Vote action, 127-128
Votes view, 128
options array, passing JavaScript with,
130
overview of, 80, 129, 157
Prototype framework
installing, 116

JavaScript helper, including in App
controller file, 116
making helpers available for whole
application, 117
submit() function, 124
Ajax operations, 79
ajaxLogin parameter (Auth component),
194
Akismet component (Zend Framework),
213-215
aliases, console profile, 62
Apache AllowOverride error at launch, 12
Apache Friends, XAMPP, 9
API documentation, online, 138
App controller file
actions and, 187
Calendar plugin, 224
components and, 187
including JavaScript helper in, 116
plugin controller extending, 222
uses of, 137
app folder
contents of, 10
MVC structure and, 17
structure of, 29
App helper for blog
Ajax helper, including, 164
BlogHelper class, creating, 164
comments function
creating, 164-166
extending, 166-171
placement of, 166
__construct() function, 171
creating, 163
Helper file, creating, 163
specifying outside helper functions, 164
tags array, 172
App model
Calendar plugin, 224
plugin model extending, 223
app/config/core.php file, global variables
and, 13
app/config/database.php.default file,
editing, 14-15
app/config/routes.php file, 175-176

AppController object, extending, 32
app/controllers/components directory,
188
App::import() function
file names and, 209
including vendors using, 207-208
nested folders and, 209
app/layouts/rss/default.ctp file, 183
applications
See also specific applications
changing folder structure to secure, 277
debugging, 276
designing, order of creation for, 19
home page for
customizing design of, 276
designing, 273-274
dynamic navigation, generating, 275
running on remote host, 277-278
starting
in Codelgniter, 292
overview of, 22-23
in Symfony, 292
AppModel class, 21
AppModel object, extending, 32
app/models/post.php file, 102
app/plugins directory, 219
app/views/helpers directory, 137
app/views/layouts/flash.ctp file, 98
app/views/posts/rss/feed.ctp file, 185
app/views/users/login.ctp file, 190
app/webroot folder, 56
arguments, and routing and, 176-177
arrays
$components, 188
$xml configuration, 248
associationForeignKey parameter (“has
and belongs to many”
relationship), 52
asynchronous sequence, 79-80
attach() function, 268
attributes parameter, and form elements,
150
Auth component
checking user’s role, 192-193
logging in, 190-191

INDEX

logging out, 191
parameters, 193-194
parameters, setting, 189-190
password() function, 190
setting up users table, 189
authentication. See Auth component
Automagic responses of input function
(Form helper), 154
autoRedirect parameter (Auth
component), 194

B
Bake
admin routes and, 179
commands, 70
customizing views, 70
editing baked views, 68
generating CRUD views using
controller, baking, 64-67
views, baking, 67
launching, 63
overview of, 5
views,creating with
configuring console’s profile to run,
62-63
overview of, 61
Bakery web site, 219
baking
controllers, 64-67
Tags controller, 256-257
views, 67
beforeFilter() callback action, 92
beforeFilter() controller action, and Auth
component, 189-190
beforeRender() callback action, 92
beforeSave() function, 31
behaviors
ACL and Translate, 265
built-in, 255
Containable, 265-267
custom
creating, 268
file, setting up, 268-269
performing callbacks in, 269-270
using DataSources in, 269
writing functions, 270

207

208 INDEX

functions
disable() and detach(), 267
enable() and attach(), 268
enabled(), 268
naming, 36
overview of, 243
Tree
baking Tags controller and views,
256-257
fetching related posts when viewing
tag, 261-263
functions, 263-265
inserting fields into tags table,
255-256
Tags views, adjusting, 259-261
using in Tag model, 257-258
working with, 255
working with, 254
“belongs to” relationship, 41-42
bindModel() function, 110
blog application example
See also App helper for blog; comments
section of blog; Post model; Posts
controller; Tree behavior to
categorize blog posts; XML
DataSource for blog application
Auth component and, 189
“belongs to” relationship, 41-42
blocking spam in Comments Add
action, 212-215
Calendar plugin
Event model, 225
Events controller, 225-239
events table, 225
files and folders, setting up, 224
controller actions
callback, 92
requesting, 91
variables, using in, 90
controllers and models, overview of, 89
conventions for, 47
database design, 40-41
explanation of, 89
“has and belongs to many” relationship,
48-52
“has many” relationship, 44-45

“has one” relationship, 43
outputting posts as PDF files, 215-216
overview of, 40
RSS feed
controller action, 184
creating, 183
extension layouts, 183
Feed view, 185
tags table, 255
testing associations, 45-46
uploading files using jQuery and Form
plugin, 131-134
views
default.ctp file, 56-59
individual, creating, 59-61
overview of, 55
writing posts with Textile, 211
BlogHelper class, 164-165
built-in behaviors, 255
built-in components
ACL, 198
Auth
checking user’s role, 192-193
logging in, 190-191
logging out, 191
parameters, 193-194
parameters, setting, 189-190
password() function, 190
setting up users table, 189
Cookie, 195-196
Email, 196-198
overview of, 188
RequestHandler, 198
Security, 198
Session
deleting and destroying sessions, 195
helpers and, 188
reading and writing session variables,
194
built-in DataSources, working with,
244-245
built-in helpers
Ajax
Add Comments form, 120-121
App helper for blog and, 164
Comments controller, 121-123

displaying comments, 118-119
functions, 115-116
link() function, 124-128
options array, passing JavaScript
with, 130
overview of, 80, 129, 157
Prototype framework, 116-117
submit() function, 124
Form
create function, 151-152
end function, 152
input function, 153-157
label function, 153
overview of, 150-151
secure function, 152-153
HTML
addCrumbs function, 148-149
charset function, 140
css function, 140-141
div function, 141
docType function, 141-142
getCrumbs function, 148-149
image function, 142-143
link function, 143-144
meta function, 144
nestedList function, 145
overview of, 139
para function, 146
style function, 146-147
tableCells function, 147-148
tableHeaders function, 147-148
tags array, 171
using in default layout, 149-150
JavaScript, 157-158
Number, 158
overview of, 138-139
Paginator, 158-159
RSS, 159
Session, 160
Text, 160
Time, 161-162
XML, 162
built-in rules for validating data, 104-105

INDEX

C

cake folder, contents of, 10
Cake Software Foundation, 291
cake/libs/controller/components folder,
188
cake/libs/model/datasources/dbo folder,
245
CakePHP
advantages of, 2-3
community for, 6, 290
convention aspect of, 29-30
CRUD operations and Bake script, 5
customizable elements, 6
features of, 6, 291
helper code, 5
scaffolding abilities, 5
Calendar helper
event details, rendering, 234
events function, 235
first week of month, rendering, 230-231
overview of, 229-230
week four, rendering, 232
weeks five and six, rendering, 233
weeks two and three, rendering,
231-232
Calendar plugin
Event model, 225
Events controller
Add and Edit actions, 226-228
Index action, 228-238
overview of, 225-226
View action, 238-239
events table, 225
files and folders, setting up, 224
callback actions, 92
callbacks, performing in behaviors,
269-270
calling helper class object, 137
charset function (HTML helper), 140
Chat action (Posts controller), 220
checking user’s role, and Auth
component, 192-193
childCount() function (Tree behavior), 263
children() function (Tree behavior),
261-263

299

INDEX

chmod() function (Folder utility), 200
classes
See also utilities
AppModel, 21
BlogHelper, 164-165
DATABASE_CONFIG, 14-15, 244, 248
File utility, 199-200, 250
Item, 21
ItemsController, 22
Set utility, 253
className parameter
“belongs to” relationship, 42

“has and belongs to many” relationship,

51
“has one” relationship, 43
close() function, 251
CocoaMySQL, 286
code
See also listings
helper, 5
PHP shorthand in examples of, 21
Codelgniter framework, 291-292
colon (2)
arguments and, 176
magic variables and, 180
route parameters and, 180
command-line interface, using, 12
command-line tools, Bake script, 5
commands, Bake, 70
Comment model
creating, 117
vote() model function, 127
Comments Add action, blocking spam in,
212-215
Comments controller
Add action, 121-122
creating, 118
render() function, 122-123
Vote action, 127-128
comments() function (BlogHelper class),
164-165
comments section of blog
Add Comments form, 120-121
Ajaxand, 113-114
Comments controller, 121-123
displaying comments, 118-119

link() function
copying CSS, 125-126
overview of, 124
in View, 126
Vote action, 127-128
Votes view, 128
submit() function, 124
table to store comments, creating,
117-118
comments table, 40, 117
community for CakePHP, 6, 290
components
See also Auth component
App controller and, 187
as extending MVC structure, 241-242
built-in
ACL, 198
Auth, 189-194
Cookie, 195-196
Email, 196-198
overview of, 188
RequestHandler, 198
Security, 198
Session, 188, 194-195
controllers and, 34, 187
custom, creating, 205-206
naming, 34
purpose of, 187
third-party, 204
using, 188
writing vendor files instead of, 206
Zend Framework, 216
$components array, 188
conditions for find() function, 95-96
conditions parameter
“belongs to” relationship, 42
“has and belongs to many” relationship,
52
“has one” relationship, 43
Configure utility, 199
Configure::write() function, 13
configuring console’s profile to run Bake,
62-63
conflicting names, 37-38
connect() function, 250-251

ConnectionManager utility, instantiating
DataSource in behavior using, 269
console profile aliases, 62
__construct() function, and DataSource,
247
Containable behavior, 265-267
content, localizing, 204
Controller object, default behaviors of, 30
controllers
See also App controller; Comments
controller; Posts controller; Users
controller
actions of
callback, 92
requesting, 91
variables, using in, 90
adding actions to, 59-61
baking, 64-67
components and, 34, 187
Form helper and, 89
naming, 31-32
Pages, 273-274
Tags, 49, 256-257
for to-do list application, creating,
21-22
using routes, rather than, 38
using vendor content in, 208
utilities and, 187
convenience functions
DataSources and, 243
e(), 85
pr(), 83
convention aspect of Cake, 29-30. See also
naming conventions
Cookie component, 195-196
copy() function (Folder utility), 201
create() function
File utility, 200
Folder utility, 201
Form helper, 151-152
create() model function, 77-78
cross-site request forgery (CSRF) attacks,
preventing, 152
CRUD operations, and CakePHP, 5

INDEX

CRUD views, generating using Bake
controller, baking, 64-67
views, baking, 67
css() function, 57, 140-141
.ctp file extension, 33
custom behaviors, 268-270
custom components, 205-206
custom DataSources
creating, 246
database configuration, setting up,
248-249
disconnecting from XML file, 251
parsing XML file, 252-253
reading XML file, 250-251
skeleton, starting with, 247-248
using in model, 249-250
viewing data, 253-254
XML DataSource file, creating, 246
custom expressions, and route
parameters, 181
custom helpers, creating
App helper for blog, 163-171
overview of, 162
custom model functions, writing, 106-109
custom plugins, 221-223. See also
Calendar plugin
customizing
Bake views, 70
CakePHP, 6
design of home page for application,
276
helper variables, 171-173
view files from scratch
HTML form, 84-86
HTML helper, 83-84
Cygwin command-line interface, 12, 62

D
data, validating
built-in rules for, 104-105
multiple rules, using, 105-106
Post model and, 102-104
database schema, designing, 15-16
database tables. See tables

INDEX

databases
See also designing databases
normalization of, 39
for to-do list application
adding new item to, 24
designing and creating, 19-20
DATABASE_CONFIG class, 14-15, 244, 248
DataSources
built-in, working with, 244-245
custom
creating, 246
database configuration, setting up,
248-249
disconnecting from XML file, 251
parsing XML file, 252-253
reading XML file, 250-251
skeleton, starting with, 247-248
using in model, 249-250
viewing data, 253-254
XML DataSource file, creating, 246
naming, 36
overview of, 243
using in behaviors, 269
working with, 243-244
date() function, 69
debug() function, 82-83, 253, 260
debugging application, 276
default layout, using HTML helper in,
149-150
default ports, for MySQL, 287
default.ctp file, 56-59
delete() function (Folder utility), 201
delete() scaffolded action, 59
deleting
cookies, 196
folders, 201
sessions, 195
deny parameter (Auth component), 193
dependent parameter
“has many” relationship, 44
“has one” relationship, 43
designing
application, order of creation, 19
database schema, 15-16
home page for application, 273-274

designing databases
feature creep and, 40
importance of good design, 39-40
overview of, 39
table associations
“belongs to” relationship, 41-42
conventions for, 47
“has and belongs to many”
relationship, 48-52
“has many” relationship, 44-45
“has one” relationship, 43
tables for, 40-41
testing, 45-46
for to-do list application, 19-20
destroying sessions, 195
__destruct() function, and DataSource,
247
detach() function, 267
dirsize() function (Folder utility), 201
disable() function, 267
disconnecting from XML file, 251
displaying
comments, 118-119
menus, 275
most recent posts, 96
related posts as links in view, 262
vote total with Votes view, 128
voting links and total votes, 126
<div> element, 118
div function (HTML helper), 141
docs folder, contents of, 10
docType function (HTML helper), 141-142
Don't Repeat Yourself (DRY) programming
principle, 276
downloading
Cake, 10
Textile, 210
driver options, and DataSources, 245
DRY (Don't Repeat Yourself) programming
principle, 276

E

e() convenience function, 85
echo() function, 55

Edit action
Events controller, 226-228
Posts controller, 78-79, 100
Edit view, adjusting and testing, 259
edit() scaffolded action, 59
editing
baked views, 68
form fields, 78-79
saved events, 228
element functions, of input function
(Form helper), 156-157
elements
<div>, 118
helpers compared to, 166
naming, 35-36
, 118
Email component
layouts, setting up, 196
sending, 196-197
template for, creating, 197-198
email() function (Email component),
197-198
enable() function, 268
enabled() function, 268
end function (Form helper), 152
error messages
setting when validating data, 103
in views, 106
Event model for Calendar plugin, 225
Events controller for Calendar plugin
Add and Edit actions, 226-228
Index action, 228-238
overview of, 225-226
View action, 238-239
events() function, Calendar helper, 235
events table for Calendar plugin, 225
expressions, custom, and route
parameters, 181
extending
comments function, 166-171
model, 243
MVC structure, 241-242
extends statement, 30

INDEX

F
FCKeditor, as plugin, 6
feature creep, 40
Feed action (Posts controller), 184
Feed function (Post model), 184
Feed view, 185
fields, inserting into tags table, 255-256
fields parameter
Auth component, 193
“belongs to” relationship, 42
“has and belongs to many” relationship,
52
“has one” relationship, 43
file extensions
.ctp, 33
parsing files with extensions other than
.php
process of, 182
RSS feed, creating, 183-185
.Iss, 182
.thtml, 33
file names of vendors, 209
File utility
create() function, 200
overview of, 199
read() function, 200, 250
write() function, 200
files
See also App controller file; file
extensions; individual view files
add_success.ctp, 122
app/config/core.php, 13
app/config/database.php.default,
14-15
app/config/routes.php, 175-176
app/layouts/rss/default.ctp, 183
app/models/post.php, 102
app/views/layouts/flash.ctp, 98
app/views/posts/rss/feed.ctp, 185
app/views/users/login.ctp, 190
for Calendar plugin, 224
for custom plugins, 221
default.ctp, 56-59
httpd.conf, 12

303

304 INDEX

include, 18
index.ctp, 69
items.php, 20
items_controller.php, 21-22
naming conventions for, 20
PDE outputting posts as, 215-216
.profile, 62
public, 56
routes.php, 175
uploading with jQuery
Posts Add action, creating, 131-132
Posts Text action, creating, 132-133
Text view, creating, 133-134
vendor, writing instead of components,
206
XML, disconnecting from, 251
filtering methods, and Containable
behavior, 265-267
find() function
Folder utility, 201
Index action in Posts controller
conditions, setting for, 95-96
displaying most recent posts, 96
overview of, 93
parameters, 94-95
find() model function, 291
findAll() function, 252
findByYear() function, 106
finderQuery parameter, “has many”
relationship, 45
fixtures, 276
folder structure, changing to secure
application, 277
Folder utility
chmod() function, 200
copy() function, 201
create() function, 201
delete() function, 201
dirsize() function, 201
find() function, 201
overview of, 199
read() function, 200
tree() function, 201

folders

app, 10, 17, 29
app/webroot, 56, 277

cake, 10
cake/libs/controller/components, 188
cake/libs/model/datasources/dbo, 245
for Calendar plugin, 224

for custom plugins, 221

docs, 10

layouts, 56

nested, and vendors, 209

tmp, preparing, 13

vendors, 10

views, 18, 55

webroot, 56, 277

foreignKey parameter

“belongs to” relationship, 42

“has and belongs to many” relationship,
52

“has one” relationship, 43

form elements, and options or attributes

parameters, 150

Form helper

Calendar plugin Events controller and,
227

controller and, 89

create function, 151-152

end function, 152

input function
Automagic responses, 154
element functions, 156-157
options parameter, 155-156
overview of, 153
type option, 154-155

label function, 153

overview of, 35, 76, 84-86, 150-151

secure function, 152-153

form submission sequence

editing or updating records, 78-79
saving forms, 77-78
$this->data helper, 75-77

forms

Add Comments, 120-121
HTML, customizing, 84-86
saving, 77-78

simple, 76

INDEX 305

403 HTTP server error, 11
frameworks

css(), 57, 140-141
custom model, writing, 106-109

advantages of, 1

Ajax, 5, 113-114, 130-134
CakePHP as, 1

Codelgniter, 291-292
comparison of, 289-293
implementing with Cake, 211
Symfony, 292

Zend, 30, 212-216, 293
friendly URLs, 23, 177

functions

See also helpers
addCrumbs, HTML helper, 148-149
Ajax helper, 115-116, 124-128
App:import()
file names and, 209
including vendors using, 207-208
nested folders and, 209
attach(), 268
beforeSave(), 31
behaviors
disable() and detach(), 267
enable() and attach(), 268
enabled(), 268
bindModel(), 110
Calendar helper
events(), 235
render(), 234
Calendar plugin, render(), 237-238
callback, in behaviors, 270
charset, HTML helper, 140
chmod(), Folder utility, 200
close(), 251
comments(), BlogHelper class, 164-165
Configure::write(), 13
connect(), 250-251
for controllers, 22
convenience, 83, 85, 243
copy(), Folder utility, 201
create()
File utility, 200
Folder utility, 201
Form helper, 151-152
create() model, 77-78

DataSource, __construct() and
__destruct(), 247
date(), 69
debug(), 82-83, 253, 260
delete(), Folder utility, 201
dirsize(), Folder utility, 201
div, HTML helper, 141
docType, HTML helper, 141-142
echo(), 55
email(), 197-198
end, Form helper, 152
Feed, 184
find()
conditions, setting for, 95-96
displaying most recent posts, 96
Folder utility, 201
overview of, 93
parameters, 94-95
find() model, 291
findAll(), 252
findByYear(), 106
Form helper, input(), 76, 85
$html->link(), 35
image, HTML helper, 142-143
include(), 4, 208
initialize(), 205-206
for internalization, 70
isAuthorized(), 192
isSpam(), 214
JavaScript helper, 157
label, Form helper, 153
link()
Ajax helper, 124-128
HTML helper, 143-144
overview of, 83
reverse routing and, 178
loadConfig(), 171
meta, HTML helper, 144
mktime(), 230
nestedList, HTML helper, 145
Number helper, 158
paginate(), 93
Paginator helper, 158-159

INDEX

para, HTML helper, 146
password(), Auth component, 190
PHP, names of, 38
read()
File utility, 200, 250
Folder utility, 200
View action in Posts controller, 97
read() model, 81
receiver, 150
redirect(), 99-100
render(), 80, 122-123, 234, 237
requestAction(), 91
Router::connect(), 175-176
Router::parseExtensions(), 182
$rss->document(), 183
RSS helper, 159
save(), 31, 101-102
save() model, 77-78
secure, Form helper, 152-153
send(), 196-197
Session helper, 160
Set::extract(), 236-237, 253
setFlash(), 74, 98-99
Set::reverse(), 253
startup(), 205-206
strftime(), 230
strtotime(), 69
style, HTML helper, 146-147
submit(), 124
supplier, 150
tableCells, HTML helper, 147-148
tableHeaders, HTML helper, 147-148
text helper, 160
Time helper, 161-162
Tree behavior
childCount(), 263
children(), 261-263
generateTreeList(), 264
getParentNode() and GetPath(), 264
moveUp and moveDown, 264
overview of, 263, 265
recover(), 264
removeFromTree(), 264
setParent(), 265
setup(), 265
verify(), 265

tree(), Folder utility, 201
unbindModel(), 109-110
_ 0,70
vote() model, 127
voteDownLink(), 169
voteUpLink(), 168
write(), File utility, 200
writing
behavior functions, 270
custom model functions, 106-109
XML helper, 162
xmlFindAll(), 249

G
generateTreeList() function (Tree
behavior), 264
generating
CRUD views using Bake, 64-67
dynamic navigation for home page, 275
getCrumbs function (HTML helper),
148-149
getList() action, 91
getParentNode() and getPath() functions
(Tree behavior), 264
global variables, 199
Gutmans, Andi, 293

“has and belongs to many” relationship
applying and testing, 48-51
parameters, 51-52

“has many” relationship, 44-45

“has one” relationship, 43

hash insertion technique, 152

hashed passwords, and Auth component,

190
hashPasswords parameter (Auth
component), 193

HeidiSQL, 286

helper code, 5

helpers
See also Ajax helper
built-in, 138-139
Calendar

event details, rendering, 234
events function, 235

first week of month, rendering,
230-231
overview of, 229-230
week four, rendering, 232
weeks five and six, rendering, 233
weeks two and three, rendering,
231-232
creating custom
App helper for blog, 163-171
overview of, 162
customizing variables, 171-173
elements compared to, 36, 166

as extending MVC structure, 241-242

Form

Calendar plugin, Events controller

and, 227
controller and, 89
create function, 151-152
end function, 152
input function, 153-157
label function, 153

overview of, 35, 76, 84-86, 150-151

secure function, 152-153
HTML
addCrumbs function, 148-149
charset function, 140
css function, 140-141
div function, 141
docType function, 141-142
getCrumbs function, 148-149
image function, 142-143
link function, 143-144
meta function, 144
nestedList function, 145
overview of, 83-84, 139
para function, 146
style function, 146-147
tableCells function, 147-148
tableHeaders function, 147-148
tags array, 171
using in default layout, 149-150
installing, 137-138
JavaScript, 116, 157-158

making available for whole application,

117

INDEX

naming, 35
Number, 158
overview of, 86-87
Paginator, 158-159
RSS, 159

Session, 160
specifying outside helper functions, 164
syntax for, 86

Text, 160
third-party, 86
$this->data, 75-77
Time, 161-162
views and, 187
XML, 162

home page for application

customizing design of, 276
designing
Pages controller, using, 273-274
Posts Index action, using, 274
dynamic navigation, generating, 275

HTML form, customizing, 84-86
HTML helper

addCrumbs function, 148-149
charset function, 140

css function, 140-141

div function, 141

docType function, 141-142
getCrumbs function, 148-149
image function, 142-143

link function, 143-144

meta function, 144

nestedList function, 145
overview of, 83-84, 139

para function, 146

style function, 146-147
tableCells function, 147-148
tableHeaders function, 147-148
tags array, 171

using in default layout, 149-150

$html->link() function, 35
HTTP Socket utility, 201-202
httpd.conf file, and Apache AllowOverride

error, 12

307

308

INDEX

id value for records, 20
Iglesias, Mariano, 276
image function (HTML helper), 142-143
include files, and MVC structure, 18
include() function, 4, 208
including
Textile, 210-211
vendors, 207-208
Index action
Events controller
Calendar helper, 229-235
finishing, 236-238
overview of, 228
Posts controller, find() function
conditions, setting for, 95-96
displaying most recent posts, 96
overview of, 93
parameters, 94-95
listing, 92
paginate() function, 93
recursive attribute, 93
Index action view
creating, 59
launching, 60
post listings in, 69
index() scaffolded action, 59
Index view, adjusting, 96
index.ctp file, 69
individual view files
controller, adding actions to, 59-61
creating, 59
customizing from scratch
HTML form, 84-86
HTML helper, 83-84
writing
debug() function, 82-83
overview of, 80—-82
initialize() function, creating custom
components, 205-206
initializing Ajax helper, 116
input() function (Form helper)
Automagic responses, 154
element functions, 156-157
options parameter, 155-156

overview of, 76, 85, 153
type option, 154-155
inserting fields into tags table, 255-256
installing
helpers, 137-138
jQuery and Form plugin, 131
localhost server
configuring on computer, 281-282
Mac OS X, setting up on, 282-284
Windows, setting up on, 284-286
MySQL, running
settings for, 287
tools for, 286
Prototype framework for Ajax, 116
third-party plugins, 219-220
vendors, 210-211
instantiating Textile, 211
interacting with web sites. See Ajax
framework
internalization, functions for, 70
internalization standards for utilities, 202
inversion control, 1
isAuthorized() function, 192
isSpam() function (Akismet component),
214
Item class, 21
Item model, creating, 20-21
item.php file, code for, 20
items table, and scaffolding feature, 23-24
ItemsController class, 22
items_controller.php file, creating, 21-22

J
JavaScript, passing with options array
(Ajax helper), 130
JavaScript helper
including in App controller file, 116
overview of, 157-158
joinTable parameter (“has and belongs to
many” relationship), 51
jQuery framework for Ajax, 130-131

L

label function (Form helper), 153
language, switching, 2

launching
Bake, 63
Cake
Apache AllowOverride error, 12
overview of, 10-11
permissions error, 11
to-do list application, 22-23
layouts
default.ctp file, 56-59
naming, 36
plugin, using, 223
layouts folder, contents of, 56
limit parameter

“has and belongs to many” relationship,

52
“has many” relationship, 44
link() function
Ajax helper
copying CSS, 125-126
overview of, 124
in View, 126
Vote action, 127-128
Votes view, 128
HTML helper, 143-144
overview of, 83
reverse routing and, 178
linking admin actions and views, 179
links, managing with HTML helper, 139
Linux, and command-line interface, 12
listings
Add action
file upload feature, 131
Posts controller, 101
Add Comments form, 120
Add view, rebuilding from scratch, 85
add_success.ctp file, 122
Ajax helper submit() function, 124
Akismet component
in Comments Add action, 214
importing, 213
App helper
creating, 163
tags array, 172
app/controllers/items_controller.php
file, 21

INDEX

app/layouts/rss/default.ctp file, 183
app/models/item.php file, 20
app/plugins/calendar/views/events/
add.ctp file, 227
app/plugins/calendar/views/events/
edit.ctp file, 227
app/views/elements/menu.ctp
element, 275
app/views/posts/rss/feed.ctp file, 185
app/views/users/login.ctp file, 190
Auth component
parameters in beforeFilter() action,
189
in Users controller, 191
Baked contents of Posts Add View file,
84
basic component file, 205
beforeFilter() callback action, 92
behavior file example, 268
“belongs to” relationship, 42
Calendar helper
closing out render() function, 234
event details, 234
events function, 235
first week of month, 230
initializing variables for, 229
week four, 232
weeks five and six, 233
weeks two and three, 231
Calendar plugin, Index view contents,
237
CalendarEvent model, 225
chats table for Ajax Chat plugin, 220
close() function, 251
Comment model
creating, 117
vote() model function, 127
Comments controller
Add action, 121
creating, 118
Vote action, 127
comments table, creating, 117
comments() function
BlogHelper class, 164-165
options array, 167-168

309

Iw
—
o

INDEX

components
including in controller with
$components array, 188
running in controller, 188
startup() function, 205
ConnectionManager utility,
instantiating DataSource in
behavior using, 269
controller action, basic, 90
controller class, naming, 32
CSS code for default layout, 58
CSS markup for voting tool, 125
data.xml file, contents to be added to,
252
Database Configuration File
adding localhost settings to, 15
code, 14
DATABASE_CONFIG class, 244
DataSource files, main skeleton for, 247
displaying
related posts as links in view, 262
session Flash messages, 74
English locale file content, 203
Events controller
Add and Edit actions, 226
Index action, 236
initial contents of, 225
View action, 238
View action’s view, 239
events table for Calendar plugin, 225
findAll() function, 252
Form helper input() function, 86
form, simple, 76
“has many” relationship, assigning, 44
“has one” relationship, assigning, 43
HTML helper
link() function, 83
tags array, 171
using in default layout, 149
HTML layout, 56
importing utility and instantiating class
object, 199
Index action in Posts controller
initial, 92
revised, 93

Index view, creating, 59
model, naming, 32
parent_id select menu in Add and Edit
views, 259
plugin controller extending App
controller, 222
plugin file structure, 221
plugin layout, using in plugin controller,
223
plugin model extending App model, 223
Post model
custom findByYear() function in, 106
Feed function, 184
“has and belongs to many”
relationship, 49
isAuthorized() function, 192
overview of, 102
validation rules for, 105
Posts controller
Add action, 75
baking, 65-67
Edit action, 78-79
Feed action, 184
Index action, adding, 59
isAuthorized() function, 192
PDF action, 215-216
Read action, 107
Text action, 132
View action, 73
Posts view
adding comments section to, 118
comments loop in, 119
PostsController file, 45
posts_tags table, creating, 49
.profile file, editing, 62
replacing text parameter with vote tag,
172
returned array from findByYear()
function, 107
SQL table structures, 40
starting new Textile class, 211
Tag model
creating, 49
with Tree behavior, 257

Tags controller
baked, 256-257
creating, 49
tags table
creating, 48
with required fields, 255
Text view, 133
$this->data, contents of, 260
unbindModel() function, 109
Users controller, Logout action, 191
users table, adding role field in, 192
vendors
including, 207
including Textile as, 210
using in controller, 208
View action
adjusted, to provide associated
comments for view, 119
with children() function, 261
in Posts controller, 97
view file, 80
View code to display voting links and
total votes, 126
view, simplified, 83
voteDownLink() function, 169
Votes view, creating, 128
voteUpLink() function, 168
webroot/index.php file, changing for
remote host, 277
$xml configuration array, 248
XML DataSource, 246, 250
xmlFindAll() function, 249
Living-e, MAMP, 9
loadConfig() function, 171
localhost environment, running Cake on
downloading, 10
launching, 10-11
overview of, 9
troubleshooting, 11-12
localhost server
configuring on computer, 281-282
setting up
on Mac OS X, 282-284
on Windows, 284-286
localization standards for utilities, 202

INDEX

localizing
content, 204
web sites, 203
logging in
Auth component and, 190-191
MVC structure and, 17
logging out, and Auth component, 191
Login action (Users controller), 190-191
loginAction parameter (Auth component),
193
loginError parameter (Auth component),
194
loginRedirect parameter (Auth
component), 193
Logout action (Users controller), 191
L10n utility
localizing content, 204
localizing web sites, 203
overview of, 202
translating strings, 203

M
Mac OS
command-line interface and, 12
localhost setup for, 282-284
magic variables, and route parameters,
180-181
MAMP (Living-e), 9
MAMP main application screen (Mac OS
X), 283
managing
access control lists, 265
links with HTML helper, 139
“many-to-many” relationship. See “has
and belongs to many” relationship
menu system for application, creating,
275
message key, 103
meta function (HTML helper), 144
MinGW command-line interface, 12, 62
mktime() function, 230
model functions
create(), 77-78
read(), 81
save(), 77-78

0

Iw
-
N

INDEX

Model object, default behaviors of, 30
Model-View-Controller (MVC) structure
benefits of, 18
Cake areas, 18
Codelgniter, 292
default behaviors, 30-31
extending, 241-242
login process in, 17
overview of, 3-5, 17, 241
to-do list application, 19
models
See also DataSources; Post model
App, 223-224
Comment, 117, 127
Event, 225
extending, resources for, 243
Item, 20-21
naming, 32-33
Tag, 49, 257
for to-do list application, creating,
20-21
moveUp and moveDown() functions (Tree
behavior), 264
multiple rules for validating data, using,
105-106
multiple word names, 33
MVC (Model-View-Controller) structure
benefits of, 18
Cake areas, 18
Codelgniter, 292
default behaviors, 30-31
extending, 241-242
login process in, 17
overview of, 3-5, 17, 241
to-do list application, 19
MySQL
connection settings, entering, 14-15
running
settings for, 287
tools for, 286
MySQL DataSource, extending model
with, 244
MySQL Query Browser, 286

naming conventions
best practices for, 37-38
controllers, 31-32
files, 20
models, 32-33
multiple word names, 33
overview of, 31
for plugin elements, 221-223
resources
behaviors, 36
components, 34
datasources, 36
elements, 35-36
helpers, 35
layouts, 36
table associations, 47
table of, 33
views, 33
navigation for home page, generating
dynamic, 275
nested folders, and vendors, 209
nestedList function (HTML helper), 145
New Item screen, 24
New Post screen, 45
normalization of database, 39
Number helper, 158

0

on parameter, and validating data, 104
“one-to-many” (“has many”) relationship,
44-45
“one-to-one” (“has one”) relationship, 43
online communities
CakePHB 6, 290
Symfony, 292
open source projects, PHP frameworks as,
290
options array
Ajax helper, passing JavaScript with, 130
comments() function of BlogHelper
class, 166-168
options parameter
form elements and, 150
of input function (Form helper),
155-156

order parameter
“has and belongs to many” relationship,
52
“has many” relationship, 44

P
page request, simple
customizing view file from scratch,
83-84
debug() function and, 82-83
View action and, 73-75, 80, 82
Pages controller, creating home page for
application with, 273-274
paginate() function, Index action in Posts
controller, 93
Paginator helper, 158-159
para function (HTML helper), 146
parameters
See also specific parameters
Auth component, 189-190, 193-194
find() function, 94-95
form elements and, 150
passed arguments compared to, 177
read() function, 97
redirect() function, 99
route, 180-181
save() function, 101
separating, 180
setFlash() function, 98
parsing
files with extensions other than .php
process of, 182
RSS feed, creating, 183-185
XML file, 252-253
Pass key, and route parameters, 181
passedArgs array, 176
passing
JavaScript with options array (Ajax
helper), 130
variables through routing engine,
180-181
password function(), Auth component,
190
path strings for connecting application to
MySQL socket, 287

INDEX

paths for remote setup, 277
PDF files, outputting posts as, 215-216
performance issues, and App controller
file and, 137
permissions, changing with Folder utility,
200
permissions error at launch, 11
PHP frameworks. See frameworks
PHP function names, 38
PHP language, advantages of, 2-3
PHP object, extending, 30
PHP scripting, typical flow for, 3
PHP shorthand
echo() function, 55
in code examples, 21
PHPMyAdmin, 286
plugins
Ajax Chat, 219-220
Calendar
Event model, 225
Events controller, 225-239
events table, 225
files and folders, setting up, 224
custom
creating, 221
layouts, using, 223
naming convention for elements,
221-223
running actions, 223
description of, 219
FCKeditor, 6
resources for, 219
third-party, 219-220
ports, default, for MySQL, 287
Post model
Feed function, 184
isAuthorized() function, 192
validating data
built-in rules for, 104-105
multiple rules, using, 105-106
multiple validations, using, 103
on parameter, 104
overview of, 102-103
required fields, 103
setting error messages, 103

(]
—
{JL]

|w
—
E-Y

INDEX

writing custom functions for, 106-109
xmlFindAll() function, 249
$post variable, debug() function
displaying contents of, 82
Posts controller
Add action
file upload feature, 131-132
overview of, 75, 100-101
save() function, 101-102
baking, 65-67
baking views off, 67
beforeFilter() action, 189
Chat action, 220
Edit action, 78-79, 100
Feed action, 184
Index action
adding, 59
find() function, 93-96
listing, 92
paginate() function, 93
recursive attribute, 93
isAuthorized() function, 192
PDF action, 215-216
Read action, 107
Router::connect() function and, 176
Text action, 132-133
View action
with children() function, 271
overview of, 73, 97
read() function, 97
redirect() function, 99-100
setFlash() function, 98-99
Posts Index action, creating home page for
application with, 274
posts table for blog, creating, 40
pr() convenience function, 83
.profile file, 62
Prototype framework for Ajax
Ajax helper and, 114
installing, 116
JavaScript helper, including in App
controller file, 116
making helpers available for whole
application, 117
Prototype JavaScript library, and Ajax Chat
plugin, 219

Pseudocoder Ajax Chat plugin, 219-220
public files, 56

Q
query results, trimming
bindModel() function, 110
unbindModel() function, 109-110

R

Read action (Posts controller), 107
read() function
File utility, 200, 250
Folder utility, 200
View action in Posts controller, 97
read() model function, 81
reading
cookies, 196
global variables, 199
session variables, 194
XML files, 250-251
receiver functions, 150
recent posts, displaying using find()
function, 96
records, id value for, 20
recover() function (Tree behavior), 264
recursive attribute (Index action in Posts
controller), 93
redirect() function (View action in Posts
controller), 99-100
redundancy and MVC, 4
remote host, running application on,
277-278
removeFromTree() function (Tree
behavior), 264
render() function
Calendar helper, 234
Calendar plugin, 237
Comments controller, 122-123
overview of, 80
request handling, HTTP Socket utility,
201-202
requestAction() function, 91
RequestHandler component, 198
requesting controller actions, 91
required fields, when validating data, 103
resolving URLs, 23

resources, naming
behaviors, 36
components, 34
datasources, 36
elements, 35-36
helpers, 35
layouts, 36
resources that extend MVC structure,
241-242. See also behaviors;
DataSources
reverse routing
URL lookups and, 177
verbose linking, 178
role field, adding in users table, 192
Router::connect() function, 175-176
Router::parseExtensions() function, 182
routes, using, rather than controllers, 38
routes.php file, 175
routing
admin, 178-179
app/config/routes.php file, 175-176
arguments and, 176-177
overview of, 175
parameters, 180-181
parsing files with extensions other than
.php
process of, 182
RSS feed, creating, 183-185
reverse
URL lookups and, 177
verbose linking, 178
$rss->document() function, 183
RSS feed
controller action, 184
creating, 183
extension layouts, 183
Feed view, 185
.1ss file extension, 182
RSS helper, 159
running
See also running Cake
application on remote host, 277-278
MySQL
settings for, 287
tools for, 286

INDEX

plugin actions, 223
Textile, 211
running Cake
database schema, designing, 15-16
on localhost environment
downloading, 10
launching, 10-11
overview of, 9
troubleshooting, 11-12
MySQL connection settings, entering,
14-15
setup routines, 13-14

S
Sanitize utility, 204
save() function, 31, 101-102
save() model function, 77-78
saving forms, 77-78
$scaffold attribute, 59
scaffolded actions, 59-61
scaffolding
creating for to-do list application, 23-24
overview of, 5-6
scaffolding feature
moving beyond, 52
testing associations with, 45-46
secure function (Form helper), 152-153
securing application for running on
remote host, 277
Security component, 198
Security.salt value, changing, 13-14
send() function (Email component),
196-197
separating parameters, 180
Session component
deleting and destroying sessions, 195
helpers and, 188
reading and writing session variables,
194
session handling, adding security to, 13
Session helper, 160
Set utility class, 253
Set::extract() function, 236-237, 253
setFlash() function, 74, 98-99
Set::reverse() function, 253

(]
—
(3]

Iw
—
(-]

INDEX

setParent() function (Tree behavior), 265

setup routines, running, 13-14

setup() function (Tree behavior), 265

slashes, URLs and, 23

socket, 287

spam, blocking in Comments Add action,
212-215

 element, 118

starting. See launching

startup() function, creating custom
components, 205-206

status parameter for redirect() parameter,
100

storing global variables, 199

strftime() function, 230

strings, translating, 203

strtotime() function, 69

Struts, Cake compared to, 30

style function (HTML helper), 146-147

style sheet, creating, 56-59

submit() function (Ajax helper), 124

supplier functions, 150

Suraski, Zeev, 293

Symfony framework, 292

T

table associations
belongs to relationship, 41-42
conventions for, 47
database design, 40-41
“has and belongs to many” relationship,
48-52
“has many” relationship, 44-45
“has one” relationship, 43
testing, 45-46
table structure for to-do list application,
19
tableCells function (HTML helper),
147-148
tableHeaders function (HTML helper),
147-148
tables
chats, 220
comments, 40, 117
events, 225
items, 23-24

naming, 31, 33
posts, 40
posts_tags, 49
tags, 48, 255-256
users, 40, 189, 192
Tag model, 49, 257-258
Tags Add view, 51
tags array
App helper, 172
HTML helper, 171
Tags controller, baking, 256-257
tags table for blog application, 48, 255-256
Tags views, adjusting, 259-261
test suite, 276
testing
“has and belongs to many” relationship
for tags and posts, 50
table associations, 45-46
unit testing, 276
views, 259
Text action (Posts controller), file upload
feature, 132-133
Text helper, 160
Text view, 133-134
Textile, 210-211
third-party components, 204
third-party plugins, 219-220
third-party scripts. See vendors
$this->data helper, 75-77
$this identifier, 188
$this->params array, 180-181
.thtml file extension, 33
Time helper, 161-162
tmp folder, preparing, 13
to-do list application
controllers for, creating, 21-22
database for, designing and creating,
19-20
launching, 22-23
models for, creating, 20-21
MVC structure and, 19
scaffolding, creating, 23-24
tools. See Bake; utilities
Translate behavior, 265
translating strings, 203

Tree behavior
to categorize blog posts
baking Tags controller and views,
256-257
fetching related posts when viewing
tag, 261-263
inserting fields into tags table,
255-256
Tags views, adjusting, 259-261
using in Tag model, 257-258
functions, 263-265
tree() function (Folder utility), 201
trimming query results, 109-110
troubleshooting launch, 11-12
type option of input function (Form
helper), 154-155

u
unbindModel() function, 109-110
underscore (_) character, 33
__(function, 70
unidirectional scripting, 210
unit testing, benefits of, 276
updating form fields, 78-79
uploading files with jQuery
Posts Add action, creating, 131-132
Posts Text action, creating, 132-133
Text view, creating, 133-134
URL lookups, 177
URL parameter for redirect() function, 100
URLs
friendly, 177
resolving, 23
user interactions
asynchronous sequence, 79-80
form submission sequence
editing or updating records, 78-79
saving forms, 77-78
$this->data helper, 75-77
overview of, 73
simple page request, 73-75
user’s role, checking, and Auth
component, 192-193
userModel parameter (Auth component),
193

INDEX

Users controller
Add link, 45
Login action, 190-191
Logout action, 191
users table
adding role field in, 192
Auth component and, 189
users table for blog, creating, 40
users table, and Auth component, 189
utilities
Configure, 199
ConnectionManager, 269
controllers and, 187
File
create() function, 200
overview of, 199
read() function, 200
write() function, 200
Folder
chmod() function, 200
copy() function, 201
create() function, 201
delete() function, 201
dirsize() function, 201
find() function, 201
overview of, 199
read() function, 200
tree() function, 201
HTTP Socket, 201-202
internationalization standards for, 202
localization standards and, 202
L10n
content, localizing, 204
overview of, 202
translating strings, 203
web sites, localizing, 203
overview of, 198
Sanitize, 204

)
validating data, Post model and
built-in rules for, 104-105
multiple rules, using, 105-106
multiple validations, using, 103
on parameter, 104

(]
-
~

Iw
—
{--]

INDEX

overview of, 102-103
required fields, 103
setting error messages, 103
var $helpers array, 139
variables
global, 199
helper, customizing, 171-173
magic, and route parameters, 180-181
session, reading and writing, 194
using in controller actions, 90
vendor files, writing instead of
components, 206
vendors
assumptions made about, 209-210
description of, 207
file names, 209
including, 207-208
installing, 210-211
nested folders and, 209
unidirectional scripting and, 210
vendors folder, contents of, 10
verbose linking, 178
verify() function (Tree behavior), 265
View action
with children() function, 261
Events controller, 238-239
Posts controller
overview of, 73, 97
read() function, 97
redirect() function, 99-100
setFlash() function, 98-99
view() scaffolded action, 59
View view, adjusting, 100
viewing XML data in data.xml, 253-254
views
Add, adjusting and testing, 259
admin, linking with admin actions, 179
Bake
commands, 70
configuring console’s profile to run,
62-63
creating with, 61
customizing, 70
editing baked views, 68
generating CRUD views using, 64-67
launching, 63

default.ctp file, 56, 59

Edit, adjusting and testing, 259

elements and, 35

error messages in, 106

Feed, 185

helpers and, 35, 187

Index, adjusting, 96

Index action, 59-60, 69

individual, creating, 59-61

naming, 33

overview of, 55

simplified, 83

Tags, adjusting, 259-261

Text, 133-134

user interactions
asynchronous sequence, 79-80
form submission sequence, 75-79
simple page request, 73-75

using vendor content in, 208

View, adjusting, 100

Vote, 128

writing individual files
customizing from scratch, 83-84
customizing HTML form, 84-86
debug() function, 82-83
overview of, 80-82

views folder

directories, 55
MVC structure and, 18

Vote action (Comments controller),

127-128

vote() model function, 127
voteDownLink() function, 169
Votes view, 128

voteUpLink() function, 168

w

Web 2.0, 113
web sites

Ajax frameworks, 114

API documentation, 138

Bakery, 219

Cake PHP community, 290

Codelgniter user guide, 291

command-line interface for Windows,
12

interacting with, 113
localizing, 203
MAMP (Living-e), 9
MySQL tools, 286
PHP frameworks, 289
Pseudocoder, 219
Symfony community, 292
Textile, 210
third-party helpers, 86
XAMPP (Apache Friends), 9
Zend Framework, 212
webroot folder, 56, 277
welcome screen
Bake, 63
checking, 10
tmp folder and, 13
with existing database, 15
Windows
command-line interface and, 12
localhost setup for, 284-286
write() function (File utility), 200
writing
behavior functions, 270
to cookie, 195
custom model functions, 106-109
global variables, 199
individual view files
customizing from scratch, 83-84
customizing HTML form, 84-86
debug() function, 82-83
overview of, 8082

INDEX

posts with Textile, 211
session variables, 194
vendor files instead of components, 206

X
XAMPP (Apache Friends), 9
XAMPP Control Panel screen (Windows),
285
$xml configuration array, 248
XML DataSource for blog application
building, 246
database configuration, setting up,
248-249
disconnecting from XML file, 251
file, creating, 246
parsing XML file, 252-253
reading XML file, 250-251
skeleton, starting with, 247-248
using in model, 249-250
viewing data, 253-254
XML helper, 162
xmlFindAll() function, 249

/A

Zend Framework
Cake compared to, 30
community support, 293
features of, 293
founders of, 293
PDF component, 215-216
web service library, 212-215

0

You Need the Companion eBook

Your purchase of this book entitles you to buy the

companion PDF-version eBook for only $10. Take the
weightless companion with you anywhere.

e believe this Apress title will prove so indispensable that you'll want to carry it
vaith you everywhere, which is why we are offering the companion eBook (in
PDF format) for $10 to customers who purchase this book now. Convenient and fully
searchable, the PDF version of any content-rich, page-heavy Apress book makes a
valuable addition to your programming library. You can easily find and copy code—or
perform examples by quickly toggling between instructions and the application. Even
simultaneously tackling a donut, diet soda, and complex code becomes simplified
with hands-free eBooks!

Once you purchase your book, getting the $10 companion eBook is simple:

@ Visit www.apress.com/promo/tendollars/.

® Complete a basic registration form to receive a randomly
generated question about this title.

© Answer the question correctly in 60 seconds, and you will
receive a promotional code to redeem for the $10.00 eBook.

p

=

ADress s

THE EXPERT’'S VOICE™

2855 TELEGRAPH AVENUE | SUITE 600 | BERKELEY, CA 94705

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print the
work in full or in part for their own noncommercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through 01/09.

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	From Novice to Professional
	Why Cake?
	It’s PHP!
	Rapid Development
	Model-View-Controller
	CRUD Operations and the Bake Script
	Scaffolding
	Helpers
	Customizable Elements
	Large Community
	More Features

	Summary

	Installing and Running CakePHP
	A Simple Start: Running Cake on a Localhost Environment
	Getting Cake
	Launching Cake
	Permissions Error
	Apache AllowOverride Error

	Running the Setup Routines
	Preparing the tmp Folder for Cake to Read and Write Temp Files
	Changing the Security.salt Value
	Entering MySQL Connection Settings
	Designing Your Database Schema

	Summary

	Creating a To-Do List Application
	Exploring the MVC Structure
	The To-Do List’s MVC Layout

	Designing and Creating the Database
	Creating Models
	What’s Happening in This Model
	Model Possibilities

	Creating Controllers
	What’s Happening in This Controller
	Controller Possibilities

	Launching the Application
	How Cake Resolves URLs

	Creating the Scaffolding
	Summary

	Naming Files and Designing the Database
	Convention Over Configuration
	Intercepting Cake
	Starting with the Database

	MVC Default Behaviors
	Naming Conventions
	Naming Controllers
	Naming Models
	Naming Views
	More Than One Word in the Name
	Naming Other Cake Resources
	Components
	Helpers
	Elements
	Layouts
	Behaviors
	DataSource

	Best Practices
	Keep File Names from Conflicting with Cake Resources
	Use Routes Rather Than Controllers
	Name Actions for People, Not Code
	Be Careful Using PHP Function Names as Action Names

	Poorly Designed Databases
	Why Good Database Design Matters
	Feature Creep and Cake

	Table Associations
	The Database Design
	“Belongs To”
	className Parameter
	foreignKey Parameter
	conditions Parameter
	fields Parameter

	“Has One”
	className Parameter
	foreignKey, conditions, and fields Parameters
	dependent Parameter

	“Has Many”
	className, foreignKey, conditions, and fields Parameters
	dependent Parameter
	order Parameter
	limit Parameter
	finderQuery Parameter

	Testing the Associations
	Conventions for Establishing Table Associations
	“Has and Belongs to Many”
	Many-to-Many Relationships in Cake
	Applying and Testing This Relationship with the Blog
	className Parameter
	joinTable Parameter
	foreignKey and associationForeignKey Parameters
	conditions, fields, order, and limit Parameters

	Beyond the Scaffold
	Summary

	Creating Simple Views and Baking in the Console
	Introducing Layouts
	Writing the default.ctp File
	Creating a Style Sheet for the Layout

	Creating Individual Views
	Adding Actions to the Controller

	Using Bake to Create Views
	Configuring the Console’s Profile to Run Bake
	Launching Bake
	Using Bake to Generate CRUD Views
	Bake the Controller First
	Bake the Views Second

	Editing Baked Views
	Considering Internationalization

	Using Commands for Faster Baking
	Customizing Views
	Summary

	Customizing Views
	Handling User Interactions
	A Simple Page Request
	A Form Submission Sequence
	$this->data
	Saving Forms

	Filling Form Fields for Editing or Updating
	An Asynchronous Sequence

	Writing Individual View Files
	Using the Debug Function
	Customizing the View File from Scratch
	The HTML Helper

	Customizing an HTML Form

	Using Other Helpers
	Summary

	Working with Controllers and Models
	Building an Extensive Blog
	Working with Actions
	Using Variables in Actions
	Requesting Actions
	How Callback Actions Work in the Controller
	beforeFilter
	afterFilter
	beforeRender

	Customizing the Controller for the Blog
	Recursive
	Pagination
	The find() Function
	Setting Find Conditions
	Setting Multiple Conditions

	Displaying the Most Recent Posts
	The View Action
	The read() Function
	The setFlash() Function
	The redirect() Function

	Creating a Model for the Blog
	The Add Action
	The save() Function
	Validating Data
	Using Multiple Validations
	Required Fields
	Setting Error Messages During Validation
	Create or Update?
	Using Built-in Validation Rules
	Using Multiple Rules

	Writing Custom Model Functions
	Trimming Results
	The unbindModel() Function
	The bindModel() Function

	Summary

	Implementing Ajax Features
	How Ajax Works
	Working with Ajax Frameworks
	Using the Ajax Helper

	Preparing the Ajax Helper
	Installing Prototype
	Including the JavaScript Helper in the App Controller File
	Making Helpers Available for the Whole Application

	Adding Comments to the Blog
	Working Ajax into the View
	Displaying Comments
	Using an Ajax Form

	Working Ajax into the Controller
	Rendering for Ajax

	Using Other Ajax Helper Functions
	The submit() Function
	The link() Function
	Copying Some Helper CSS
	Using the link() Function in the View
	Creating Voting Actions in the Controller and Model
	Creating the Votes View

	Doing More with the Ajax Helper
	Passing JavaScript with the Options Array
	Prototype vs. jQuery

	Uploading Files with jQuery
	Installing jQuery and the Form Plugin
	Creating the Posts Add Action
	Creating the Posts Controller Text Action
	Writing the Text View

	More Ajax Features
	Summary

	Helpers
	Installing Helpers
	Using Cake’s Built-in Helpers
	Explain Every Helper Function?
	Working with the HTML Helper
	charset
	css
	div
	docType
	image
	link
	meta
	nestedList
	para
	style
	tableHeaders and tableCells
	addCrumb and getCrumbs

	Using the HTML Helper in the Default Layout
	Working with the Form Helper
	create
	end
	secure
	label
	input

	Using Other Built-in Helpers
	The Ajax Helper
	The JavaScript Helper
	The Number Helper
	The Paginator Helper
	The RSS Helper
	The Session Helper
	The Text Helper
	The Time Helper
	The XML Helper

	Creating Custom Helpers
	Using the App Helper
	Creating the Helper File
	Using Outside Helper Functions
	Making a Helper for Your Blog
	Including the Ajax Helper
	Writing the Comments Function
	Comparing Helpers and Elements
	Extending the Comments Function

	Customizing Helper Variables
	Summary

	Routes
	The Basic Route
	Arguments
	Reverse Routing
	Lookups
	Rewriting URLs in the Router
	Verbose Linking

	Admin Routing
	Choosing an Admin Prefix
	Linking Admin Actions and Views
	Baking Admin Routes

	Route Parameters
	Magic Variables
	Custom Expressions
	The Pass Key

	Parsing Files with Extensions Other Than .php
	The Process
	Creating the RSS Feed
	Extension Layouts
	The Controller Action
	The Feed View

	Summary

	Components and Utilities
	Why Use Components?
	Using Components

	Using Built-in Components
	Authentication
	Setting Up the Users Table
	Initializing Variables
	Logging In
	Logging Out
	Checking a User’s Role
	Using Other Auth Parameters and Functions

	Session
	Reading and Writing Session Variables
	Deleting and Destroying Sessions

	Cookie
	Setting Up the Cookie Component
	Writing to a Cookie
	Reading a Cookie
	Deleting Cookies

	Email
	Setting Up the E-mail Layouts
	Sending an E-mail
	Using a Template for E-mail Messages

	Other Components
	ACL
	RequestHandler
	Security

	Utility Classes
	Configure
	Reading and Writing Global Variables

	File and Folder
	Reading Files
	Creating New Files
	Writing to Files
	Changing File and Folder Permissions
	Reading Folder Contents
	Reading Folder Trees
	Copying, Creating, and Deleting Folders
	Calculating the Folder Size
	Finding Files in a Folder

	HTTP Socket
	Making HTTP Requests
	Using Other HTTP Socket Functions

	Localization and Internationalization
	Working with Locale Files
	Translating Strings
	Localizing Content

	Sanitize

	Third-Party Components
	Creating Custom Components
	Using the Initialize and Startup Functions
	Writing Vendor Files Instead of Components

	Summary

	Vendors
	Using Vendors
	Dealing with File Names
	Dealing with Nested Folders

	Making No Assumptions for Third-Party Scripts
	Unidirectional Scripting

	Installing a Third-Party Script
	Including Textile
	Instantiating and Running Textile
	Writing Posts with Textile

	Using Other Frameworks with CakePHP
	Zend Framework
	Blocking Spam in the Comments Add Action
	Outputting Posts as PDF Files

	Summary

	Plugins
	Installing a Third-Party Plugin
	Creating Custom Plugins
	Naming Convention for Plugin Elements
	Running Plugin Actions
	Using Plugin Layouts

	The Calendar Plugin
	Setting Up the Files and Folders
	Create the Events Table
	Create the Event Model
	Create the Events Controller
	Building the Add and Edit Actions
	Building the Index Action
	Building the View Action

	Summary

	DataSources and Behaviors
	Extending the Model with DataSources and Behaviors
	Working with DataSources
	Using Built-in DataSources
	Building a Custom DataSource
	Creating the DataSource File
	Starting with a Minimum Skeleton
	Setting Up the Database Configuration to Include the DataSource
	Using the DataSource in the Model
	Reading the XML File
	Disconnecting from the XML File
	Parsing the XML File
	Viewing the Data

	Working with Behaviors
	Using the Tree Behavior to Categorize Blog Posts
	Inserting Required Fields into the Tags Table
	Baking a New Tags Controller and Views
	Using the Tree Behavior in the Model
	Adjusting Views
	Fetching All Related Posts When a Tag Is Viewed

	Using Other Tree Behavior Functions
	childCount
	generateTreeList
	moveUp and moveDown
	getParentNode and getPath
	recover, removeFromTree, setParent, setup, and verify

	Using the ACL and Translate Behaviors
	Using the Containable Behavior
	Attaching and Detaching Behaviors
	Detaching and Disabling Behaviors
	Attaching and Enabling Behaviors

	Writing Custom Behaviors
	Setting Up the Behavior File
	Using DataSources in Behaviors with ConnectionManager
	Performing Callbacks in the Behavior
	Things to Keep in Mind When Writing Behavior Functions

	Summary

	Wrapping Up the Application
	Designing the Home Page
	Using the Pages Controller to Produce a Single View
	Making an Action the Starting Point

	Generating Dynamic Navigation
	Customizing the Overall Design
	Debugging the Application
	Running the Application on a Remote Host
	Summary

	Installation Issues
	Developing in a Localhost Environment
	Using the Localhost First, Remote Last
	Why Doing It All Remotely Is Bad

	Setting Up a Localhost
	Setting Up on a Mac
	Step 1: Download the Software
	Step 2: Open the Disk Image and Install the MAMP Folder
	Step 3: Run the MAMP Application Program
	Step 4: Configure the Localhost Root Folder
	Step 5: Change the Localhost Ports
	Step 6: Make the Localhost Easier to Manage

	Setting Up on Windows
	Step 1: Download the Software
	Step 2: Run the Installer Program
	Step 3: Open the XAMPP Control Panel
	Step 4: Secure the Localhost

	Running MySQL
	Where to Find Other MySQL Tools
	CocoaMySQL
	MySQL Query Browser
	HeidiSQL

	Typical Settings When Running MySQL
	Host
	User and Password
	Socket
	Port

	How CakePHP Compares with Other Frameworks
	PHP Frameworks
	Using the Various Frameworks
	CakePHP
	CodeIgniter
	Symfony
	Zend Framework

	Index

