
Today is Monday, October 23, 2006 ....is Viral Marketing working for you today? 

NEWS RELEASE: FreeViral.com is ranked by Alexa as being in the top 1% of all trafficked websites in the world (and that's out of 
40 million sites!) Now you can get in on this incredible traffic explosion, Free! 

Q: Can I really get over 1,000,000 visitors every month?

A: Yes! Guaranteed Visitors, and it's absolutely Free! 

 
 

In less than 5 Minutes 
you can have your own 

Free Viral Marketing mini site....

and then watch your traffic 
EXPLODE !! 

 
"This Free system is like VIAGRA for your website!" 

-M.S. Blumenthal, eHits 

 

 
This system is FREE  
  
 
Quick and easy sign-up... get your own viral webpage in 
under 5 minutes!  
  
 
This "Viral Marketing" system works for you around-the-
clock to bring you traffic!  
  
 
The viral nature of this system ensures that your traffic 
will exponentially increase!  
  

 
 
Dear Webmaster,

Double a penny every day for a month and what do you get? Over ten million dollars! That's the 
power of exponential growth, and the Internet is the one medium that can harness that power... 
for FREE! 

FreeViral.com fully exploits this phenomenon to help generate MASSIVE VISITOR TRAFFIC for 
your website!

 
So how does this system work?

Our system is similar to others you may have seen on the Internet with one major difference... our 
system guarantees traffic to your website! The concept is simple; at the bottom of this page 
you will notice 6 classified ads.

When you sign up, you will receive a website just like this one with your classified ad in the #1 
position! The ad that was in the #1 position will move down to the #2 position, the 2nd ad to the 
#3 position, and so on with the last classified ad being taken off of the page.

When someone signs up from your website, their classified ad will be placed in the #1 spot with 
your ad moving to the #2 spot, the 2nd ad moving down to the #3 spot and so on. By the time 
your classified ad reaches the #6 spot, you will have noticed an amazing amount of FREE traffic!

 
How do I get guaranteed traffic?

When someone signs up from your site, they must first click on your classified ad which will open a 
new window leading to your main website. They will have to wait a few seconds for the code to 
appear on a separate frame at the top of the screen.

While they wait, they will have time to read what you have to offer! This can equate to more sales, 
downline members, affiliate sign-ups, ezine subscribers, etc.! Each classified ad will have to be 
clicked on to retrieve a unique code meaning that you will receive FREE Traffic throughout all 6 
levels!!!

 
How much FREE traffic can I expect?

Lets be extremely conservative and assume that your page and everybody else's pages only 
get 10 sign-ups:

 
CONSERATIVE EXAMPLE

10 people sign up from you: 1 x 10 = Your ad on 10 new sites 

10 people sign up from each of 
them: 10 x 10 = Your ad on 100 new sites 

10 people sign up from each of 
them: 10 x 100 = Your ad on 1,000 new sites 

10 people sign up from each of 
them: 10 x 1,000 = Your ad on 10,000 new sites 

10 people sign up from each of 
them: 10 x 10,000 = Your ad on 100,000 new sites 

10 people sign up from each of 
them: 

10 x 100,000 
= 

Your ad on 1,000,000 new 
sites 

 
Total: 10+100+1,000+10,000+100,000+1,000,000  

= 1,111,110 WEBSITES DISPLAYING YOUR AD!  
  

 
This system works amazingly well on the Internet. There is nothing to slow it down. You can setup 
your viral webpage today and have 5 or 10 sign-ups within a few days! With it being so easy to 
join you could literally have over 50,000 sites displaying your ad within a short time! 

The system works extremely well so be prepared for some massive visitor traffic to your site! 
Remember, this system doesn't just give you ad exposures, it generates GUARANTEED VISITS to 
your site, because participants are required to visit your website. And that translates to 
GUARANTEED MASSIVE VISITOR TRAFFIC TO YOUR SITE !!

We also provide FREE Tools to help promote your FreeViral.com webpage! Ready to start 
receiving your FREE TRAFFIC ? Then follow the instructions below!

 
 
 

Sign Up Instructions

 
 
STEP 1: Visit each site below to retrieve the codes.

Click on each ad below and a new window will open. You will notice a unique code at the top of 
each page. Once you retrieve the unique code(s), enter them into the corresponding text boxes 
below. Once you're done inputting all seven unique codes, please move on to Step #2.

Sponsor Ad
Who Else Wants to Put their Search Engine Submissions on Autopilot, put their website on TV news, 
Radio and in Magazines, and use a half dozen proven traffic generators ?

Enter the codes in the text boxes below: 

Sponsor Ad  

 

1st Ad 

 

2nd Ad 

 

3rd Ad 

 

4th Ad 

 

5th Ad 

 

6th Ad 

 

 
To get the "sponsor ad code" click on the sponsor ad above 

1. www.GetPedia.com More than 500,000 articles about almost EVERYTHING !! Get Smart at GetPedia

2. Get Your Immediate Access to these $99 eBay Seller Training Videos for Only $19

3. Try these online promotion tools free!

4. Free Clipart resource!

5. Maui oceanfront condos... Rent owner-direct and save! 

6. GET PAID TO SHOP - EAT FOR FREE - FLY FOR FREE

 
 

STEP 2: Register

Fill out the EZ signup form and your new password will be emailed to you. You'll be able to log into 
your account anytime to change your ad, change your URL, and check your downline referral stats.

 
YOUR INFO

Full Name: 

Email:  
  

IMPORTANT: Your UserID will be emailed to this address. 
IMPORTANT: No Autoresponders or Junkmail Addresses! You will 
receive weekly member emails to this address. If any of our emails 
bounce due to a full mailbox, or if we receive an autoresponder 
reply, your FreeViral account will be cancelled and your downline 
will be transferred to another member.

YOUR WEBSITE AD

Text Ad: 

 
IMPORTANT: You can change your Ad any time

Website URL: 

REGISTER NOW!
Choose 

Password:  (Maximum 10 characters)

 
I have read and agree to the Terms of Service

I understand that I will receive emails from FreeViral.com 
including important member news, tips and special offers for 
members.
I understand FreeViral.com will keep my email address and 
other info confidential, and these will never be shared, or sold.

 
  

 

Copyright © 2001-2003 eHits Inc. All Rights Reserved This website including all contents is copyright 2001-2003 eHits Inc., San Diego, California USA. 
No part of this website may be transmitted, copied, reproduced, or distributed in any form by any means either hardcopy, electronically, orally or otherwise 
without the express written permission of eHits. 

If you see this message then you are on the new server

 
www.FreeViral.com

 
Support Our Sponsors...

 
 

http://www.freeviral.com/?c=view&u=1&l=&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=1&l=&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=111121&l=1&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=2&l=2&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=3&l=3&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=4&l=4&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=5&l=5&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/?c=view&u=6&l=6&s=MxcTKcrOz76A1x2yUM
http://www.freeviral.com/
http://www.bannersgomlm.com/cgi-bin/ads/left/ads_nonssi.pl?advert=NonSSI&page=ehits.900304
http://www.bannersgomlm.com/cgi-bin/ads/right/ads_nonssi.pl?advert=NonSSI&page=ehits.900304
http://bannersgomlm.com/cgi-bin/ref/index.cgi?dist=ehits
http://www.freeviral.com/?r=111121


www.GetPedia.com

http://www.getpedia.com/showarticles.php?cat=110




Professional CSS
Cascading Style Sheets for Web Design

Christopher Schmitt
Mark Trammell
Ethan Marcotte

Dunstan Orchard
Todd Dominey

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page i



01_588338 ffirs.qxd  6/22/05  11:43 AM  Page vi



Professional CSS
Cascading Style Sheets for Web Design

Christopher Schmitt
Mark Trammell
Ethan Marcotte

Dunstan Orchard
Todd Dominey

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page i



Professional CSS: Cascading Style Sheets for Web Design
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-8833-4
ISBN-10: 0-7645-8833-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RT/QX/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUIT-
ABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Professional CSS : cascading style sheets for Web design / Christopher Schmitt ... [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-7645-8833-4 (paper/website)
ISBN-10: 0-7645-8833-8 (paper/website)
1. Web sites—Design. 2. Cascading style sheets. I. Schmitt, Christopher.
TK5105.888.P674 2005
006.7—dc22

2005012281

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are regis-
tered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.,
is not associated with any product or vendor mentioned in this book.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page ii



About the Authors
Christopher Schmitt is the principal of Heatvision.com, Inc., a new media publishing and design firm
based in Tallahassee, Florida. An award-winning Web designer who has been working with the Web
since 1993, he interned for both David Siegel and Lynda Weinman in the mid-1990s while an undergrad-
uate at Florida State University pursuing a Fine Arts degree with emphasis on graphic design. He is the
author of The CSS Cookbook (O’Reilly, 2004) and Designing CSS Web Pages (New Riders Press, 2002). He is
also the co-author (with Micah Laaker) of Photoshop CS in 10 Simple Steps or Less (Wiley, 2004) and con-
tributed four chapters to XML, HTML, & XHTML Magic by Molly Holzschlag (New Riders Press, 2001).
Christopher has also written for New Architect magazine, A List Apart, Digital Web, and Web Reference. In
2000, he led a team to victory in the “Cool Site in a Day” competition, wherein he and five other talented
developers built a fully functional, well-designed Web site for a non-profit organization in eight hours.
Speaking at conferences such as The Other Dreamweaver Conference and SXSW, he has given talks
demonstrating the use and benefits of practical CSS-enabled designs. Also helping to spread the word
about Web design, he is the list mom for Babble (www.babblelist.com), a mailing list community
devoted to advanced Web design and development topics. On his personal Web site, www.
christopherschmitt.com, he shows his true colors and most recent activities. He is 6'7" tall and
does not play professional basketball, but he wouldn’t mind a good game of chess.

For Dee. My muse and inspiration for many years and, with hope, many more to come. I would be lost
without your wisdom, laughter, empathy, and captivating smiles.  

Mark Trammell of Gainesville, Florida, directs the Web presence at the University of Florida.

To Kaye. Your love and abiding support make me who I am. Your joy paints my life with vibrant
swaths of color that give memories meaning and our future hope. You are called many things: doctor,
lieutenant, professor, wife, but most important, I call you friend.

Ethan Marcotte of Boston co-founded Vertua Studios (vertua.com), a Web design shop focused on 
creating beautiful, user-focused sites. A steering committee member of the Web Standards Project, he is a
leading industry voice on standards-based Web design. Ethan is also the curator of sidesh0w.com, a 
popular Web log that is equal parts design, coding, and blather.

Dunstan Orchard of Dorset, UK, and San Francisco is Senior UI Engineer at Apple’s online store. He is a
member of The Web Standards Project, a silent developer for the popular open source blogging platform
Wordpress, and an occasional contributor to his own site at http://1976design.com/.

I dedicate my meager portion of this book to my parents and to my girlfriend, Nicole.

Todd Dominey of Atlanta founded Dominey Design (domineydesign.com), an interactive Web devel-
opment and design studio that has produced original work for Budweiser, The Washington Post,
Google, Winterfresh Gum, and others. He is also a Senior Interactive Designer at Turner Sports
Interactive, designing and developing Web destinations for major PGA tournaments (including the
PGA Championship and The Ryder Cup).

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page iii



Credits
Acquisitions Editor
Debra Williams Cauley

Development Editor
Kevin Shafer

Technical Editor
Molly Holzschlag

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Lynsey Osborn
Amanda Spagnuolo

Quality Control Technician
Leeann Harney
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page iv



Foreword

When I met Christopher Schmitt in 1998, he was running High Five, the first online magazine dedicated
to the art of aesthetic, visually pleasing Web design. To good design, he soon added a commitment to
responsible code stewardship. Christopher was an early supporter of The Web Standards Project; in the
aftermath of the Browser Wars, he became a tireless and well-learned advocate of CSS design.

Books about CSS-based design are only as good as the CSS and the design they contain. Professional CSS
boasts the best of both. For this volume, Christopher Schmitt has assembled some of the most talented
and influential visual stylists and thinkers designing Web sites today. To make the cut, the designers in
this book had to know as much about semantic markup and cascading style sheets as they did about
branding, graphic design, and the softer user sciences. (If they also knew from JavaScript and your pop-
ular plug-ins, so much the better.) Oh, and they had to be lucid, passionate, entertaining writers — and
original thinkers — to boot.

Meeting these tough requirements was a short list of masters: Todd Dominey, Ethan Marcotte, Dunstan
Orchard, and Mark Trammell. Each has done incredible things on and for the Web, earning peer respect,
winning fame, and above all, satisfying demanding clients while delivering standards-based designs
that know everything about the user and nothing of compromise. 

As you read this book, you will learn their secrets (including how to include Flash in a standards-based
layout without breaking document validity) and discover principles of CSS layout and semantic markup
you can put to work on your most challenging professional projects. Please enjoy responsibly.

Jeffrey Zeldman
Founder, Happy Cog Studios
Author, Designing with Web Standards (New Riders Press, 2003)

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page v



01_588338 ffirs.qxd  6/22/05  11:43 AM  Page vi



Acknowledgments

Christopher Schmitt: I thank Debra Williams Cauley and the Wiley team for helping me to shepherd the
book you are now reading. 

Also, special thanks to David Fugate at Waterside for his guidance and support on this project. 

With the support of my co-authors Todd, Ethan, Dunstan, and Mark as well as the incomparable Molly
as the Technical Editor, the book became better and bolder than my original vision. I thank you all for
your hard work. 

Special thanks to my family and friends. Their continued support while I was busy managing and writ-
ing another book was immeasurable, even those who nodded politely while I ranted about Internet
Explorer for Windows.

Mark Trammell: Many thanks to Al, Daniel, Taylor, Joe, Malik, Chuck, Gail, Steve, and Christian for
their trust and sage advice. I am truly blessed to serve alongside people who love what they do and why
they do it.

Christopher, Dunstan, Ethan, and Todd are among the Web’s most talented developers and thoughtful
commentators today. I feel privileged and humbled to have worked on this project with them.

Ethan Marcotte: There is a short list of people who need to be thanked when one has written a book
such as this, and mine is no different. While Jeffrey Zeldman, Doug Bowman, Dave Shea, and Dan
Cederholm are all recognized CSS pioneers, I don’t think they receive enough acknowledgment as the
talented, inspiring writers they are. I’d like to do so now.

Knowing that Molly Holzschlag was the Technical Editor for this book helped me sleep at night.

I’d like to thank my parents, for talking me down from several ledges during this whole writing busi-
ness. Richard Ohlsten did the same, and deserves tons of high fives as a result. And while I’ve not spo-
ken to her in some time, Marion Wells renewed my faith in my writing when I needed it most.

Were it not for Garret Keizer, I wouldn’t have the words.

And finally, as I worked through this process, there was one person who was infinitely patient, support-
ive, and kind. She knows who She is, and there isn’t ink enough to thank her properly.

Dunstan Orchard: I acknowledge the help of Douglas Bowman, Mike Davidson, Molly Holzschlag, and
my fellow authors.

Todd Dominey: First and foremost, my thanks to everyone at Turner Sports Interactive in Atlanta —
notably Phil Sharpe, Michael Adamson, and John Buzzell — for giving me the opportunity to work not
just on the 2004 PGA Championship but also The Ryder Cup and numerous other PGA online projects.
My participation in this book would not have been possible without their trust and support. 

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page vii



viii

Acknowledgments

Additional thanks to those in the Web development community who early in my professional career
provided an immeasurable amount of inspiration and instruction: people like Jeffrey Zeldman, whose
tireless promotion of Web standards and well-formed code changed my approach to Web design, and
CSS gurus Douglas Bowman, Dan Cederholm, and Dave Shea for not only their continued exploration
and experimentation with CSS, but for freely offering their knowledge and code for the rest of the world
to benefit from.

Last but certainly not least, my wife, Heather, and our entire family for their support.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page viii



Introduction

Designers are traditionally creative types, tending to favor the right brain, while programmers examine
the details of a system more clearly, preferring a left-brain mode of thinking. So, when faced with the
challenge of designing for the Web, designers are faced with what on the surface appears to be an oxy-
moron, a design technology named cascading style sheets (CSS). 

CSS is a Web markup standard set by the Worldwide Web Consortium (W3C) that enables Web design-
ers and developers to define consistent styles in Web pages, and to apply the template to multiple pages.
CSS is a valuable tool for streamlining and speeding up Web development, although browser compati-
bility issues are a major pitfall.

While WYSIWYG Web page editors are getting closer and closer to a complete visual authoring experi-
ence, those software applications aren’t truly professional CSS design tools. CSS by its nature is a tech-
nology that, for the most part, must be written out manually to create compelling work. The problem
with that is that most designers have a hard time committing to writing lines of code to get their work
done. 

Designers who express sheer joy in writing PostScript by hand are hard to find. Designers let Adobe
Illustrator (or any similar program) provide a visual authoring environment and hide the coding in the
background. All the designer sees is the imagery, while the computer handles the workload. 

Another hindrance to using CSS doesn’t have anything to do with CSS itself, but rather the implementa-
tion of CSS in Web browsers. Browser vendors incorporated the technology into their browsers slowly
over time. While CSS support is nearly 100 percent as of now, designers still run into problems when try-
ing to shore up their designs in older or outdated browsers. That means diving into the guts of CSS and
coding hacks and workarounds. The bottom line translates into more time writing and revising code,
and less time working in WYSIWYG tools. 

Does this mean that CSS is this out-of-control or untamable technology? Not in the least, but it does take
some concerted effort to wrangle professional-looking designs. 

Even if you know the basics of CSS (the properties, the acceptable values, the selectors, and so on),
putting the technology to effective use can be difficult to downright frustrating. CSS stymies the best
of us — even those who actually understand the W3C specifications as opposed to those who can only
skim them in awe in their browsers. 

In the right hands, however, CSS is the tool. 

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page ix



x

Introduction

Once designers have mastered the basics of the technology, the understanding of its purpose, and have
obtained a certain amount of experience with the technology, almost any design idea sketched on a cock-
tail napkin or doctored in Adobe Photoshop becomes possible.

To help you get to that point, keep Professional CSS nearby. 

Professional CSS is one of the few books on the market today that address designing standards-based CSS
on large, multi-page, well-designed, real-world sites using CSS in an integrated fashion. Focusing on the
best-practices aspect of Web development, and using examples from real-world Web sites, this book
uniquely offers applied, CSS-enabled solutions to design problems.

Whom This Book Is For
Those designers who understand CSS at an intermediate to advanced level, but who are not clear on
how to effectively develop CSS-enabled designs at a professional level, will benefit tremendously from
the information in this book. In particular, the following readers will find this book most useful:

❑ Intermediate to experienced HTML users new to CSS. Any professional Web developer who
has been exposed to CSS, but needs a better understanding of how to put the pieces together to
create professional-level Web sites.

❑ Professional designers. Professional Web developers learning CSS (without any knowledge of
traditional, 1990s-era design practices) and want to understand the best practices for utilizing
the technology.

How This Book Is Structured
Core chapters of this book focus on one designer and a Web site that designer worked on. Each chapter
provides easily digestible demonstrations of CSS tips and techniques used for the site. Additionally,
designers provide greater insight into their process by talking about what they would have done
differently.

Following is a brief overview of how this book is organized and which co-authors have contributed their
insights:

❑ Chapter 1, “The Planning and Development of Your Site.” To get things rolling, you must be
familiar with all the preliminaries that proven professionals iron out before they begin working
on their sites. This chapter helps you avoid problems later in the development of your site by
properly planning what must be done.

❑ Chapter 2, “Best Practices for XHTML and CSS.” Ethan Marcotte, a steering committee mem-
ber of the Web Standards Project and a recognized leader of the standards-based Web design
movement, shares some insights on using Extended HTML (XHTML) with CSS.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page x



xi

Introduction

❑ Chapter 3, “Blogger: Rollovers and Design Improvements.” Dunstan Orchard, also a member
of the Web Standards Project, delves into the behind-the-scenes development of a new look and
feel for blogger.com (a Google Web log site). Orchard’s interview with one of the principals in
the project, Douglas Bowman (an influential designer whose highly publicized and hugely suc-
cessful redesigns of several Web sites have pushed him to the forefront of standards-compliant
Web design), provides some extremely valuable insight. This chapter also addresses key issues
such as bounding boxes and rollovers.

❑ Chapter 4, “The PGA Championship.” As a Senior Interactive Designer at Turner Sports
Interactive, Todd Dominey has been designing and developing Web destinations for major
Professional Golf Association (PGA) tournaments, including the PGA Championship and The
Ryder Cup. In this chapter, Dominey provides a first-hand perspective on the ins and outs of
designing a site relied upon by millions of sports fans all over the world. Key issues addressed
in this chapter include drop shadows, drop-down menus, and embedding Flash content into a
Web site.

❑ Chapter 5, “The University of Florida.” Mark Trammell, who is in charge of directing the Web
presence at one of the country’s leading universities, discusses how the University of Florida
developed a Web site to benefit both students and faculty. Key issues addressed in this chapter
include tackling browser compatibility issues, as well as developing functional navigational
structures.

❑ Chapter 6, “ESPN.com: Powerful Layout Changes.” Dunstan Orchard talks with Mike Davidson,
Senior Associate Art Directory and Manager of Media Product Development at the Walt Disney
Internet Group, about an extremely effective makeover for ESPN.com. Orchard discusses how
designers were able to develop a site that provides the flexibility required by an organization feed-
ing its readers up-to-date sports information.

❑ Chapter 7, “FastCompany.com: Building a Flexible Three-Column Layout.” Ethan Marcotte
sat down with Dan Cederholm to discuss the extreme makeover of the Web site for Fast
Company, publisher of a popular magazine by the same name. In addition to this provocative
interview, Marcotte presents tips on CSS positioning and, in particular, details surrounding
effective three-column layouts.

❑ Chapter 8, “Stuff and Nonsense: Strategies for CSS Switching.” In addition to an interview
with Andy Clarke (Creative Director for Stuff and Nonsense), Ethan Marcotte explores how to
improve Web site accessibility for all users to further ensure universal access. In this chapter,
Marcotte delves into CSS switching and ways to overcome pesky browser compatibility prob-
lems. The innovations displayed at the Stuff and Nonsense site provide excellent examples of
these techniques.

❑ Chapter 9, “Bringing It All Together.” Lead author Christopher Schmitt uses his own success-
ful Web site development to show how all the tips and techniques presented in the book can be
put to practical use.

Additionally, the appendixes in this book provide handy reference material for HTML 4.01 elements,
rules for HTML-to-XHTML conversions, properties of CSS 2.1, and even a troubleshooting guide to help
with common problems.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page xi



xii

Introduction

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like so: persistence.properties. 

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information. 

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check 
the information and, if appropriate, post a message to the book’s errata page and fix the problem 
in subsequent editions of the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page xii



xiii

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

01_588338 ffirs.qxd  6/22/05  11:43 AM  Page xiii



01_588338 ffirs.qxd  6/22/05  11:43 AM  Page xiv



Contents

Foreword v
Acknowledgments vii
Introduction ix

Chapter 1: The Planning and Development of Your Site 1

Establish the Scope 2
Determining Roles and Responsibilities 3
Budgeting Time and Expectations 4
Managing Change 4

Designer, Know Thy Goals 7
Your Client’s Goals 7
Your Audience’s Needs 8
Creating Personas: Putting a Face to Your Audience 8

Information Architecture 11
Putting It into Practice 12
Taking Stock of Your Content 12
From Inventory to Hierarchy 14
Building Our Site Map 16
Wireframes: Blueprints for Your Pages 18

Beginning the Design 21
Setting the Tone for Your Site 21
Finding Inspiration 22
Selecting a Layout: Fixed or Liquid 23

Summary 28

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xv



xvi

Contents

Chapter 2: Best Practices for XHTML and CSS 29

Structure and Presentation: Shoehorned Together 30
A Valid Foundation: Learning to Love Our Markup 35

XHTML: The New Hotness 36
Abstracting Style from Structure 39

CSS: A Layer of Style 48
Selectors 48
Other Selectors 51
Multiple Declarations 54
Grouping 55
Inheritance 56
Putting It All into Action 58

Understanding the Cascade 64
Style Origin 64
Sort by Specificity 66
Sort by Order 68

From Theory to Practice 68
Build to a Reliable Browser 68
The Need for Hacks 69
The Problem with Hacks 72
Hacking Artfully 74

Summary 76

Chapter 3: Blogger: Rollovers and Design Improvements 77

Interviewing the Designer 78
Bounding Boxes 81

The Straight Lines of the Box Model 84
Blogger’s Curvy Corners 86

Creating Fixed-Width, Round-Cornered Boxes 87
The XHTML 88
The CSS 89
The Images 89
What Does It All Mean? 90

Creating Fluid-Width, Round-Cornered Boxes 107
The XHTML 109
The CSS 109
The Images 110
What Does It All Mean? 111
Better Thinking Through Pseudo-Elements 118

Implied Boxes 119

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xvi



xvii

Contents

Writing CSS That Benefits Your Site Maintainers 120
Basic Page Structure 120
Inside the body div 121
The XHTML 126
The CSS 127
What Does It All Mean? 127

CSS-Enabled Rollovers 129
Changing the Color and Background Color of Links (Simple) 129
Changing the Color and Background Color of Links (Complex) 131
Changing the Background Color of Table Rows 140
Changing the Color of Text 143
Changing the Background Position on Links 147

Summary 158

Chapter 4: The PGA Championship 159

Drop-Shadow Effect 160
Creating the Illusion 161
Extra Realism 165

CSS Drop-Down Menus 168
Customization: Positioning the Drop-Down Menus 169
Customization: Styling the Drop-Down Menus 170

Web Standards–Compliant Flash Embedding 174
The Flash Satay Method 174
Write the object/embed Tags Using JavaScript 175
FlashObject 175

Summary 176

Chapter 5: The University of Florida 177

University of Florida’s Web Site 177
Revisions 178
The Current Site 180

Defining the Site 180
Building the Team 181
User Research 181
Peer Review 181
Technical Specs 182

Creating a Main Navigational Structure 183
The XHTML 184
The CSS 186
The Images 187
Brick by Brick 188

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xvii



xviii

Contents

Making the Supplementary Navigation 191
The XHTML 191
The CSS 193

Flash Embedding Revisited 199
Flash Satay 199
Flash Satay with Server-Side Detection 201

Missteps 203
Leading Only by Example 203
“Force of Habit” or “Who Moved My Input Field?” 203

Summary 203

Chapter 6: ESPN.com: Powerful Layout Changes 205

ESPN and CSS Sitting in a Tree 205
Interviewing the Designer 206
Importance-Based Design 208

Regular 211
Skirmish 211
War 212
Putting It All Together 212
Love Your <body> 214
Where Else Is This Applicable? 220
Up a Bit . . . a Bit More . . . Stop! 223
Lesson Learned 224

A Glimpse into a Classless Future (Not a Socialist Manifesto) 224
The Selectors of Tomorrow 224
Love Your <body> Even More Tomorrow 237

Summary 238

Chapter 7: FastCompany.com: Building a Flexible Three-Column Layout 239

Fast Company: Picking Up the Gauntlet 240
Meet the Designer: Dan Cederholm 242
CSS Positioning: The Fundamentals 246

Absolutely Fabulous Positioning 247
Positioning That’s Absolutely Relative 250

Building Three Columns: Laying the Foundation 252
Writing the XHTML: From Mockup to Markup 254
A Layer of Style 256
Battling Browser Bugs 266

Setting Some Boundaries: The max-width Property 273
Summary 276

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xviii



xix

Contents

Chapter 8: Stuff and Nonsense: Strategies for CSS Switching 277

Laying the Foundation 278
CSS Switching 284
The Mechanics: How It’s Supposed to Work 286

Persistent Style Sheets 286
Preferred Style Sheets 287
Alternate Style Sheets 287
Another Solution We (Almost) Can’t Quite Use 290

The Reality: How It Can Work Today 291
Jumping on the JavaScript Bandwagon 292
Down with PHP 300

CSS Beyond the Browser 304
Media Types: Let the Healing Begin 305
The Problem with Choice 309

Stuff and Nonsense: Building a Better Switcher 309
Meet the Designer: Andy Clarke 311
Summary 316

Chapter 9: Bringing It All Together 317

Enter ChristopherSchmitt.com 317
Planning Saves Time 319
Defining the Site’s Scope 320
Content and the Site Map 321
Framing the Layout 322
Designing the Site 324

Emoting Is Designing 324
Setting the Tone 324
Building It in Photoshop 328

Developing the Site 329
Outside-In, Top-Down Approach to CSS 329
Centering the Page (and Why It Matters) 329
Font Sizing 332
Entering the Head 335
Finding the Search Box 336
Making Room for the Logo 339

Starting the Two-Column Layout 343
Columns in HTML 344
Side Column 344
Main Column 348

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xix



xx

Contents

Main Column Content 349
My Site Says, “Hi,” Does Yours? 349
Styling the Blog Posts 352

Side Column Content 359
Start of Site Navigation 360
Wayfinding with Navigation 367
BlogRoll 373
The Footer 378
Page as a Whole 380

Summary 381

Appendix A: HTML 4.01 Elements 383

Appendix B: Rules for HTML-to-XHTML Conversion 389

The XML Declaration 390
Picking Your Comfort Level 390
Rules for XHTML 391

Don’t Forget the Namespace Attribute 391
Quoting Attribute Values 392
No Attribute Minimization 392
Terminating Empty Elements 392
Cleaning Nests 393
XHTML with CSS and JavaScript Files 393
Keep It on the Downlow 393
Introduce ID When Using name 393
Encode Ampersands 394
When in Doubt, Validate 394

Appendix C: CSS 2.1 Properties 395

Appendix D: Troubleshooting CSS Guide  407

Validation 407
HTML 407
CSS 408

Manipulating the Elements 408
Zeroing Out the Padding and Margins 408
Applying Color to Borders and Backgrounds 408

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xx



xxi

Contents

Placing Variations in Property Values 409
Playing Hide and Seek 409
Validating Again 409

Looking Outside for Help 410
Web Site Resources 410
Mailing Lists 410

Index 411

02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xxi



02_588338 ftoc.qxd  6/22/05  11:17 AM  Page xxii



The Planning and
Development of Your Site

In the past few years, the design community has seen an explosion of sites powered by cascading
style sheets (CSS). Highly visible brands such as Fast Company, ESPN.com, PGA, and Blogger have
all adopted CSS for the layout of their sites, delivering their compelling content through this excel-
lent Web technology. Their pages have become lighter and more accessible, while a few style sheet
files provide them with global control over the user interface of their entire site. The potential of CSS
has been well established by these mainstream sites, and the technology (which languished since its
introduction in 1996) is quickly becoming the de facto means by which a site’s design is built.

However, while CSS has been elevated to near-buzzword status, it’s important to remember that
style sheets are simply a tool to be used in the overall design and development of your Web site.
Granted, that tool is an incredibly powerful one, but it can only facilitate high-powered, profes-
sional-looking Web sites. Although using style sheets can afford you an unprecedented level of
control over your site’s design, no technology is a silver bullet. Despite what technology evange-
lists might tell you, adopting CSS won’t inherently make your site more usable, your design more
compelling, or your breath more wintergreen-fresh.

So, if we put aside the buzz for a moment, we can see that although CSS is an incredibly important
aspect of a Web site’s development, it should be viewed in the context of that site’s entire lifecycle.
In this chapter, we’ll discuss the following topics:

❑ Understanding your project’s scope

❑ Establishing the goals for your project

❑ The fundamentals of information architecture

❑ How to begin your site’s design

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 1



Establish the Scope
If we were asked to build a house, there are a few questions we’d want answered before agreeing to do
the work. How large will the house be? How many rooms? What kind of budget is allocated for this pro-
ject? All of these questions are meant to establish the scope of the construction project. It’s a means of
gathering information about the project, so that you can more intelligently assess its needs. By establish-
ing the scope of the project, we can better understand exactly how involved the project is, how long it
will take to complete, and how much it will cost — all items that are integral to any formal contract.

If you can’t tell by now, our construction metaphors aren’t exactly our strongest point. But while we
might have been snoozing through those episodes of This Old House, the parallels to the start of a Web
project are uncanny. Before firing up Photoshop or slinging one line of code, you and your client should
work together to produce a well-reasoned scope statement. This aptly named document not only deter-
mines what work will be performed throughout the duration of the project, but also implicitly defines
what work is outside the scope of the project. This is an incredibly important point. When the deadlines
are tight and the expectations high, knowing exactly what is expected of you throughout the course of
the project will keep your budget in check, and both you and your client focused.

Most frequently, the scope statement contains the following information:

❑ Strategy. This contains some information about the goals and business needs behind the project.
Is the site you’re designing supposed to increase advertising revenue, or shore up readership
numbers? Is the project supposed to increase a site’s accessibility, or its search engine ranking?

❑ Deliverables. These are the products that will be created over the course of the project. If your
project involves some level of site planning, will you be building a site map, or providing wire-
frames? When the project is finished, will you provide the client with all the Photoshop files
used in your designs?

❑ Assumptions. This is all of the conditions and constraints that were used to establish the scope
and upon which all other timelines and goals are founded. Should any of these initial assump-
tions change, the scope of the project should be revised accordingly. For example, if initial client
meetings uncover only 30 pages on the site that need to be built, then the landscape (and your
estimated budget) can change rather drastically when the client informs you two weeks into the
project that it has another 300 pages it would like you to redesign.

❑ Scope management. No matter how extensively you document your assumptions and time-
lines, someone will invariably request changes during the course of your project. Whether it’s
Murphy’s Law or bad karma, it doesn’t matter — you and your client need to acknowledge that
this change will likely occur and mutually agree upon some process for handling it. Some devel-
opers will write a separate document detailing how these changes are managed, and how the
client approves the resulting changes in schedule and budget.

This isn’t an exhaustive list, nor should it be seen as definitive. As we’ll no doubt harp at you through-
out the remainder of this book, each project has its own needs, its own goals. Because of this, each scope
statement should be tailored to reflect this.

However, it is important to remember that it is the project scope that forms the basis for whatever contract
you and your client establish. Because of this, the gathering of the requirements should be a highly collab-
orative process. You and your client should work closely together to flesh out exactly what information
should go into the scope statement. Otherwise, if you and your client have differing expectations as to
what work falls under the auspices of the project scope, then problems may arise as deadlines approach.

2

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 2



Determining Roles and Responsibilities
No person is an island, and the same is especially true of Web contractors. Every project requires some
level of coordination with additional people, whether they are members of your team, or stakeholders
from the client’s company. As such, a successful project becomes less about providing a set of deliver-
ables at a specific time, and more about managing the different members of the project team. Clearly
communicating the expectations placed on every member of the project will help ensure that deadlines
are met on time, on budget, and above the client’s expectations.

At some point in your professional career, you’ll be staffed on a project where its requirements exceed
your abilities as an individual. This isn’t something to dread, however. Rather, discuss with your client
that their project’s scope requires additional resources to meet the deadlines, so that you can plan your
budget accordingly.

In either scenario, it might be helpful to sketch out a table that outlines not only the various roles dis-
tributed throughout your team, but their responsibilities as well. In the following table, we’ve banged
out a rough sketch of what the average project team might look like. Even if you’re the sole resource
working on a project, this exercise can be quite helpful. Acting in multiple roles can be quite a juggling
act throughout the duration of a contract, and a table such as this can help you identify exactly what is
required of you, and with whom you’ll need to interact.

Role Responsibilities Deliverables

Project manager The overall traffic manager, Scope statement (co-author); timelines.
overseeing the project’s 
progress from gathering 
requirements to delivery. 
Works with the client sponsor 
to define the scope and 
requirements of the project.

Project sponsor This primary point-of-contact Scope statement (co-author); creative 
at the client company defines brief; any additional materials deemed 
business requirements, and necessary for gathering of requirements.
provides sign-off at various 
stages of the project.

Information architect Develops the site’s infrastruc- Site map; wireframes.
ture and establishes interface
guidelines that are both intuitive 
and scalable.

Web designer Establishes the site’s visual Graphic mockups; static HTML
design, or “look-and-feel.” templates (as well as necessary

CSS/image assets); style guide.

Web developer Responsible for any server-side Functional specification; application 
programming when building a server installation/configuration.
dynamic, database-driven Web site.

Database developer Builds the database that will Data model; database installation/
house the Web site’s content, configuration.
and drive other dynamic aspects 
of the site.

3

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 3



In the first column, we’ve identified the different roles that are distributed throughout our project team.
From there, we’ve outlined a brief overview of the expectations that will be placed upon them over the
course of the project lifecycle. While it’s nearly impossible to accurately capture everything that a Web
designer is responsible for in fewer than 12 words, this brief synopsis should at least convey the most
important aspects of the role. Additionally, we’ve outlined the specific items each member will deliver
over the course of the project. These deliverables should be drawn directly from the scope of the project
and matched up to the individual best equipped to deliver them.

Also, you may notice that we’ve included a “project sponsor” on this table, which is a member of the
client organization that shepherds the project from inception to completion. While perhaps not as inte-
grated into the day-to-day execution of project goals and requirements as the rest of your team, this per-
son exercises veto power in critical decisions, defines the business needs that drive the project’s goals, and
ultimately facilitates communication between your team and other stakeholders from the client company.
As a result, this person is integral to the success of your project. Any additional information for which
they are responsible should be tracked closely, as though they were a part of your project team.

Budgeting Time and Expectations
After you’ve assessed the different needs of your project, you will be in a better position to determine
how long it will take, and exactly how much it will cost. “Time is money,” of course, but that’s rarely
more true than within the bounds of a consulting engagement. Granted, it’s a fine thing to discuss strat-
egy, scope, and staffing, but it’s your project’s budget that will determine whether or not any of those
things actually come to fruition. With a properly established budget, you can begin to add people and
technical resources to your project plan, as well as any other expenses that your project might require.

Furthermore, the amount of money allocated to a given project can limit the size of your team. Perhaps
our project plan requires two developers and one designer but funds exist only for two full-time
resources. As a result, something must go: either reduce the number of staff on our project, or reduce the
scope of the project to the point at which two people can easily handle it.

Conversely, the budget could affect the quality of our team: if the funds are not available to hire an expe-
rienced application developer, then we might need to hire a less-expensive (and perhaps less-seasoned)
resource instead. Or, if the budget is especially tight, we just might need to pick up that Perl book and
start skimming. Therefore, a solid understanding of any budgetary constraints will help us understand
the extent to which we’ll need to bootstrap our own skills or those of our team members, and how that
preparation will affect timelines.

Managing Change
Let’s say that we’re nervously eyeing the clock two hours from site launch. We’re looking at the last few
items on our to-do list and are feeling a bit pressed for time before the site’s go-live. Just then, our client
sponsor strolls up to say that his boss wants some holiday e-cards designed, and that they should go live
with the newly rebranded site (this has never happened to us, we swear). Just like that, our priorities
have been told to shift, but the project’s timelines haven’t budged an inch.

This is what is known as “scope creep” and is a part of almost every project. At some point, the require-
ments outlined at the beginning of the contract may need to be updated to reflect some new or updated
business requirement. If our project can’t adapt to our client’s needs, then we’re likely working on the

4

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 4



best product they’ll never be able to use. So, while this kind of change is expected, it is very important to
know how to manage it effectively. No designer wants his or her timelines in a constant state of flux,
especially when the budget isn’t. How, then, do we manage scope creep within a project? There is no
easy answer to this question, but there are a few strategies that might be useful to keep in mind.

Introducing Sign-Off
Once a particular deliverable has been finished and presented to a client, it is usually a good idea to ask the
client to formally “sign off” on the work. This sign-off can take the form of an e-mail from the client, min-
utes from meeting notes, or preferably a physical signed document. No matter the form it takes, it should
formally document the client’s approval of what has just been delivered. By securing the client’s sign-off on
a given deliverable, the client confirms that our work meets the requirements that the client set before us.
In effect, the client is telling us, “Yes, this is what we asked you to provide for us — let’s move on.”

Some designers might call this “blazing a paper trail.” The rationale frequently is one of offloading
accountability onto our client’s shoulders: that if any future changes must occur, the fault — and
incurred cost — lies not with us as consultants, but upon the client’s revised requirements. And, on the
face of it, this thinking has a lot of appeal. Whenever possible, we should toe a hard line with the estab-
lished scope, and ensure that the agreed-upon requirements change as little as possible before the pro-
ject’s completion. Sign-off is one way to help ensure this, enabling us to point to completed work should
we ever be asked to undertake time-consuming revisions.

Viewed in a more positive (and somewhat less mercenary) note, sign-off can be a valuable means to
increase the level of collaboration between consultant and client. Sign-off provides a scheduled touchpoint
for our clients, allowing them to check in on progress made to date. In this, the client almost becomes
another member of the project team. Formalizing the approval process integrates the client’s decisions into
the project lifecycle, and increases the level of interest the client has vested in maintaining the project’s
momentum.

And on the subject of momentum, sign-off is in itself a valuable device for maintaining a sense of progress
from project inception to final delivery. Over the course of a given project, you may find that most deliver-
ables cannot be built unless another has been completed. For example, it isn’t possible to begin building
HTML templates of our designs if the mockups haven’t been finalized — or rather, the template process
becomes extremely lengthy and expensive if the design is still undergoing revision. By requiring sign-off
on a particular phase of work before the next phase can begin, you can help ensure that your work is deliv-
ered on-time and on-budget. That should make parties on both sides of the negotiating table quite happy.

Refer Frequently to the Project Scope
While the scope statement enables us to define the requirements for our project, it also implicitly estab-
lishes what is not in the agreed-upon scope — a critical point when deadlines are tight and client expec-
tations high. It’s important to have established this baseline with your client.

This is where the collaboratively authored aspect of the scope document becomes most important. By
working closely with the client at the outset of the project to define its scope, the client has a more con-
crete understanding of how that scope (and any changes to it) will affect both pricing and timelines.
That’s not to say that this will mitigate any and all potential scope changes. Rather, it will help facilitate
any later reviews of the original proposal and allow both sides of the contract to more intelligently and
openly discuss how the new changes will affect schedule and pricing.

5

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 5



Frame the Work Within Your Budget
From this, it’s important to remember that the project’s budget can be a valuable tool in mitigating scope
creep. Just as our scope statement helps us understand what is out of our project’s jurisdiction, so, too,
can our budget help us mitigate unnecessary changes. If there are insufficient funds for a requested
change, then the issue is quickly rendered moot.

Failing that, it’s worth discussing with our client just exactly how this change will impact the budget
and the project timelines. Frequently, the relationship between additional work and additional time or
cost is forgotten in the heat of a fast-paced project. By demonstrating that X amount of work will require
Y additional dollars at Z billable hours, we can work with our client to assess exactly how much of a pri-
ority the scope change actually is. (We were never especially good at algebra, but please bear with us.)

This might sound as though we’re trying to get out of additional work — quite the opposite, in fact (after
all, we must pay for those plane tickets to Bali). Rather, it’s our responsibility as contractors to help our
clients attach a quantitative measure of importance to that work; namely, does the amount of additional
time and funds justify the importance of this new project? Weighed in this manner, this latest work can
be assessed by our clients against the other parts of the project scope. If the scope change is ultimately
decided to be a must-have, then we can work with our client to decide how to proceed — should the
timeline and budget for the project be revised, or should some other aspect of the project be foregone to
usher in this new task.

Moving Forward
Of course, if the client is willing to alter the scope and the budget to accommodate a vital change, then we
need to be equally flexible. Much as we did before beginning the project, we need to establish the scope
for the requested change. What kind of work will it entail? How long will it take? How many resources
will it require? Once these questions have been answered, we can more accurately estimate exactly how
this scope creep will affect the project as a whole. If designing those holiday cards will require three days
of design and review, then that needs to be communicated to our client. While we might not be able to
produce what they’re asking for in the requested time, an open and frank discussion about how long this
request will take — and how it will therefore impact the larger project — will often follow.

While discussions of pricing and process are no doubt difficult ones to have with your clients, it is
extremely important to remain firm on these issues. If it helps, try not to see these discussions as a
means to protect the bottom line. Rather, every client will try to test the limits of the project’s scope; the
more you capitulate to out-of-scope requests on short notice, the more they will anticipate and expect
this behavior. This can quickly lead to projects that fly wildly off of the original specification and sched-
ule, which will in turn push back delivery dates. Neither the designer nor the client will be pleased with
this result. Therefore, maintaining a firm (but fair) line on these issues will help you meet the project
goals — and your client’s expectations — successfully.

Constant Communication
Not to sound too much like a greeting card, but communication is quite possibly the element that deter-
mines a project’s success. Conversely, the lack of effective communication can run an otherwise well-
planned project aground. As the project manager, you must remain in constant touch with your clients
about the status of the project, potential shifts in scope, upcoming delivery dates, and milestones. In
short, the more touchpoints you can maintain with your client about how the project is progressing, the
better. We’ve never been on a project that ran off-track because of too much communication. However,
we’ve definitely seen instances where insufficient contact met with disaster.

6

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 6



Designer, Know Thy Goals
There’s an implied “All of Them” at the end of this section’s heading because any project carries with it a
small army of distinct (and, at times, competing) goals. The Rational Unified Process, a software project
management methodology (http://ibm.com/software/awdtools/rup/), establishes the goals for a
project by defining the Critical Success Factors, often referred to as CSFs. These factors are something like
a laundry list that will help you determine when the project has completed. Some sample CSFs might
include:

❑ Build for-pay subscription newsletter service into site.

❑ Increase traffic by 40 percent over 6 months.

❑ Redesign home page to allow for rotation of 728 × 60 banner ads above the company logo.

There’s nothing especially surprising here, and it is, in fact, a rather modest list of business requirements
that are key to the success of the project.

Of course, things become complicated when we try to establish whose factors define a successful site. In
other words, who are the project’s “stakeholders”? Who can benefit from the project’s successful com-
pletion? Conversely, who would be affected by a less-than-successful Web site?

While a client might undertake a redesign to gain more space for advertising on a site (and therefore shore
up the company’s advertising revenue), this requirement could conflict with users that are just trying to
find a particular article buried beneath the banner ads. So, while your redesign might meet the established
business goals with flying colors, the site’s users might consider the project an unmitigated failure.

So, if business and user needs are in competition, exactly to whom are we supposed to listen? As much as
we’d like to, we can’t give you an easy answer to that question. Obviously, we can’t treat business and
user needs as an “either/or” scenario. Rather, it is our responsibility to perform a rather delicate balanc-
ing act between business and user goals, and ensure (somehow) that both are represented in the work
we ultimately produce.

Your Client’s Goals
If your project is to be of any value to the client, it must advance the client’s business objectives.
Frequently, our clients are outside of our own industry. Whether the client comes from the print indus-
try, the automotive industry, or has a small business looking to establish an online presence, they often
have little experience with the how of Web design. After all, that’s why they’re talking to us. We have
been tasked to take their particular business requirements and goals and realize them online. Of course,
the lack of industry understanding works both ways. We often have as little experience with our clients’
industries as they do with ours.

Therefore, it’s important that both sides of the equation get to know each other. When gathering require-
ments for your project, find out everything you can about the client, and the context in which the client
company operates. It’s not possible for us to know too much about the client’s industry, business, and
goals (both short- and long-term). No question is too basic. We must find out as much as we can about
the client’s industry, potential sales markets, marketing strategies, and competitors. This knowledge will
only help us as we plan and execute a project that will meet the client’s needs.

Of course, as we’re gathering this information, we should explain our own work as thoroughly and
clearly as possible. We should tell our client a story about what this Web project might look like, from

7

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 7



beginning to end. We can explain what we’ll be building, and what kinds of deliverables we will pro-
duce at different stages of the project. But more than explaining what we produce, we should explain
why our projects are structured as they are — we can describe why a site map is important, or why
design mockups must be finalized before any HTML can be coded. In doing so, we can demystify the
project lifecycle for our clients, and help them better understand the sequence of events that lead them to
a successful project end.

Your Audience’s Needs
If you were building a house for yourself, you could immediately dive into the planning without taking
anyone else’s goals into account. Because you’re the only person who will be living in your little shack de
résistance, you can take wild liberties with the structure, layout, and aesthetic of your house. Go on, put
the bathroom in the middle of the kitchen — we won’t tell anyone, honest. Of course, if you ever have
any guests over for dinner, you can bet that you’ll get some puzzled glances, and more than a couple
questions about what you were thinking.

However, when designing a Web site, our own needs and preferences are the last that we should con-
sider. Rather, we design for others, for our users. If we build a site supplied with world-class content,
but the user can’t figure out how to navigate beyond the home page, then we’ve failed not only our
users, but in our design as well. A successful, user-centered design can yield high traffic, a flourishing
community of satisfied users; an unusable site nets you a high degree of dissatisfaction, the size of which
will likely be inversely proportionate to the size of your audience.

Of course, unlike the guests at that ill-fated dinner party, it’s a bit more difficult to figure out what your
users want. As a result, it’s far too easy to leave them out of the equation entirely when we make plans
for our sites. Instead, we discuss our pages as a collection of features, areas of functionality, or disparate
areas of content. That can easily be a rather cold way of assessing your site — and you can bet that your
users will give you the cold shoulder, hurrying off to find a site that helps them achieve their goals,
rather than hindering them.

Creating Personas: Putting a Face to Your Audience
So, how do we make a site more usable when we’ve never met a single one of our users? Given just how
virtual our little medium is, our users are often invisible to us. So, instead of thinking of them as a face-
less mass of surfers clicking through page after page of our site, we can create personas (or user profiles)
that give our users a face. Personas are model users who can help you better understand the needs,
behavior, and goals of your users. In creating these fictitious profiles, you can better understand and
anticipate the behavior patterns of the people who will actually use your site.

Figure 1-1 shows a sample persona.

While Frank is a fabricated user, his usefulness derives from the fact that he is strategically fictitious: his
biography, aspirations, and professional goals are all drawn from trends sampled from your site’s users.
By doing so, a persona becomes a valuable guide through the planning, design, and development pro-
cess. It allows you to put a face to the otherwise faceless people who will be visiting your site, and
allows you to avoid the pitfall of basing design decisions on technical or personal biases. Rather than
asking yourself how you might navigate a certain page, you can ask yourself how your persona might do
so. It’s a tactic meant to humanize the design process, yes — but ultimately, the quality of your site will
improve, as will your users’ satisfaction with it.

8

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 8



Figure 1-1: A sample persona. (We didn’t say it was going to be pretty.)

So, how do we actually create a persona? There are a number of ways to begin this process. The one you
pick will ultimately depend on the scope of the project, and the amount of energy you’re able to commit
to it.

The first (and least “time-expensive”) option is to assess what you know of your audience from various
internal sources. Examining your site’s server logs isn’t a bad place to start. These files can give you
valuable technical information about your users. At the base of it, this research will yield some impor-
tant technical demographics: you’ll be able to assess what kind of browser landscape exists in your audi-
ence and on what operating systems they view the Web. As you’ll see in later chapters, each browser has
a number of CSS bugs and rendering idiosyncrasies. Knowing what browsers you must support will
play a critical role in the development and testing of your site.

Furthermore, you might be able to glean some valuable geographic data as well. As they troll through
your site’s pages, each visitor will leave their IP address in their wake. From this bit of information, vari-
ous log analysis tools can tell you from what parts of the world your users originate. Why is this impor-
tant? If you’re building a site for an international audience, your design should be able to speak to
people of multiple languages and cultures. For example, will your site’s icons convey the same meaning
to an American audience as they would to a German one, or even to a user from Singapore? Knowing
from where your site’s audience comes is as important as knowing what your audience wants.

There are a number of log analysis tools available to you in conducting this research. AW Stats
(http://awstats.sourceforge.net) is a freely available log analyzer that can analyze log 
formats for such popular Web servers as Apache’s httpd and Microsoft’s IIS. Webalizer

9

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 9



(www.mrunix.net/webalizer/) is a similar package, but works only with Apache log formats.
ShortStat (www.shauninman.com/mentary/past/shortstat_maintenance.php) is a PHP
application that can track various kinds of user data. These are only three such packages, and there are
dozens, if not hundreds, of alternatives available. Each has its own strengths and weaknesses, which
should be assessed according to your needs and technical requirements.

In addition to analyzing server logs, you should interview the site’s stakeholders. These are the decision
makers, the people who drive the direction of not only the site, but also the business behind it. These
people will have a strong bead on the site’s audience, and ideally have had close contact with them. As
such, they can provide valuable insight into your users’ needs, and into which areas of the site would be
most relevant to them.

Of course, the best method of creating effective personas is setting aside internal statistics and assumptions,
and actually meeting some of your users — after all, facts and figures can go only so far in identifying just
what it is that your users value. At some point, you need to set aside quantitative data for qualitative inter-
views; there is no substitute for sitting down with people who will (or currently do) use the pages you’re
designing. Talking with them about their needs and goals not only creates a vital feedback loop for you as
the site’s designer, but also helps you put real-life anecdotes and experiences behind the design decisions
you’ll be making. For example, you might poll your users on any of the following points:

❑ Technical information. What kind of browser do they use, and on what kind of computer? How
do they use the Web? Why do they use the Web?

❑ Customer information. How do they view the site of your company or client? Do they use it?
What do they think of the site’s competitors?

❑ Personal information. This might include such information as age, gender, and location (for
example, urban or rural).

❑ Design preferences. How would they define a “good” site design? While you might not ask
them to leap into an art school–esque dissection of a given site’s design, you might ask them to
tell you some of their favorite sites. Try to find out why those sites are their favorites.
Additionally, you could try to uncover what sites they like least, and why.

Of course, this isn’t a comprehensive list — the goal of any user sampling is to get as much data as possible
that will be helpful to you in your design effort. But rather than just seeing this as a data-mining initiative,
think of it as a series of conversations with real people. While demographic information and technical
statistics are vital to planning your site’s development, collecting anecdotes and quotes from actual people
will help to create a more effective persona. Remember that these are ostensibly the individuals that will be
visiting your site, and whose needs your design will need to address. When you think of them as users,
your design suffers; when you think of them as people, your site will be all the more successful.

Once you’ve collected as much data as possible, the analysis begins. By sifting through your notes,
trends should emerge. An overwhelming percentage of your users might use the Macintosh version of
Internet Explorer; a large minority of your users might be color blind, or suffer from poor vision; a high
number might be working mothers, or perhaps teachers looking to acquire professional development
credit. More than likely, your audience will be multifaceted, and could contain any or all of the above.
But no matter the spectrum that your users cover, it’s important to keep these seemingly disparate char-
acteristics in mind as you sit down to write your personas — because just like your “real” users, your
persona may not be able to be easily categorized.

10

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 10



In fact, the best place to start working on your persona is probably the narrative, or the persona’s biogra-
phy. This is the meat of the persona, and is where the credibility of this virtual user is established. If you
have a gift for embellishment, this isn’t a bad time to flex those creative muscles. While you might want
to communicate your persona’s lack of technical expertise (and, in doing so, remind the developers that
your users aren’t especially Web-savvy), try to think up a few fictional details about his or her life:

❑ Is your persona married?

❑ Does your persona have any children?

❑ What about hobbies? Perhaps your persona is a cigar aficionado, reads avidly, or was president
of his or her high school chess club.

All of these details might seem superfluous when your project deadlines are looming, but this extra level
of creativity can help your persona leap off the page and into the forefront of your mind while you’re
planning your site.

Once you’ve completed the narrative, add the finishing touches that will complete the picture:

❑ Name. A real name, such as Nathan, Molly, Jon, and so on.

❑ Age. The age of your persona.

❑ Work environment. What kind of computer does your persona use in the office? How fast is his
or her connection to the Internet?

❑ Technical frustrations. What does your persona find difficult about working online? What
makes him or her want to close her browser window in sheer frustration?

❑ Photo. A photo.

Ideally, your personas should be around one to two pages long, chock-full of important details about
your users’ needs, as well as those personal details that make the personas come alive. That said, there is
no hard-and-fast rule to determine when you’re finished working on your personas. Most projects will
benefit from a relatively small number of personas; popular opinion ranges anywhere from two to seven
personas. Ultimately, you are the best judge of your project’s specific needs. By better understanding
your audience, you can then begin to assess the second most important part of your site: its content, and
how your users should access it.

Information Architecture
For a moment, take a look at this book that you’re holding. It comprises several hundred pages, each of
which might contain a few dozen (we hope worthwhile) concepts. Now, were you presented with all of
those ideas printed on one huge piece of paper in a random order, you’d likely ask the bookseller for
your money back. There is no way that you could easily find any information on CSS, and this book
would be utterly useless to you. Thankfully, you’re spared that experience. At every stage of the book’s
development, there has been a constant attempt to bring order out of this conceptual jumble, on levels
both large and small. The goals of the book were established, and then the topics that the book needed to
cover were outlined. From those general topics came chapters, and within each chapter came section
outlines and headings.

11

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 11



But there’s more at play here than simply creating an outline and then tossing in a few paragraphs (or at
least, we hope it looks that way). Rather, thought has been given to how the order of these content areas
must make sense to you, the reader. Without that consideration for how you will read the book — how
you will interface with the content therein — we might as well have saved everyone some time and
printed everything out on that long sheet of paper.

In contemporary Web-speak, information architecture (IA) is the term most used to refer to this process. On
the face of it, information architecture is a means through which you can define the internal organization
of a Web site: to take all of the content for your site, divide it up into easily digestible chunks, and subse-
quently create a logical navigation structure that makes those chunks easily accessible by your users.

But taken simply in those terms, IA could be seen as a glorified job for a librarian: write down some dis-
crete piece of content on an index card, and file it away in a well-labeled drawer so that someone else
might access it. At the heart of it, IA isn’t simply about content categorization and site structure. Instead,
think of it as imposing order on an otherwise chaotic set of information, in a method that will allow others
to more easily interface with it. In fact, the word “interface” implies this two-way street between user and
site. Your site might have the most compelling content available online, but what good is it doing your
users if they can’t locate it? It’s our responsibility as designers — and yes, as information architects — to
impose order on a seeming jumble of pages, so that others might more easily browse through them.

Of course, figuring out exactly what that jumble contains is the first step to making sense out of it.

Putting It into Practice
Let’s say that we’ve been asked to redesign a small Web magazine named WebMag 5000 (we never said
we were especially strong at branding, but bear with us). In meeting with the site’s stakeholders, we
learn that WebMag 5000 is a publication focused on writing articles for online professionals, primarily
those working in the Web design industry. Their writers are culled predominantly from their readership,
and all contribute on a volunteer basis. WebMag 5000 has accrued quite the reputation over the past few
years, and there is a considerable amount of prestige associated with publishing an article on the site. As
a result, the submission rate of prospective articles has been gratifyingly high for the past year or so.

Because it’s positively swimming in a sea of great content, WebMag 5000 features a diverse array of con-
tent: articles that analyze new industry trends; tutorials for designers and developers; and reviews of
software and books in which the audience would be professionally interested. Unfortunately, readership
has dipped a bit. The one common thread in all the users’ feedback is that the site is getting harder and
harder to navigate. With all of the new content coming in, the original site’s design is starting to show its
age. Originally built to handle editions posted (sometimes) twice a month, the original design was never
meant to handle the amount of content from the current site’s tri-weekly editions. The home page is so
cluttered with new, featured content that users are having trouble locking onto areas of interest. So, as
part of your redesign, WebMag 5000 has asked you to give the site a facelift that’s not only more visually
appealing, but is also more useable.

Taking Stock of Your Content
If you’re a freelance Web professional, the word “audit” likely conjures up stressful images of unpleas-
ant discussions with various tax authorities. But, in the context of any Web project (large or small), a con-
tent audit is the first step to bringing order out of Web chaos. It’s a method through which you can create
an inventory of your content, identify the strengths and weaknesses of what content your site contains,
and begin to organize that information into discrete, user-digestible chunks.

12

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 12



For example, let’s say that we wanted to organize the books in a bookstore. To do so, we would first take
an inventory of all the books currently sitting on the store’s shelves, and figure out the best way to orga-
nize them. Should we sort the inventory by author, title, genre, or some combination of the three?
Should we put all paperback books on one shelf, with all of the hardcover titles on another? Other than
the funny looks we’re likely garnering from you, these questions are actually quite important. We could
settle on an arbitrary order for our books, but it’s more important to organize them in a way that will
enable us to find our books more easily in the future.

Furthermore, as you sift through books in the store, you’re sure to uncover a few that you could bear to
part with. Perhaps you’ve not read one book in years, or you realize that you don’t really need all eight
copies of Goodnight Moon. If you should come across some of these less-valued books, you can either part
with them to make your collection more lightweight, or relegate them to a lower shelf so that other
books might be featured more prominently. Similarly, any online content audit you perform will proba-
bly enable you to identify and remove cruft from your Web site, reducing the number of extraneous
pages your users will have to sift through to achieve their goals.

So, turning to WebMag 5000, let’s examine what we’ve already learned. In our early requirements-gather-
ing discussion, we’ve learned that articles, features, and tutorials are the meat of the site. In further dis-
cussions, and in clicking around the old site, we discover that there is a significant amount of other
information not accounted for:

❑ A contact page

❑ Rates and information for advertisers

❑ The site’s copyright information

❑ An accessibility statement (for users with special browsing needs)

❑ Profile pages for all of the articles’ authors

❑ Information and tips for prospective writers

❑ Pages on the site’s history and development

❑ A subscription page (which details various for-pay services into which readers might opt)

After creating this content inventory, we can evaluate the merits of each item with the site’s stakeholders.
Each piece of content should be thoroughly reviewed, and its relevance to the site considered carefully. Do
users really need to know about how the site was constructed? How many users currently convert from
non-paying readers to paid subscribers? Is the “subscribe” feature even worth maintaining?

Once we’ve determined which pieces of content are to be culled from WebMag 5000, we can sketch out a
diagram of the content inventoried thus far. It might look something like Figure 1-2.

Granted, this sketch is purely informational. It lets us quickly see all of the information contained in the
site. There’s no thought given to how this content is to be ordered, or to how a user might navigate from
one area of the site to another. But this is only the first step in our IA planning. Think of this inventory as
having taken all of the books off of the shelves. Now we must organize our pages in an intelligent fash-
ion, so that our users might be able to access them more easily.

13

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 13



Figure 1-2: A rough content inventory for our site. How do we make sense of it all?

From Inventory to Hierarchy
So, how do we begin to make sense of our Web site so that others might do the same? To begin, it helps to
consider your site not as a mass of pages, but as a hierarchy of information. In fact, it’s no accident that most
site maps look something like a tree: the home page sits at the top (or root) of the tree, with the various areas
of the site branching out from it. As your users traverse through the different levels of the tree, each branch
becomes more specialized than the one that precedes it. Traveling down from the root of the site down to the
individual pages, the user is drilling down through these branches to find the content that matters most to
them. Because of this, it’s your responsibility to make the order of those branches as intuitive as possible.

So, let’s say that after an exhaustive amount of research and user interviews, we discover that the audi-
ence for WebMag 5000 can be broken into three types of users:

❑ Readers. These people are most interested in the reviews, articles, and tutorials published on
our site. They’re mainly consumers of information, so it’s important to get them the information
they need as quickly as possible.

❑ Writers. In one sense, this group is the lifeblood of our ’zine. Because all of our writers work on
a volunteer basis, we must create a prestigious home on our site for the features they produce.
Their name — and their work — should be featured prominently, in the hopes that they’ll pro-
vide additional content in the future.

Tutorials

Accessibility
Statement

About Our
Authors

Contact Us Advertising

Copyright Subscribe

Tips on
writing Write for

Us! 

Home
Page

How This
Site Was

Built

About Our
Site

Articles

Reviews

14

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 14



❑ Prospective writers. Of course, since we’re looking for more volunteers to round out our queue
of authors, we should have information for them on how to contribute, and what we’re looking
for. These people will (ideally) be drawn from our regular readership, and they should already
be familiar with the topics we discuss.

From this, we can start to flesh out our site’s hierarchy. To address the needs of these three groups of
users, the highest level of our site might look like Figure 1-3.

Figure 1-3: Identifying the main areas of our site

Because our primary audience is our readership, a section entitled Learn will house all of the articles, tuto-
rials, reviews, and featured content for our webzine. The other main content area is the Contribute branch,
which we hope will pique readers’ interest in writing for our site and, therefore, increase our library of
high-caliber articles. And finally, the About section contains information . . . well, about our little site that
all three groups of users might need. Regular readers will get a better sense of our site’s aims and philoso-
phies. Writers will get a sense of how our site can give their work more exposure. Prospective writers can
use this information to decide if our site would make a good home for their work.

There are very few “correct” answers in IA. The approach we’ve taken here to organizing our hypotheti-
cal site could easily be replaced with a number of alternatives. For example, we could have easily placed
the site’s reviews, articles, and tutorials in their own top-level sections. Whatever structure you settle
upon for your own site, it’s important to gather feedback from your users whenever possible. There is
always the chance that assumptions you make about your users’ behavior — no matter how well
researched — might not meet with real-world user approval. If your project plan allows it, allotting
some time for user testing and feedback can only help improve the result.

Of course, the structuring effort doesn’t end with these three branches. As we said earlier, each level of
our site represents a higher, more fine-grained level of detail. Each of these three sections can contain
pages, that’s true — but they could also contain subsections, which in turn could contain pages and other
subsections, and so on, as shown in Figure 1-4.

Figure 1-4: Our content hierarchy begins to fill out.

Learn Contribute

Home

About

Learn Contribute

Home

About

15

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 15



This hierarchical categorization can easily be taken too far. Many sites fall into the trap of over-classifying
their content, creating so many different tiers that users are unable to quickly access the content that’s
most vital to them. More often than not, these too-complex navigation structures arise from a lack of plan-
ning when thinking about a site’s IA. The impulse to put the book somewhere, anywhere on the shelf
becomes more important than placing it in an intelligent location, where others might easily locate it.

As tempting as it might be to organize your content beneath 12 levels of deeply nested navigation, that
kind of information architecture is more a hindrance than a help to your users. This is another area in
which our personas can help us, and enable us to reign in our impulse to over-classify. If we consider
what language would be helpful to “Frank” to find a specific section of our site, or which categories
make the most sense to “Natalie,” then we can frame our IA work around our users’ needs and goals.
While planning your site’s information architecture (and, in fact, throughout every stage of your pro-
ject), it’s important to keep your users’ needs at the forefront of your mind. Paying attention to them
now will only ensure their satisfaction later.

Building Our Site Map
Now that we’ve established the different high-level categories of our site, we can finally complete the orga-
nization process with a site map. A site map is a graphical, high-level overview that shows the title of each
page or section in a Web site in a visually digestible, logical hierarchy (and if you can say that five times
fast, we’ll have to give you a gold star). The site map is the culmination of our IA work to date. It takes the
content inventory we assembled, and organizes the content therein into a logical, navigable hierarchy.

As shown in Figure 1-5, every page and section of the site is listed and named in the site map, with
“stacks” of pages to represent a group of related pages. We don’t need to display every page in our Articles
section, so we can easily group them through this notation. If we remember the content hierarchy diagram
from before, then we can see exactly how this high-level tree structure drives the navigation for our site.
There are three main navigation sections (Learn, About, or Contribute) and each page of our site has been
placed within one of these sections. This means that from the home page, our users will most likely need to
browse into one of these content areas before being able to navigate to one of the pages below.

Furthermore, we’ve relegated some pages to an area of “global navigation,” which is accessible from
every page of the site. These pages don’t specifically fit within the bounds of our site’s three main con-
tent areas, but are considered to be more universally relevant (that is, no matter which page of the site
the user is currently reading, this information could potentially be relevant). If we were reading a
WebMag 5000 article and wanted to know about what options (if any) that we would have in reprinting
it, we could easily select Copyright from the global navigation and find licensing info therein.
Alternatively, while we may not be able to navigate directly from the site’s colophon to Writing Tips in
one click, both pages would allow users to access the accessibility statement directly.

There are a number of applications with which you can build your site maps. Designers often rely heavily
on such applications as Adobe Photoshop or Illustrator; others might rely on more IA-specific graphing
tools, such as Microsoft Visio (http://office.microsoft.com/en-us/FX010857981033.aspx)
or OmniGroup’s OmniGraffle (www.omnigroup.com/applications/omnigraffle/). Some IA
professionals build all their deliverables in HTML, while others swear by their trusty pencil and paper.
Try out a number of different tools, and settle on one that best meets your needs.

16

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 16



Figure 1-5: A site map for WebMag 5000, our imaginary Web site

But the boundaries aren’t (and shouldn’t be) as distinct as they might seem. Presumably, there will be
content on the home page that will feature articles and other internal content. Because of this, it’s also
likely that there will be some facility on that front page allowing users to move directly into an individ-
ual article, two levels down in the navigation. Should our site map reflect this? If so, how should it?

In all honesty, it’s your decision as to how exhaustively your site map charts the relationships between
different sections of the site. If we were to graph every point in which users could move between each
area, our site map might start to look like a map of downtown London, riddled with arrows and lines
and making very little sense. Rather, we can outline some of the more important relationships between
the different sections. For example, let’s say that every article, tutorial, and review published on our site
features a link to the author’s profile page in the About section. Conversely, each author’s profile will
contain links to any articles, tutorials, and reviews that he or she has published on our site. If our site
map needed to reflect this relationship, we might update the document to look like Figure 1-6.

This kind of cross-linking helps promote deeper relationships between different sections of your site,
which allow users more than one way to access the information they’re looking for. A user might come
to your site looking for information on a particular piece of software, and could happen upon additional
work by the author on his or her profile page. By creating relationships across the different content cate-
gories, we create a richer interface for our users, as well as a more scalable foundation for any future
content we add to our site.

Learn

Contribute
Accessibility
Statement

Global
Navigation

Content

Home

About

Copyright

Contact Us

Overview

Subscribe

Articles Tutorials Reviews

Overview Our Authors Colophon

Overview How It
Works

Writing
Tips

Advertising

17

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 17



Figure 1-6: Annotating the relationship between sections

But once we’ve built our site map, our work is only halfway done. Now that we understand the “big 
picture” of our entire site’s IA, how do we organize content on the individual pages?

Wireframes: Blueprints for Your Pages
A wireframe is a line drawing that represents the different areas of content on a page. Much in the same
way that a site map gives us a sense of how different areas of our site relate to one another, a wireframe
enables us to see how the different pieces of content on a given page will interact. These black-and-white
line drawings imply structure only. Bereft of color, typography, or any other design elements, wireframes
force us to establish a layout for our pages.

Typically, it’s not necessary to build a wireframe for every single page of our site. Rather, we can sketch
out a wireframe for each unique page layout in our site (such as your home page, search results, blog
entry, and so on). By starting with these plain-looking documents, we can identify any possible usability
issues before we’ve begun fleshing out our site’s design.

Just as we started drafting our site map by taking inventory of the types of content our site would contain,
we must identify the different areas of information that our page’s layout will house. If we are building a
wireframe for a WebMag 5000 article, then let’s assume that the page will contain the following information:

❑ Content. The article’s content.

❑ Related articles. A listing of articles related to one the user is currently reading.

❑ Logo. The WebMag 5000 logo.

Learn

Contribute
Accessibility
Statement

Global
Navigation

Content

Home

About

Copyright

Contact Us

Overview

Subscribe

Articles Tutorials Reviews

Overview Our Authors Colophon

Overview How It
Works

Writing
Tips

Advertising

18

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 18



❑ Global navigation links. From our site map, these are Contact Us, Subscribe, Accessibility
Statement, and Copyright.

❑ Primary navigation. These are links to the Learn, About, and Contribute sections, which we
defined in our site map.

❑ Secondary navigation. These are the navigation options within each section. If we were in the
About section of our site map, the subnav options would be Our Site, Our Authors, Colophon,
and Advertising.

❑ Author’s name. This should link to the article’s author profile.

❑ Category listings. These should list under which content categories the current article has been
filed, so that users might view additional articles in these categories.

❑ Advertising banner. The client tells us it needs to be 280 pixels wide and 120 pixels tall, but we
don’t need to be concerned with layout at this stage.

Equipped with this list, we should now begin to group these chunks of content into different categories,
which should speak to how the different content areas relate to each other. For example, with the content
we’ve listed, we might create the following content hierarchy:

❑ Content:

❑ The article’s content

❑ Related content:

❑ The author’s name

❑ Category listings

❑ Related articles

❑ Branding:

❑ The WebMag 5000 logo

❑ Navigation:

❑ Primary navigation

❑ Secondary navigation

❑ Global navigation

❑ Advertising:

❑ The banner advertisement

These content groups are broken down largely into conceptual chunks (that is to say, that ancillary bits
of information have been dumped into Related Content, the banner advertising has been oh-so-cleverly
labeled Advertising, and so on). Were you working on a page that had a higher degree of interactivity
(such a complex form that requires the user to enter a sizeable amount of data), you might use headers
that describe the data contained therein (My Personal Information, My Company Information, Shipping
Address, and so on).

Armed with this high-level list, we can turn these content groupings into a rough wireframe that
demonstrates how these relationships might play out on a page.

19

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 19



In Figure 1-7, we’ve settled upon a rather traditional two-column layout for the wireframe. Most of our
content categories have translated into discrete areas on the page, placed according to the amount of
visual weight we need to allot them in our layout. For example, the client’s logo has been placed at the
top of the wireframe, in order to maximize the visibility of the WebMag 5000 brand. The one content cate-
gory that “straddles” the page layout is the site’s navigation. While primary and secondary navigation
have been placed immediately below the logo to facilitate easy navigation, the “global” navigation has
been relegated to the footer of the page. While this might indicate to some users that it is perhaps the
least important area of the page, we decided to position it at the bottom in the hopes that its consistent
placement would enable users to find it more easily.

Figure 1-7: The finished wireframe, ready for a design to be hung upon it

The rest of the groupings play out largely as you might expect. The article’s content area is of primary
interest to the site’s users, so that has been given the most weight on the page. In the right-hand column,
many of the “related content” information has been stored to give it the most visibility, while remaining
subordinate to the primary content area. The author’s name and the article categories have been placed
in a block named “About This Article.” Other related articles have been moved into a separate area
immediately below. The advertising banner is placed in the sidebar to give it maximum visibility with-
out detracting from the content as a whole.

So, ultimately, the architecture dictated by the wireframe should reflect the needs of both your client and
your users; the decisions we’ve made in this example wireframe might not be appropriate for your site

20

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 20



or its requirements, but may at least present an idea of how to move forward. However you decide to
perform this ever-delicate balancing act between client and user requirements, keep the goals of the page
at the forefront of your mind. Build a clear, usable interface, and the rest will fall into place.

Sounds almost easy, doesn’t it?

Jason Santa Maria’s “Grey Box Methodology” (www.jasonsantamaria.com/archive/2004/
05/24/grey_box_method.php) describes one graphic designer’s approach to planning a design.
His approach is a compelling read, and tackles the challenge of defining a page’s architecture from a
slightly different perspective. Whereas we took stock of the page’s content before considering the layout,
Santa Maria takes a more visual approach. The two methods achieve the same goals, however — both
force the designer to think in terms of how the layout can help the user before planning the more 
aesthetic details of a design.

Beginning the Design
So, the planning has been finished, the site map has been approved, and the wireframes are set. We can
finally set aside all of this theoretical nonsense about “interface,” “requirements,” and “change manage-
ment,” and stop worrying about taking “notes” in “meetings” with “stakeholders.” At long last, we can
finally get into actually designing our site . . . can’t we?

As much as we’d like to tell you otherwise, the actual construction of a site requires no less planning
than the rest of the project. Sitting down to design and build a site is absolutely one of the most reward-
ing parts of any Web project, that’s true. But this is the phase of the project in which all of your careful
planning and analysis pay off. That’s not to say that imposing a process upon the design process should
remove any of the fun from it. Rather, some of the most compelling Web designs are a direct result of the
constraints placed upon them.

That’s not to say that there aren’t many talented designers who can create a stunning personal site with
little or no outside direction. However, it’s another challenge altogether to create a design that simulta-
neously furthers a company’s brand, ensures that the site is supremely user-friendly, and remains aes-
thetically appealing. From these competing needs, the true beauty of Web design originates.

Setting the Tone for Your Site
With a firm understanding of the scope of our project, we can then craft a design that speaks to the
needs of both groups. In order to do so, however, we should establish the tone of our site. After all, we
might settle upon a different design direction for a small law firm than we might for an online publica-
tion. Each company would have its own target audience, its own brand identity, and its own business
requirements. As such, an understanding of what those goals are is integral to building a site that
achieves them. Let’s take a brief look at one site that exemplifies this attention to goal-driven design:
Cinnamon Interactive (www.cinnamon.nl/).

In the early days of CSS adoption, far too many style sheet–driven sites were doomed to “look like Web
standards” — their layouts were boxy, their palettes flat, and they made far from a compelling case for
abandoning table-driven design techniques. Cinnamon Interactive was one of the earliest sites to show-
case the true power of CSS as a tool for bringing gorgeous designs to the Web. Launched in January
2003, it featured an incredibly nuanced design (see Figure 1-8). The site’s layered typography, beautiful
use of color, and well-implemented access enhancements are facilitated by a foundation of CSS and valid
XHTML, which ensures that the site is as impressive under the hood as it is above it.

21

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 21



Figure 1-8: Cinnamon Interactive. Fashionable and functional, this beautiful design floors
random surfers while driving prospective clients into their portfolio.

But it’s not just the jaw-dropping aesthetics (or the code behind it) that make Cinnamon a success.
Rather, the goals of the site are beautifully reflected in its design. The cinnamon shaker logo is subtly
mirrored in the photography on the home page, which creates a heightened sense of the company brand.
This attention to the corporate identity is sure to impress not only random Web surfers, but also corpo-
rate clients looking for the same level of brand savvy for their own company.

Furthermore, the bulk of the home page is dedicated to links to the company portfolio. Not only is it the
first link in the site’s primary navigation (after the link back to the “Voorpagina,” or home page), but the
splash graphic on the home page is one big link directly into their body of work. This emphasis on
advertising their portfolio is intended to not only draw interested users into some of their past projects,
but ultimately move over to the “contact” page so that they might ultimately contract with Cinnamon
for their own design initiatives.

Finding Inspiration
Of course, translating these goals into an attractive design isn’t always the most elementary process. Just
like a writer under deadline, it’s easy for designers to get blocked. When presented with a creative brief,
client requirements, and a mountain of documentation detailing your users’ needs, a blank canvas in
Photoshop can seem an almost impassable roadblock. So, how do we get started? How do we go from
requirements to sleek, professional-looking design in nothing flat?

Simple — by seeing how others do it.

22

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 22



Don’t worry, you bought the right book. This isn’t Professional Plagiarism we’re writing here. However,
establishing and maintaining an awareness of current Web design trends is one of the keys to improving
your own craft. the most rewarding part of working and designing online is that there is always some-
thing new to learn, another excellent resource you’ve not discovered yet. If we’re feeling stumped by
how to style a particular page element, uninspired by a corporate color palette, or just generally
strapped for ideas, then seeing how other designers work in the face of adversity is always a welcome
aid. So, whenever we start to feel as though we’re pushing up against the constraints of our own design
skills, we spend a bit of time browsing for inspiration.

This browsing could occur on-line or off-line. Whether walking through a museum, browsing through a
magazine stand, or surfing through some well-designed Web sites, the medium you pick is less impor-
tant than exposing yourself to well-reasoned, well-executed designs for an hour or two. Thankfully,
we’re able to keep that hour or two from turning into eight or nine by visiting a number of well-known
design portals, or online communities dedicated to evangelizing some of Web design’s brighter spots.

Over the past year, a number of sites evangelizing CSS-based Web designs have cropped up. The most
recent addition is Stylegala (www.stylegala.com/). It features a design as compelling as the sites it
covers. Each featured site in the gallery is accompanied by some thoughtful critiques by Stylegala’s cre-
ator and designer-in-residence, David Hellsing. The site’s users are allowed to vote for favorites within
the gallery, as well as provide additional commentary. The discussions are always interesting, and the
sites are all fine examples of what the Web (and CSS) can do.

Kaliber10000 (www.k10k.net/) isn’t so much a community as an authority, providing a near-dizzying
array of design-related news, tips, and tutorials on an even more dizzying basis. Founded in 1998 and
staffed by some of the brightest designers in the industry, Kaliber10000 provides everything from screen-
shots of user desktops, to links to Flash-heavy portfolio sites. K10K won’t just rid you of your design
block — rather, it will help you obliterate it.

Selecting a Layout: Fixed or Liquid
Often characterized as one of the unholy wars of Web design, the debate between fixed or liquid layouts
is the designer’s version of “Chevy versus Ford” — each side has its fierce loyalists, with very little mid-
dle ground between the two poles. As we begin building our site, it’s worth acknowledging this heated
debate, so that you might choose a method that best fits your needs and those of your site.

Fixed Width
A fixed (or “ice”) layout is one whose width is constant and unchanging. No matter how large or small
the user’s browser window becomes, the actual width of the page’s content area will remain, well, fixed.
The benefit to this approach is that it lends ultimate control to the designer, who always knows the
dimensions of the canvas he or she is designing upon. For professionals coming from a print back-
ground, this is approach is a rather intuitive one. If the width of the content area is a fixed constant, then
a designer can hang perfectly sized graphics upon that canvas with pixel-perfect precision.

However, the success of a fixed-width design is contingent upon an assumption: namely, the designer’s
assumption of the width of the user’s browser window. Should the browser’s width ever become nar-
rower than that of the page, then a horizontal scroll bar will appear, forcing the user to manually scroll
the page from left to right to see the site as its designer intended (see Figure 1-9).

23

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 23



Figure 1-9: 1976design.com is the weblog of Dunstan Orchard, one of this book’s authors.
It is built with a fixed layout, which causes a horizontal scroll bar to appear at smaller
screen resolutions.

1024x768

800x600

1280x1024

24

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 24



Conversely, fixed-width designs are often unkind to larger screen resolutions. When browsing at higher
resolutions and with a fully maximized window, a design optimized for smaller window sizes can be
drowned out by unused white space. Our users’ displays are constantly increasing, which makes fixed-
width designs less than future-proof — a site designed for the resolutions of today will likely need to be
revisited in a year or two, as its users clamor for a more intelligent use of the window widths available
to them.

Liquid Layouts
Proponents of liquid (or “fluid”) layouts are quick to counter that fixed-width designs set an unfair tech-
nical assumption on our audience: there is no guarantee that our user’s browser window is large enough
to accommodate the width specified in our design, and users with smaller windows should not be
penalized by the sites they visit. So, to that end, liquid layouts are designed to be entirely flexible. As the
browser window expands or contracts, the page’s layout will follow suit, ensuring that the content fills
the display at any window size (see Figure 1-10).

Most apologists for fixed-width techniques will say that their users’ screen resolutions have been
increasing over recent years, and that designing for smaller screen resolutions is no longer necessary.
Their server logs might tell them that an overwhelming majority of their users are running resolutions
such as 1024 × 768 or 800 × 600, and that building a design that caters to smaller screens is less vital than
it was in the early days of the Web. Designers on the other side of the debate will quickly counter with
the fact that screen resolution does not determine the size of the browser window. If a user’s screen resolution is
set to a specific width, the browser isn’t automatically maximized to occupy all of that space. By making
that assumption (and serving up a fixed-width design to match), designers can potentially exclude users
who browse at smaller window sizes, forcing them to resize their pages to meet the designer’s design
criteria. Instead, fluid layouts are agnostic when it comes to the size of the browser window. By defini-
tion, they attempt to subvert the design to the preferences of the user, rather than the other way around.

Of course, liquid layouts are not without their flaws — no design technique is a silver bullet, and this is
no exception. Just as it is easier to read text that has been divided into separate paragraphs, it is also 
easier to read text that has been set to an optimal width. This is where most fluid layouts break down. 
By allowing their content to reflow as the size of the browser window increases, that content can be
increasingly difficult to read at larger window sizes. Studies have shown that the user’s ability to 
comprehend onscreen text suffers slightly when the length of the line being read exceeds 4 inches
(http://psychology.wichita.edu/surl/usabilitynews/42/text_length.htm); so while a 
fluid layout might be ideal for small-to-medium browser window widths (see Figure 1-11), legibility 
can suffer quite a bit when the window expands beyond that threshold (see Figure 1-12).

25

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 25



Figure 1-10: sidesh0w.com is the weblog of Ethan Marcotte, another of this book’s authors.
It features a liquid, resolution-independent layout, which some might find difficult to read at
larger screen resolutions.

1024x768

800x600

1280x1024

26

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 26



Figure 1-11: A page of text with a fluid width. Seems 
quite manageable at a narrow width, doesn’t it?

Figure 1-12: The same fluid block of text, but at a larger screen resolution. The line
lengths have become unmanageable and are difficult to scan.

Furthermore, the lack of control over the content area’s width can be difficult to balance when placing
fixed-width elements within it. When a Web designer knows the physical dimensions of the page, then
graphics can be designed specifically to fit within that space. Even the staunchest fluid-width proponents
are envious of their fixed-width comrades’ ability to place a perfectly sized graphic across the top of a
content area. Most liquid designers are forced to use graphics of an arbitrary width, which could break the
layout as the window becomes infinitely small.

Richard Rutter, Web designer and proponent of liquid layouts, has published a number of experiments
with placing wide images within a fluid-width container (http://clagnut.com/blog/268/). He
proposes a number of interesting CSS workarounds that may be of interest to those pursuing liquid 
layouts.

27

The Planning and Development of Your Site

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 27



Gaining Some Perspective
The truth is that both methods have their strengths and weaknesses. Neither is inherently superior to the
other. In the hands of the right designer, either can be equally effective (or, in the hands of a less-talented
designer, ineffective) in a site’s design. Of course, the relative strengths of one approach can be debated ad
nauseam at the expense of the other’s faults — and as in most design communities, it is debated endlessly.

Rather than seeing either layout model as “The One True Path” of Web design, we would suggest that
the two models are tools. The true key to success in either method is applying it intelligently to your
work, with an overall sensitivity to the context of each element on your page. It’s not the relative width
of a design’s content area that makes for a successful site, but rather the thinking before and behind the
design that distinguishes it.

Summary
With this chapter, we’ve completed an overview of some of the highlights of a typical Web project. This
overview is far from exhaustive and, in fact, could be called a bit of a gloss. Entire tomes have been writ-
ten about project and client management, and we’ve dedicated only a few pages to it. However, we hope
that this sketch of an entire project lifecycle demonstrates that there is far more than well-coded style
sheets that make a site successful. In our experience, a successful project is rarely determined by process,
documentation, and deliverables as much as it is by good communication. If the designer and the client
make a concerted effort to work closely together throughout the project, then each will be more aware of
the other’s needs and expectations as both move toward meeting (and exceeding) the project’s goals.

So with a better understanding of a project lifecycle, we can now turn to two of the more critical compo-
nents of its design: XHTML and CSS. We’ll examine the relationship between these two important tech-
nologies, as well as discuss some tips for more effectively integrating them into your design workflow.

28

Chapter 1

03_588338 ch01.qxd  6/22/05  11:18 AM  Page 28



Best Practices for 
XHTML and CSS

In its early years, the Web wasn’t exactly the most attractive thing on the planet. Created by and for
nuclear physicists, hypertext was simply a means by which content-heavy documents could be
shared over an open, distributed network. Needless to say, high-caliber design wasn’t a top priority
for the Web’s earliest authors. In fact, HTML’s much-used (and, as we’ll discuss, oft-abused) table
element was created with one purpose in mind: the display of tabular data.

By the time we reached the heyday of late-1990s Web design, the “L” in HTML was often ignored.
Many professionals felt that the code we used to build our Web pages wasn’t a language per se, and,
as such, wasn’t beholden to the rules and restrictions of a real programming language. Besides, our
clients weren’t paying us for “compliant,” “accessible,” or “future-proof” code. In fact, many sites
were produced with the requirement that they be “backward compatible.” This was a misnomer if
ever there was one because it simply required a consistent display in version 4.0 browsers or higher.

Browsers of that time were temperamental, to say the least. With poor support for the specifications
written by the World Wide Web Consortium (www.w3.org/), or W3C, you could count on a page 
rendering differently in Browser A than in Browser B. So, while many of us were dimly aware of the
“standards” the W3C produced, the browsers we had to support were less than tolerant of standards-
compliant markup. In this sense, the divide between the science and the reality of the Web was far too
great. We would deliberately invalidate our HTML with proprietary, browser-specific markup to
ensure that things “looked good” in our target browsers. And for a time, all was good. We had narrow
specifications, we had deadlines, we weren’t paid by the hour, and as you can see, we had excuses.

Of course, designers learned early on that by zeroing out a table’s cellpadding, spacing, and bor-
der, we could create complex grid-based layouts, and bring a new level of aesthetic appeal to our
sites. Granted, given browsers’ poor support for CSS in those days, we had no alternative but to
weigh our pages down with presentational cruft. The result was a Web that is bogged down by the
weight of its own markup, saturated with kilobyte-heavy pages that are hard to maintain, costly to
redesign, and unkind to our users’ bandwidth.

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 29



Thankfully, there is a way out. XHTML and CSS are two standard technologies that will enable you to
clear away the clutter in your pages, facilitating pages that are significantly lighter, more accessible, and
easier to maintain. Of course, these two tools are only as effective as your ability to wield them. This
chapter examines the need for XHTML and CSS, and introduces some practical strategies for applying
them intelligently to your design.

Structure and Presentation: 
Shoehorned Together

Now, let’s take a deep breath, and be honest with ourselves: Does this HTML snippet look familiar?

<body marginwidth=”0” marginheight=”0” leftmargin=”0” topmargin=”0”>

In the heyday of early Web design, this was the way to place your pages’ content flush against the
browser window. Without these four attributes, our designs would be surrounded by a margin of 10 or
so pixels — and yes, we’re sufficiently finicky where something like this would keep us up at night.

This approach highlights the extent to which an emphasis upon “looking right” pervaded early Web
design. Despite HTML’s origins as a well-structured language, our pages evolved into a kind of “tag
soup” — a not-so-tasty goulash of structural and presentational markup. Because contemporary browsers
had nonexistent or imperfect support for cascading style sheets, we relied on transparent spacer graphics,
font elements, and deeply nested tables to control our sites’ designs. Our attribute-heavy body perfectly
illustrates this mismatch of structure and style in our markup. While the body element itself performs an
important structural purpose (it contains a Web page’s content), the small army of attributes crammed
into its opening tag is there only to make that structure look a certain way.

Granted, our little body element might not seem all that egregious — is it really worth wringing our hands
over one little line of markup? For a concrete example of the problems with presentation-rich markup,
let’s look at the Harvard University home page (www.harvard.edu/). The site’s design (see Figure 2-1)
admirably reflects the University’s well-established brand: a conservative, earth-toned color palette accen-
tuates the distinctive Harvard crimson, while the centered two-column layout emphasizes content over
flash, delivery over glitz. By all accounts, it’s a successful site design — and one that garners more than a
little traffic each day, we’re sure.

There are a number of browser utilities you can install to quickly affect the display of a page as we’ve
done here. For the Mozilla browsers, the Web Developer Toolbar (http://chrispederick.com/
work/firefox/webdeveloper/) is one such tool, and an excellent one at that. It’s an invaluable
part of our CSS toolkit, allowing designers to turn on borders of different page elements, quickly edit a
page’s CSS, and easily access various online code validators.

30

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 30



Figure 2-1: The Harvard University home page

As we said, this is an effective, straightforward design. But if we “turn on” borders for all table elements
in the HTML, the site reveals something much less straightforward under the hood (see Figure 2-2).

31

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 31



Figure 2-2: The Harvard home page again, with table borders activated

Quite a change, isn’t it? There’s quite a lot of markup vested in such a simple layout: tables are pristinely
nested five levels deep, logo graphics split with pixel precision into multiple files and strewn across mul-
tiple table rows. Even looking at the code for the primary navigation bar is a bit dizzying:

<table bgcolor=”#cdd397” border=”0” cellpadding=”0” cellspacing=”0” width=”650”>
<tbody><tr>
<td valign=”top”><img src=”images/shield3.gif” alt=”Harvard University shield”
border=”0” height=”25” width=”117”></td>
<td valign=”top”><a href=”http://www.harvard.edu/”><img src=”images/home2.gif”
alt=”Home” name=”nav01” border=”0” height=”25” width=”47”></a></td>
<td><img src=”images/nav_bullet.gif” border=”0” height=”25” width=”14”></td>
<td><a href=”http://www.harvard.edu/admissions/” onmouseover=”imgOn(‘nav02’)” ;=””
onmouseout=”navOff(‘nav02’)”><img src=”images/admissions.gif” alt=”Admissions”
name=”nav02” border=”0” height=”25” width=”166”></a></td>
<td><img src=”images/nav_bullet.gif” border=”0” height=”25” width=”14”></td>
<td><a href=”http://atwork.harvard.edu/” onmouseover=”imgOn(‘nav03’)” ;=””
onmouseout=”navOff(‘nav03’)”><img src=”images/employment.gif” alt=”Employment”
name=”nav03” border=”0” height=”25” width=”80”></a></td>

32

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 32



<td><img src=”images/nav_bullet.gif” border=”0” height=”25” width=”14”></td>
<td><a href=”http://lib.harvard.edu/” onmouseover=”imgOn(‘nav04’)” ;=””
onmouseout=”navOff(‘nav04’)”><img src=”images/libraries.gif” alt=”Libraries”
name=”nav04” border=”0” height=”25” width=”59”></a></td>
<td><img src=”images/nav_bullet.gif” border=”0” height=”25” width=”14”></td>
<td><a href=”http://www.harvard.edu/museums/” onmouseover=”imgOn(‘nav05’)” ;=””
onmouseout=”navOff(‘nav05’)”><img src=”images/museums.gif” alt=”Museums”
name=”nav05” border=”0” height=”25” width=”64”></a></td>
<td><img src=”images/nav_bullet.gif” border=”0” height=”25” width=”14”></td>
<td><a href=”http://www.harvard.edu/arts/” onmouseover=”imgOn(‘nav06’)” ;=””
onmouseout=”navOff(‘nav06’)”><img src=”images/arts.gif” alt=”Arts” name=”nav06”
border=”0” height=”25” width=”33”></a></td>
</tr>
</tbody></table>

The table begins by setting the background color for the first navigation row (#cdd397, a light, desatu-
rated green), and by zeroing out the table’s border, as well as the padding within and spacing between
each of its cells. Once that’s completed, the site’s author is left with an invisible grid, upon which 
graphics can be placed with pixel-perfect precision. Every other table cell contains nav_bullet.gif, 
the bullet graphic that abuts each navigation item. The remaining cells contain the navigation graphics
themselves, each of which is surrounded by an anchor upon which onmouseover and onmouseout
attributes are placed to control the graphics’ rollover effects.

Remember, this is simply the markup for one of the navigation bars. The rest of the page follows this
same layout model: Zero out a table’s default attributes; place content, graphics, and additional markup
therein; repeat as needed. After a while, reading through this page begins to feel something like running
down the rabbit hole. Just when you think you’ve reached the end of one table, another presents itself,
and you’re reminded how much effort goes into seeking that Holy Grail of “looking right” — a truly
consistent, bulletproof display across all target browsers.

Of course, that Holy Grail is a bit of a tin cup. Until recently, we’ve been concerned solely with the visual
display of our sites on graphical desktop browsers. There are other devices and other users whose needs
should be taken into account. If we view the Harvard University home page in an environment that
can’t render the carefully arrayed graphics, what happens then?

A screenshot of a text-only browser’s view of the site holds the answer (see Figure 2-3). Without the aid
of color or headings, it’s certainly more difficult to navigate through this environment than in the con-
text of the site’s design. If it’s difficult for us as sighted users, consider the difficulty that users with spe-
cial browsing needs must encounter.

For example, a number of the graphics on the page are missing alt attributes, an important accessibility
requirement. If a blind user were using a screen reader to read the Web pages’ content aloud, the file-
names of these alt-deprived graphics would be read out loud. To that user, our navigation menu might
sound like “link Home nav underscore bullet dot gif link Admissions nav underscore bullet dot gif link
Employment nav underscore bullet dot gif link Libraries,” and so forth.

33

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 33



Figure 2-3: View of www.harvard.edu in Lynx, a text-only browser

First and foremost, this is not an indictment of the Harvard home page; in years past, we’ve built hun-
dreds of pages with these exact same tactics. Rather, it is a reminder of the reality of the Web that, until
only recently, we were all forced to work in. With such shoddy support for CSS, table-based layouts

34

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 34



were a matter of course. We were devoted to ensuring an excellent display in all graphic browsers, at the
expense of bandwidth-heavy markup and inaccessible site designs. Of course, this begs the question:
What do we do about it?

By now, if you’re thinking that there must be a better way, you’re right — there most certainly is. Today’s
browsers have become much more intelligent, and we should, too. With greater support for cascading
style sheets across the board, we no longer have to rely upon bandwidth-hogging markup to realize a
site’s design. We can instead focus on abstracting presentational cruft out of our markup, and move it
into our cascading style sheets.

The promise of separating structure from style is at the heart of standards-based Web design, and makes
for one of the most compelling arguments for creating page layouts with CSS. By drawing a line in the
sand between our pages’ content and their presentation, our pages will not only be drastically lighter,
but far easier to maintain as well.

A Valid Foundation: Learning 
to Love Our Markup

Let’s revisit our lonely little body element one last time:

<body marginwidth=”0” marginheight=”0” leftmargin=”0” topmargin=”0”>

Don’t worry, we won’t retread that whole “presentation versus structure” conversation again. We can
hear some snoring in the back of the audience, and aren’t about to start pressing our luck.

It is worth remembering that none of these attributes were in any HTML specifications (www.w3.org/
MarkUp/). marginwidth and marginheight were Netscape-only attributes and would work only in that
browser. Conversely, while leftmargin and topmargin attributes had the same margin-trimming effect,
they would work only in Internet Explorer. But valid or no, that didn’t keep us from placing this proprietary
markup on our sites. We were dealing with browsers offering non-standard (and often contradictory) imple-
mentations of HTML, and we did so with a smile on our face — as well as every snippet of invalid, propri-
etary code in our site builder’s arsenal.

And, since we served up the same invalid, proprietary HTML to all browsers that visit our pages, this
one line of HTML demonstrates just how tolerant browsers are of flawed markup. And that’s by design.
If we neglect to include a closing tag (such as </tr> or </div>) or introduce a proprietary element into
our markup to work around a layout bug (as we did in the preceding body element), your Web browser
has a recovery strategy in place. It has to “repair” your markup while parsing it, rendering the page
despite any imperfect code found therein.

But the real headaches arise because each browser has its own internal logic for interpreting this invalid
code, which invariably leads to unpredictable results when doing cross-browser testing. One browser might
recover gracefully from a missing angle bracket, while another might break our entire layout because of it.
These inconsistent rendering strategies make one thing certain: Invalid code means that we spend more of
our time coding and testing to ensure that a site displays correctly across all target browsers. Rather than
focusing on improving our site’s design and content, we were forced to spend far too much time nursing

35

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 35



broken markup. It’s true. Our early reliance on malformed, proprietary, or otherwise invalid markup
allowed our designs a consistent display on old-school browsers. But in availing ourselves of markup hacks,
we create a dependency in every page of our site. We’ve placed code in our documents that targets a specific
browser’s idiosyncrasies. When today’s browsers finally slip over the upgrade horizon and the next genera-
tion appears, each of those hacks is a potential landmine. Will newer browsers be as tolerant of our code,
bloated as it is with such non-standard markup? Or will the next version of Internet Explorer ship with a
bug that refuses to render a page when it encounters the marginheight attribute on a body element?

Yes, this is the kind of stuff we worry about. But the simple truth is that invalid markup creates a long-term
liability that we can’t afford to ignore. Rather than fretting about how our markup hacks will perform (or
won’t) in another year or eight, perhaps it’s finally time to pay attention to the “L” in HTML.

XHTML: The New Hotness
XHTML is described by the W3C as “bring[ing] the rigor of XML to Web pages” (www.w3.org/
MarkUp/#xhtml1). In short, XHTML was created so that site owners would have a cleaner upgrade path
between HTML and a stricter document syntax, XML. Compare this snippet of HTML to its XHTML
equivalent:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
<title>My sample page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
</head>
<body>
<ul>
<li>Here’s a sample list item,
<li>And yet another.
</ul>
<p>I like big blocks,<br>and I cannot lie.
<p>You other coders can’t deny.
</body>
</html>

And now, look at the XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>My sample page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
</head>
<body>
<ul>
<li>Here’s a sample list item,</li>
<li>And yet another.</li>
</ul>
<p>I like big blocks,<br />and I cannot lie.</p>
<p>You other coders can’t deny.</p>
</body>
</html>

36

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 36



Don’t feel bad if you didn’t spot any changes — there are more similarities here than differences. And, in
fact, both of these pages will render the same in any given browser. Your end users won’t be able to tell
the difference between the two languages. While the similarities in syntax do outweigh the differences
between XHTML and its predecessor, those few differences are quite significant.

Begin with the DOCTYPE Declaration
The first item in the two sample pages is a DOCTYPE (geek-speak for “document type”) declaration. Point
your browser to the URL in the DOCTYPE element:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

You’ll be presented with a long, complex text document known as the DOCTYPE definition, or DTD. The
DTD outlines the rules of the language to which the ensuing markup is supposed to conform. Declaring
this DTD at the beginning of our markup signals what language is used on the page to “user agents,” a
blanket term for any device or program that can access our page. It’s not just about graphical desktop
browsers anymore. Printers, cellular telephones, and screen readers are all examples of user agents, and
each benefits from knowing what markup language they will encounter on the rest of the page.

Online validation tools are another example of user agents, and they (above all others) benefit from our
opening DOCTYPE declaration. This allows them to assess how effectively our code conforms to the DTD —
in effect, whether it’s valid or not.

Keeping Your Markup Well Formed
“Well-formed” is essentially a new name for an old rule. It simply means that your elements must be
nested properly. Consider this example:

<p>Here’s <em>my <strong>opening</em></strong> paragraph!</p>

Here, the em is opened first, and the strong opened second. However, markup follows a “first opened,
last closed” rule. Since the em is opened before the strong, it must be closed after the strong’s final tag.
If we revise the markup so that it’s well formed, the elements’ nesting order makes a bit more sense:

<p>Here’s <em>my <strong>opening</strong></em> paragraph!</p>

As you’ve no doubt noticed, this concept of proper nesting is an old one. While it’s never been valid to write
incorrectly nested markup, it is still quite common in many pages built today. As a result, browsers have
become far too tolerant of the tag soup we feed them. Any given browser will have a different strategy in
place for how to “fix” this incorrectly nested markup, which can often yield differing results once the page is
rendered. XHTML is a language that explicitly demands structural soundness. By requiring our markup to
be well formed, this stricter document syntax enables us to combat structural inconsistencies in our own
code.

Of course, it’s important to remember that “well formed” does not equal “valid.” Consider this example:

<a id=”content”>
<em>
<div class=”item”>
<p>I’m not exactly sure what this means.</p>
<p>...but at least it’s well-formed.</p>
</div>
</em>
</a>

37

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 37



This code is immaculately nested, but it’s far from valid. HTML differentiates between block-level elements
(div, p, table, and the like) and inline elements (such as a, em, strong). Inline elements can never con-
tain the block-level elements, making our previous markup invalid. While browsers will be able to read
this code correctly, it’s almost certain to cause display errors when the CSS is applied. Depending on the
browser, styles applied to the anchor element may or may not cascade down to the text contained in the
div. It certainly would be an unpleasant surprise if all of your content suddenly gained the link’s signa-
ture underline, or visibly changed when you hovered over it with your mouse.

This is yet another example of the importance of validation. By beginning your document with a 
DOCTYPE declaration and validating frequently, you can proactively squash layout bugs before they
arise. This translates into less debugging time for you, which in turn translates into more time you can
spend focusing on your site’s design.

Close Every Element
When you opened an element in HTML, you weren’t always required to supply the corresponding closing
element. In fact, the HTML 4.01 specification differentiates between elements whose ending elements are
optional (such as the paragraph element: www.w3.org/TR/REC-html40/struct/text.html#h-9.3.1),
required (phrase elements such as em or strong: www.w3.org/TR/REC-html40/struct/
text.html#h-9.2.1), and, in some cases, outright forbidden (the good ol’ br: www.w3.org/TR/
REC-html40/struct/text.html#h-9.3.2).

Thankfully, this ambiguity has been removed from XHTML, largely because of XHTML’s insistence that
our markup be well formed. If you open an element, a closing element is required — simple as that. The
following is valid markup in HTML 4:

<ul>
<li>Here’s a sample list item,
<li>And yet another.
</ul>
<p>I like big blocks,<br>and I cannot lie.
<p>You other coders can’t deny.

However, the XHTML looks slightly different (the changes are shown here in bold):

<ul>
<li>Here’s a sample list item,</li>
<li>And yet another.</li>
</ul>
<p>I like big blocks,<br />and I cannot lie.</p>
<p>You other coders can’t deny.</p>

Because we’re working in XHTML, we don’t have the option of leaving our list items (<li></li>) and
paragraphs (<p>) open. Before starting a new element, we’ll need to close each with </li> and </p>,
respectively. However, the sharp-eyed readers may be wondering exactly what we were thinking when
we added a forward slash (/) to the br.

Trust us: we haven’t gone slash-happy. Elements such as br, img, meta, and hr are considered “empty”
elements because they don’t contain any text content — which isn’t the case for p, li, td, and, in fact, most 
elements in the HTML specification. But while empty elements traditionally have not had a closing ele-
ment, XHTML doesn’t play any favorites when it comes to keeping our document well formed. So, by 
ending an empty element with />, we can effectively close it. Structural consistency is a strong requirement
for our new markup, and XHTML certainly delivers that consistency.

38

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 38



See the space between <br and /> in the previous example? This space ensures that legacy browsers
developed before the XHTML spec can still access your content.

Lowercase Elements and Attributes
The HTML specification never mandated a particular letter case for our pages’ markup elements. As a
result, developers have become accustomed to writing elements and their attributes in any case at all:

<P CLASS=Warning>Alert!</P>

In XHTML, all elements and their attributes must be written in lowercase. This is because XML is quite
case-sensitive. For example, <body>, <Body>, and <BODY> would be considered three different elements.
Because of this, the authors of the XHTML specification standardized on lowercase:

<p class=”Warning”>Alert!</p>

You may notice that we’ve kept the value of Warning intact for our class attribute. This is perfectly
acceptable in XHTML because attribute values may be in mixed case (for example, pointing the href of
a link to a case-sensitive server). However, they must be quoted.

Every Attribute Requires a Value
Additionally, there were attributes in HTML that previously didn’t require a value:

<input type=”checkbox” checked>
<dl compact>

Both checked and compact are examples of “minimized” attributes. Because they didn’t require a value;
it was simply enough to declare the attribute and then carry on. However, XHTML mandates that a value
must be supplied for all attributes. For “minimized” attributes, they can be easily expanded like so:

<input type=”checkbox” checked=”checked”>
<dl compact=”compact”>

This is a small distinction but one that’s integral to ensuring that your code remains valid.

Abstracting Style from Structure
Many standards advocates tout “the separation of style from structure” as the primary benefit of adopting
CSS in your site’s design — and we agree, with a slight qualification. As you’ll see in the coming pages, there
never is a true divorce between your markup and your style sheets. Change the structure of the former, and
dozens of rules in the latter might become obsolete.

Because your markup and your CSS are quite interrelated, we prefer to think of style as abstracted from
structure. Your markup primarily exists to describe your content, that’s true — however, it will always
contain some level of presentational information. The degree, however, is entirely up to you. If you so
choose, you could easily offload the presentational work onto the XHTML — replete with font
elements, tables, and spacer GIFs.

On the other hand, our style sheet can contain rules that determine all aspects of our pages’ design: colors,
typography, images, even layout. And if these rules reside in an external style sheet file to which your

39

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 39



site’s pages are linked, you can control the visual display of n HTML documents on your site — an appealing
prospect not only for day-to-day site updates, but one that will pay off in spades during that next site-wide
redesign initiative. Simply by editing a few dozen lines in a centralized style sheet, you can gain unprece-
dented control over your markup’s presentation.

This should, we hope, make you and your marketing department very happy.

Because your CSS can reside in that separate file, your users could ostensibly cache your entire site’s user
interface after they visit the first page therein. This is quite a departure from the tag soup days of Web design,
where users would be forced to re-download bloated markup on each page of our site: nested <table>
elements, spacer GIFs, <font> elements, bgcolor declarations, and all. Now, they simply digest your site’s
look-and-feel once, and then browse quickly through lightweight markup on the rest of your pages. 

This should, we hope, make your users very happy.

And finally, the most obvious benefit is how very simple your markup has become. This will further posi-
tively impact your users’ bandwidth, allowing them to download your pages even more quickly. And, of
course, this lighter markup will benefit your site in any search engine optimization initiatives you might
undertake. If you think it’s easy for you to sift through five lines of an unordered list, just think of how
much more search engine robots will love indexing the content in your now-lightweight markup.

This should, we hope — oh, you get the point. Happy yet?

Brandon Olejniczak has published an excellent article on “Using XHTML/CSS for an Effective SEO
Campaign” (http://alistapart.com/articles/seo/). In it, he discusses some practical, 
commonsense strategies for reducing your markup and making it more search engine–friendly.

Avoid Divitis and Classitis
When abandoning tables for more lightweight markup, it’s not uncommon for beginning developers to
rely heavily on class attributes to replace their beloved font elements. So, we might have dealt with a
navigation bar table that looked like this:

<!-- outer table -->
<table bgcolor=”#000000” border=”0” cellspacing=”0” cellpadding=”0”>
<tbody>
<tr>
<td>
<!-- inner table -->
<table border=”0” cellspacing=”1” cellpadding=”3”>
<tbody>
<tr>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”home.html”>Home</a></font></td>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”about.html”>About Us</a></font></td>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”products.html”>Our Products</a></font></td>
</tr>
</tbody>
</table>
<!-- END inner table -->

40

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 40



</td>
</tr>
</tbody>
</table>
<!-- END outer table -->

This version isn’t much better:

<!-- outer table -->
<table class=”bg-black” border=”0” cellspacing=”0” cellpadding=”0”>
<tbody>
<tr>
<td>
<!-- inner table -->
<table border=”0” cellspacing=”1” cellpadding=”3”>
<tbody>
<tr>
<td class=”bg-gray”><a href=”home.html” class=”innerlink”>Home</a></td>
<td class=”bg-gray”><a href=”about.html” class=”innerlink”>About Us</a></td>
<td class=”bg-gray”><a href=”products.html” class=”innerlink”>Our Products</a></td>
</tr>
</tbody>
</table>
<!-- END inner table -->
</td>
</tr>
</tbody>
</table>
<!-- END outer table -->

This is known as classitis, a term coined by designer Jeffrey Zeldman (www.zeldman.com/) to describe
markup bloat from overuse of the class attribute. The monkey on our back has been exchanged for
another. Rather than spelling out our presentational goals explicitly in the markup, this example uses the
class attribute to achieve the same means. All that’s been changed is that the values of the bgcolor
attributes and font elements have been moved to an external style sheet — a fine start, but the markup
is still unnecessarily heavy.

Even worse, it’s far too easy to succumb to divitis, taking otherwise sensible markup and turning it into
soup loaded with div elements:

<div id=”outer-table”>
<div id=”inner-table”>
<div class=”innerlink”><span class=”link”><a href=”home.html”
class=”innerlink”>Home</a></span></div>
<div class=”innerlink”><span class=”link”><a href=”about.html”
class=”innerlink”>About Us</a></span></div>
<div class=”innerlink”><span class=”link”><a href=”products.html”
class=”innerlink”>Our Products</a></span></div>
</div>
</div>

If that made any sense to you, perhaps you’d be kind enough to call us up and explain it to us. There’s
no obvious attempt here to write well-structured markup. While div and span are excellent markup
tools, an over-reliance upon them can lead to code bloat and hard-to-read markup. And not just hard for

41

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 41



you to read, but your users as well. Remember our text-only screenshot from before (refer to Figure 2-3)?
If someone has style sheets turned off, using generic markup will make it difficult for those in a non-
graphical environment to understand the context of your content.

Toward Well-Meaning Markup
Alternatively, we can use markup elements as they were intended — using divs and spans to fill in the
gaps where no other elements are available. In this section, we’ll discuss some strategies for stripping
your pages’ markup to a well-structured, well-meaning minimum, getting it (and you) ready for the CSS
tips and strategies contained throughout the remainder of this book.

In the following sections, we’ll revisit some of the HTML used in the Harvard Web site (refer to Figure 2-1).
We’ll apply some more well-structured thinking to the old-school markup, and see if we can’t produce
something a bit sleeker.

Familiarize Yourself with Other Markup Elements
Here, we’re in the process of describing content, not designing it. As such, the more well versed you are
with the XHTML specification, the more adept you’ll be at accurately depicting your site’s structure with it.

Headers
Let’s look at the markup for one of the news items in the right-hand column of the Harvard Web site:

<b>’Illuminating the beauty of life’</b>
<br>Yannatos starts 41st year conducting Harvard-Radcliffe Orchestra
<a href=”http://www.news.harvard.edu/gazette/2004/10.21/23-yannatos.html”><font
size=”-1”><b>More</b></font></a><font size=”-1”><br></font>
</td>
<td width=”120”>
<a href=”http://www.news.harvard.edu/gazette/2004/10.21/23-yannatos.html”><img
src=”images/041029a.jpg” alt=”James Yannatos” border=”0” height=”120”
width=”120”></a><br><br>

In this news item, the content leads with a header displaying the title of the featured story. However,
you wouldn’t know it was a header from the markup:

<b>’Illuminating the beauty of life’</b>

Rather than using markup to describe how the element should look to sighted users on desktop
browsers, why not use a header element?

<h4>Reversing Saddam’s ecocide of Iraqi marshes</h4>

Here we’ve used an h4, which would be appropriate if there are three levels of headers above this one in
the document’s hierarchy. Now, any user agent reading this page will recognize the text as a header, and
render it in the most effective way it can.

When building your well-meaning markup, it’s helpful to think of your document as conforming to a
kind of outline — the most important header sits at the top in an h1, beneath it are a number of h2s,
beneath each of which is an h3 or two, and so on down to h6. How you envision your document’s outline
is entirely up to you. Settle upon a model that makes sense to you, and keep it consistent throughout your
site’s markup.

42

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 42



Paragraphs
After the news story’s headline, a paragraph-long excerpt follows it — but, again, the markup belies the
content’s intent:

<br>Yannatos starts 41st year conducting Harvard-Radcliffe Orchestra
<a href=”http://www.news.harvard.edu/gazette/2004/10.21/23-yannatos.html”><font
size=”-1”><b>More</b></font></a><font size=”-1”><br></font>

If this is a paragraph, then we should mark it up as such, and not just rely on break elements (<br>) to
visually set it apart from the content surrounding it:

<p>Yannatos starts 41st year conducting Harvard-Radcliffe Orchestra <a
title=”Harvard Gazette: &quot;Illuminating the beauty of life&quot;”
href=”http://www.news.harvard.edu/gazette/2004/10.21/23-yannatos.html”>More</a></p>

Here, you can see that we’ve included the More link within the paragraph — as we’ll show you later in
the chapter, we could easily use CSS to move the anchor down to the next line. So, while keeping the
anchor inside the paragraph is intentional, you may opt to take a different approach.

Unordered Lists
As for the menus at the top of our page, what is a site’s navigation but a list of links? We can replace the
table-heavy navigation menus with unordered lists, each list item element containing a link to a different
part of our site.

With a little bit of JavaScript magic, nested unordered lists can be quickly and easily converted into
dynamic drop-down menus. One of the most popular examples of this is the “Son of Suckerfish” (SoS)
menu script (www.htmldog.com/articles/suckerfish/dropdowns/) developed by designers
Patrick Griffiths and Dan Webb. The SoS menu is a perfect example of how behavior (JavaScript) and
style (CSS) can be layered atop a foundation of well-structured markup, all the while degrading 
gracefully to non-CSS or non–JS-aware Internet devices.

Take Stock of Your Content, Not Your Graphics
First and foremost, you should perform an inventory of your page’s content areas. Taking another look
at the Harvard University home page (see Figure 2-4), we can see that the site’s layout quickly breaks
down into the following outline:

❑ Header

❑ Navigation

❑ Primary

❑ Secondary

❑ Content

❑ Main Content

❑ Additional Content

❑ Footer Navigation

❑ Copyright Information

43

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 43



Figure 2-4: The entire Harvard University home page

Within the two columns, we can further describe the various blocks of content therein — which is exactly
what we’ve done in Figure 2-5. Within the Main Content column, we have a featured story, a list of
school links, and a list of miscellaneous other links. The second column is devoted primarily to news 
stories, with the first content block containing the news features we examined earlier, the second con-
taining news items of lesser importance.

44

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 44



Figure 2-5: Identifying the areas of content on the Harvard home page

From this mental map of our page’s content, we can then describe it through markup. Each one of the
content areas can be described by a div with a unique id, and — in the case of the two content columns —
nested child content blocks in divs as necessary. Once we’ve done so, we’ll have an XHTML document
that looks something like Figure 2-6. Every content area is marked up with a descriptively id’d div, with
the nesting order reflecting the relationships we outlined in our content inventory (refer to Figure 2-5).

45

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 45



Figure 2-6: The outline for our new XHTML template

At this point, our markup is a kind of blank slate, upon which we can layer style accordingly. And for
those users unable to see our styles, they’re left with a well-structured, easy-to-follow markup structure
(see Figure 2-7). In the rest of this chapter and throughout this book, we’ll be examining strategies for
how to best add this presentation layer on top of this foundation of valid markup.

46

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 46



Figure 2-7: Lynx view of our revised Harvard XHTML

47

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 47



CSS: A Layer of Style
As with any other language, getting your bearings in CSS is contingent upon your understanding of its
syntax. Doing so will not only improve your own fluency in writing style sheets, but increase your
understanding of how the browser interprets the rules you write.

Selectors
Your CSS comprises style rules that are interpreted by the browser, and then applied to the corresponding
elements in your document. For example, consider Figure 2-8.

Figure 2-8: A simple sample style rule. Say that five times fast.

Every CSS rule comprises these two parts: a selector, which tells the browser which element(s) will be
affected by the rule; and a declaration block, which determines which properties of the element will be
modified. In Figure 2-8, we can see that the selector comprises everything up to, but not including, the
first curly brace ({).

The braces encompass the declaration block, which is the real meat of the rule. It consists of one or more
declarations, as well as a property/value pair that decides how the elements in the selector will be styled.
In Figure 2-8, color is the property, and #36C is its declared value.

If you think this sounds simple, it certainly is. Commonsense logic pervades through the syntax of CSS.
But this is just the beginning. We can use these very simple principles to build increasingly complex
rules, and gain even more control over our sites’ presentation.

Type Selectors
It’s been only a couple paragraphs, but we know you’ve missed our simple h1 rule. Let’s revisit it:

h1 {
color: #36C;
}

This is what’s known as a type selector because it instructs the browser to select all elements of a certain
type (here, all h1s found in our markup) and render them in a lovely blue.

In case you were wondering, that sound you just heard was a few thousand font elements taking their
last gasping breath.

Wondering about that odd-looking #36C color value? That’s a shorthand way of notating hex colors.
You can abbreviate your RGB triplets in this way if each of the hex pairs is the same. So, rather than
typing out #3366CC, we can instead write #36C because the red (33), green (66), and blue (CC) hex
pairs all contain duplicate characters. We could similarly shorten #FFFF00 to #FF0, #000000 to
#000, #CC3300 to #C30, and so forth.

h1 { color: #36C; }

property value

selector declaration

48

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 48



The Universal Selector
Another selector with far-reaching authority, the universal selector, has a much broader scope than the
type selector. Rather than selecting elements of a specific type, the universal selector quite simply
matches the name of any element type. Aptly enough, its notation is the asterisk, or wildcard symbol, as
shown here:

* {
color: #000;
}

This rule renders the content of every element in our document in black. This is simple enough, right? You
might not encounter a rule like this too frequently because use of the universal selector is limited a bit by
its intimidating scope. Furthermore, there are a few support issues with it that might warrant testing.
However, we’ll later discuss some specific uses for this selector, which sometimes leaves its mark by not
showing up at all.

Descendant Selectors
Suppose for a moment that we were faced with the following markup:

<p>I just <em>love</em> emphasis!</p>
<ul>
<li>Don’t <em>you</em>?!</li>
<li>Oh, certainly.
<ol>
<li>I <em>still</em> love it!</li>
</ol>
</li>
</ul>

By default, most browsers render em elements in italics — nothing new there. But what if we’re feeling a bit
arbitrary? Let’s say that we want all em elements in our uls to be displayed in uppercase. Using what we’ve
learned up to this point, we could write a rule that uses a type selector, and matches on all em elements:

em {
text-transform: uppercase;
}

However, we want to match only the ems within the ul— in other words, any ems in the opening paragraph
should be unaffected by our rule. Simply using the em in our selector will match on all ems from our docu-
ment, so we’ll have to be a bit more specific:

ul em {
text-transform: uppercase;
}

This rule begins with a descendant selector, and tells the browser to “select all em elements that are descen-
dants of ul elements.” Just as you’re a child of your parents, you’re a descendant of your grandparents and
your great-grandparents. In this way, em elements at every level of the unordered list would get the style
applied — even those contained within the ordered list. Most important, our rule won’t select the em ele-
ment in the opening p, just as we’d intended.

49

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 49



Granted, there aren’t too many occasions when you’ll need to style your poor little ems in this way
(though, if that happens to be your particular slice of heaven, we won’t stand in your way). Instead, bear
in mind that these kinds of selectors can afford you a highly granular level of control over your pages’
design. Should you ever need to exempt certain sections of your content from otherwise global style
rules, you now possess the means to do so.

Class Selectors
Looking for even finer-grained control? Style sheets can hook into even more aspects of your markup.
Remember the class attribute we used in the Harvard University makeover? We used it to denote an
“item” category of divs. Well, it’s not just auspicious timing that brings us to the class selector:

input.text {
border: 1px solid #C00;
}

This selector allows CSS authors to select elements whose class attribute contains the value specified
after the period (.). In this example, the rule would select all input elements whose class attribute
contained the word “text,” like so:

<form id=”sample” action=”blah.html” method=”post”>
<fieldset>
<p>
<label for=”text-one”>Box #1:</label>
<input type=”text” id=”text-one” size=”15” class=”text” />
</p>
<p>
<label for=”text-two”>Box #2:</label>
<input type=”text” id=”text-two” size=”15” class=”text” />
</p>
<input type=”submit” id=”submit” value=”Submit!” />
</fieldset>
</form>

The submit button at the end of our sample form is unaffected, and the rule is applied to the two text
fields — classed, aptly enough, as “text.”

If we want our class selector to be even more generic, we can simply omit the “input” like so:

.text {
border: 1px solid #C00;
}

Though you might not recognize it, our universal selector is making an appearance here; if we wanted,
we could write this rule:

*.text {
border: 1px solid #C00;
}

Both selectors achieve the same goal: both will select all elements whose class attribute contains the
word “text”.

50

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 50



id Selectors
Similar to class selectors, id selectors enable you to select an element based on the id attribute:

h1#page-title {
text-align: right;
}

Whereas the class selector used a period (.), the id selector relies on a hash (#). In this rule, we’ve
selected the h1 element that has an id attribute whose value matches the text after the hash (namely,
“page-title”). As with class selectors, we could again rely on the implicit universal selector here, leaving
the h1 out of the picture altogether:

#page-title {
text-align: right;
}

How are we able to do this? Well, the value of an element’s id attribute is unique, within the context of a
valid XHTML document — no other element in our markup may share the “page-title” id with our h1.
Therefore, we know that both rules will match only one element in our markup, making the results of
the two rules equivalent.

Nothing especially exciting, you say? You ain’t seen nothing yet, we say.

The true power of id selectors is when they’re used as the foundation for descendant selectors, like so:

#content h2 {
text-transform: uppercase;
}

Rules such as this are the foundation of complex layouts. As CSS designers, this allows us to create style
rules that are incredibly context-aware. For example, this rule will select all h2 elements that are descen-
dants of the element with an id of “content,” and only those h2s. All other second-level heading ele-
ments in the document will be unaffected by this rule.

Other Selectors
In this section, we’ll examine some of the other selectors available to us in the specification (although it
might be more accurate to surround “available” with quotation marks because we’re not currently able
to use the full power of these excellent styling tools). As you’ll see, another title for this section might
have been “The Best Ideas You Can’t Really Use.”

As of this writing, the Windows version of Microsoft Internet Explorer (MSIE/Win) — currently the
world’s most prevalent browser — does not support these selectors. While other modern browsers enjoy
rich support for them, many of these selectors are new as of CSS2. MSIE/Win’s implementation of that
specification is nascent at best. Until Internet Explorer supports them, these useful selectors cannot be
relied upon for everyday commercial use.

We mention these tools not to yank the rug out from under your feet, but for completeness. At some
point in the (we hope) near future, these selectors will enjoy robust support from Microsoft’s browser.

51

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 51



While these selectors can’t be relied upon to fuel professional design projects as of the writing of this
book, the day will come when browser implementation (or the lack thereof) is no longer an issue. As
they say, luck favors the prepared.

Child Selectors
When we discussed descendant selectors, we discovered that we could write rules that instantly affect
all elements beneath another element. Let’s assume that we want to style all the paragraphs in the body
of our document:

<body>
<p>I am the very model...</p>
<div class=”news”>
<p>Of a modern markup general.</p>
</div>
<p>I use every attribute, be it vegetable or mineral.</p>
</body>

To have all paragraphs display in bold, we could write either of the following:

p {
font-weight: bold;
}

or

body p {
font-weight: bold;
}

Both would have the same effect. As we’ve discussed previously, they would select all paragraphs 
contained within the document’s body element, at any level.

But, what if we wanted to restrain the scope of our match a bit, and just select the paragraphs immediately
beneath the body element in our document’s hierarchy?

Enter child selectors:

body>p {
font-weight: bold;
}

The greater-than sign (>) instructs the user agent to select all child p elements, not all descendants. Therefore,
the paragraphs contained by the div would not be affected because they are children of that element —
not the body. However, the paragraphs immediately before and after the div would be affected because
they both share the body as their parent element.

Attribute Selectors
Rather than peppering our form with class attributes, the CSS specification has defined attribute selec-
tors. These selectors enable us to not only match on a given element’s class, but on any other attribute it
possesses. Denoted by a set of square brackets, attribute selectors can match in any of the four ways
shown in the following table.

52

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 52



Attribute Selector Syntax Result

[x] Matches when the element has the specified x attribute, regard-
less of the value of that attribute.

[x=y] Matches when the element’s x attribute has a value that is
exactly y.

[x~=y] Matches when the value of the element’s x attribute is a space-
delimited list of words, one of which is exactly y.

[x|=y] Matches when the value of the element’s x attribute is a
hyphen-separated list of words beginning with y.

Seem a bit confusing? A few concrete examples of attribute selectors, and the elements they would select,
are shown in the following table.

Selector What It Means What It Selects What It Won’t Select

p[lang] Selects all paragraph <p lang=”eng”> <p class=”lang”>
elements with a lang <p lang=”five”> <p>
attribute.

p[lang=”fr”] Selects all paragraph <p lang=”fr”> <p lang=”fr-Canada”>
elements whose lang <p class=”gazette” <p lang=”french”>
attribute has a value lang=”fr”>
of exactly “fr”.

p[lang~=”fr”] Selects all paragraph <p lang=”fr”> <p lang=”fr-Canada”>
elements whose lang <p lang=”en fr”> <p lang=”french”>
attribute contains the <p lang=”la sp fr”>
word “fr”.

p[lang|=”en”] Selects all paragraph <p lang=”en”> <p lang=”US-en”>
elements whose lang <p lang=”en-US”> <p lang=”eng”>
attributes contain <p lang=”en-cockney”>
values that are exactly 
“en”, or begin with “en-”.

The potential application for these selectors is exciting, to say the least. Revisiting our form from before,
our work gets a lot easier:

<form id=”sample” action=”blah.html” method=”post”>
<fieldset>
<p>
<label for=”text-one”>Box #1:</label>
<input type=”text” id=”text-one” size=”15” />
</p>
<p>
<label for=”text-two”>Box #2:</label>
<input type=”text” id=”text-two” size=”15” />

53

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 53



</p>
<input type=”submit” id=”submit” value=”Submit!” />
</fieldset>
</form>

Using an attribute selector, it would be very easy for you to hone in on all input elements whose type
attribute exactly matched “text”:

input[type=”text”] {
border: 1px solid #C00;
}

The advantage to this method is that the <input type=”submit” /> element is unaffected, and the border
applied only to the desired text fields. No longer do we need to pepper our markup with presentational
class attributes. Instead, we can use our XHTML itself as a kind of API for our style sheets, writing selec-
tors that “hook” into the very structure of our document.

Lest we be accused of turning our nose up at class selectors, let us reassure you that we’re not guilty of
semantic grandstanding. At the end of the day, the selectors we’re able to use — that is, those compatible
with Microsoft’s Internet Explorer — are excellent tools, if perhaps not the ideal ones. While using
classes in our form might not be the most “semantically pure” solution, they afford us a great deal of
flexibility and structural control in our designs today.

Multiple Declarations
Now, all of the style rules we’ve looked at so far have had only one declaration — thankfully, this doesn’t
have to be the case. Imagine how verbose our CSS would be if we had to restrict ourselves to this sort of
syntax:

h1 { color: #36C; }
h1 { font-weight: normal; }
h1 { letter-spacing: .4em; }
h1 { margin-bottom: 1em; }
h1 { text-transform: lowercase; }

Were your browser to read your style sheet aloud to you, this snippet would be an incredible cure for
insomnia. It might sound something like, “Select all h1 elements, and apply a color of #36C. Select all h1
elements, and weight the type normally. Select all h1 elements, and space the letters by point-four ems.
Select all h1 elements, and apply a bottom margin of one em. Select all h1 elements, and transform the
text to lowercase.” Not exactly a gripping read, is it? Rest assured, it’ll knock your kids out faster than
Goodnight Moon ever could.

Thankfully, we’ve a way out of this over-verbose mess. Multiple declarations for the same selector can be
compressed into one semicolon-delimited, easy-to-carry rule. With that, let’s revisit our multiple h1 rules:

h1 {
color: #36C;
font-weight: normal;
letter-spacing: .4em;
margin-bottom: 1em;
text-transform: lowercase;
}

54

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 54



This is much better. As this example shows, we can style multiple properties of our h1 elements in one
rule. This enables us to keep our style sheets clutter-free, and the cost of managing them way, way
down. After all, brevity is the soul of style.

When writing a rule with multiple declarations, the semicolon is technically considered a delimiter —
something to separate the end of one declaration with the start of another. As such, it’s perfectly valid
for you to omit the semicolon from the final rule in a style block because there isn’t another subsequent
declaration. For consistency’s sake, we recommend ending every declaration with a semicolon. That
way, if you need to change a declaration’s position in a rule, or globally edit a property’s value, you
won’t need to worry about whether or not a semicolon is actually present.

Grouping
But what if we want to apply the style of our h1 rule to other elements in our document? If we wanted to
have all h2 and h3 elements share the same style as our h1s, we could, of course, be quite explicit about it:

h1 {
color: #36C;
font-weight: normal;
letter-spacing: .4em;
margin-bottom: 1em;
text-transform: lowercase;
}
h2 {
color: #36C;
font-weight: normal;
letter-spacing: .4em;
margin-bottom: 1em;
text-transform: lowercase;
}
h3 {
color: #36C;
font-weight: normal;
letter-spacing: .4em;
margin-bottom: 1em;
text-transform: lowercase;
}

No small amount of code, you say? Right you are. But once again, the specification has provided us with
another way to keep our CSS lean and bandwidth-friendly. Namely, when several rules share the same
declarations, the selectors can be “grouped” into one comma-delimited list. For example, we can write
our three header rules into one all-encompassing rule:

h1, h2, h3 {
color: #36C;
font-weight: normal;
letter-spacing: .4em;
margin-bottom: 1em;
text-transform: lowercase;
}

The order of the list is irrelevant. All the elements in the selector will have the corresponding declarations
applied to them.

55

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 55



Of course, we can be even more intelligent about consolidating shared properties. If rules share only 
certain properties but not others, it’s simple enough for us to create a grouped rule with the common
values, and then leave the more unique properties in separate rules, as shown here:

#content {
border: 1px solid #C00;
padding: 10px;
width: 500px;
}
#footer {
padding: 10px;
width: 500px;
}
#supplement {
border: 1px solid #C00;
padding: 10px;
position: absolute;
left: 510px;
width: 200px;
}

We can see that all the previous rules share a padding of 10 pixels. The #content and #footer rules
share the same width. #content and #supplement have a 1 pixel–thin red border applied to the match-
ing elements. With these similarities in mind, we can consolidate like-valued properties into grouped
selectors, like so:

#content, #footer, #supplement {
padding: 10px;
}
#content, #footer {
width: 500px;
}
#content, #supplement {
border: 1px solid #C00;
}
#supplement {
position: absolute;
left: 510px;
width: 200px;
}

It may not look like we’ve gained all that much — we’re now left with 14 lines compared to the previous
example’s 16, and we’ve even gained an extra rule to keep track of. But the advantage to this intelligent
grouping is cumulative, and will become more apparent once you begin writing more complex style rules.
When we consolidate shared style declarations, we need edit only one style rule to change the border color
of the #content and #supplement elements, or to increase the width of the #content and #footer elements.
Once your style sheets become not a few dozen rules long but a few hundred, this grouping can be a real
timesaver when it comes time to edit shared values.

Inheritance
When writing CSS rules, it bears remembering that some properties (and the values you assign to them)
will be inherited to descendant elements. In fact, it helps to envision inheritance much in the same way

56

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 56



you’d think of traits that you inherit from your family. A Web page isn’t all that dissimilar, in fact. There
are parent-child relationships, in which elements inherit style properties from the elements that contain
them. In fact, you can almost draw a family tree of your page’s elements, as shown in Figure 2-9.

Figure 2-9: Your markup document tree

Element Hierarchy
The html element is the root element of your page, and, as such, is at the base of our “document tree.” It is
the parent of its child elements — namely, the head and body elements, which have their own children, which
in turn have their own children, and so on down the line. Elements that share the same parent are called 
siblings. Tags placed more than one level down the tree from a given point are considered descendants.
Conversely, elements near the top of the tree can be considered ancestors to those that are nearer the bottom.
There you have it, all the neatly arranged hierarchy of a family tree, without such niceties as your Uncle
Eustace’s habit of telling off-color jokes during Thanksgiving dinner.

We’re much better at writing Web design books than we are at making jokes about genealogy. Honest.

When thinking of our markup in this hierarchical manner, it’s much easier to envision exactly how styles
will propagate down the various branches. Consider the following example:

body {
color: #000;
font-family: Georgia, “Times New Roman”, serif;
font-size: 12px;
}

According to the syntax rules we’ve already covered, we know that this rule tells the user agent to select
all body elements and apply a serif typeface (looking on the client’s machine for Georgia, Times New
Roman, or a generic sans-serif font, in that order), sized at 12 pixels and colored in black (#000).

Now, applying the rules of inheritance to our document, these three properties will be handed down to
all elements contained within the body of our document — or, to use the language of our document’s
family tree, to all elements that are descendants of the body. Already we’ve demonstrated why CSS is
such a powerful presentation engine. With four lines of a single style rule, we’ve done the work of a
small army of font elements.

<script> <style><title>

<head>

<p> <p>

<img>  

<h1>

<body>

<html>

57

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 57



While inheritance is perhaps the most powerful aspect of CSS, it can at times also be one of the more
confusing. Keep in mind that not all properties are inherited. Margin and padding are two such examples.
Those properties are applied solely to an element, and are not inherited by its descendants.

For a reference of what properties are passed along to an element’s descendants, you’re best served by
the specification itself (www.w3.org/TR/CSS21/about.html#property-defs).

Overriding Inheritance
What if we don’t want a specific section of our document to inherit some of its ancestors’ traits?
Consider the following example:

<body>
<p>I still like big blocks.</p>
<ul>
<li>...but lists are even cooler.</li>
</ul>
</body>

If the earlier CSS rule for the body element were applied here, then all of the text within the p and li
would inherit the values declared therein. But when your client walks in and demands that all list items
should be in a red (his wife’s favorite color) sans-serif typeface? Simply write a rule to select the descendant
elements you’re worried about, like so:

body {
color: #000;
font-family: Georgia, “Times New Roman”, serif;
font-size: 10px;

}
li {

color: #C00;
font-family: Verdana, sans-serif;

}

This is our first glimpse at how the cascade part of “cascading style sheets” works. Because the list items are
descendants of the body element, the second rule effectively breaks the chain of inheritance, and applies
the declared styles to the selected elements — here, the li. However, because we’ve not declared a new
font size for the list items, they’ll still inherit that property’s value (10px) from their ancestor, the body. The
end result is that your users will see the list items rendered in the requested red, sans-serif font, while all
other elements on the page will inherit the rules from the body. Let’s hope you, your client, and your
client’s wife are happy with the result.

Putting It All into Action
Let’s take another look at an example of some overworked markup. Consider the rather bare-bones 
navigation bar shown in Figure 2-10.

58

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 58



Figure 2-10: A simple navigation bar

Notice the three links in a light-gray, horizontal row, each surrounded by a 1 pixel–thin black border.
This seems rather unassuming, until you consider the traditional markup method for creating it:

<!-- outer table -->
<table bgcolor=”#000000” border=”0” cellspacing=”0” cellpadding=”0”>
<tbody>
<tr>
<td>
<!-- inner table -->
<table border=”0” cellspacing=”1” cellpadding=”3”>
<tbody>
<tr>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”home.html”>Home</a></font></td>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”about.html”>About Us</a></font></td>
<td bgcolor=”#DDDDDD”><font face=”Verdana, Geneva, Helvetica, sans-serif”
size=”2”><a href=”products.html”>Our Products</a></font></td>
</tr>
</tbody>
</table>
<!-- END inner table -->
</td>
</tr>
</tbody>
</table>
<!-- END outer table -->

There are two tables involved in creating this simple navigation bar. The first, outer table has a black
background applied to it (bgcolor=”#000000”). The inner table has no background color of its own,
but has a cellspacing of 1 pixel. This allows the parent table’s black background to bleed through, 
creating the “border” effect around each of the navigation items. We’ve also added 3 pixels of 
cellpadding on the inner table, so that there’s some breathing room between the text of each link and
the table cell (<td>) that contains it. Finally, the gray background color (bgcolor=”#DDDDDD”) is applied
to each cell of the inner table, as well as a <font> element denoting the appropriate typeface and size.

59

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 59



Twenty-four lines of code — about 1KB of data — might seem rather innocuous when contained to one
code snippet in a Web design book, but consider that the code spread across twenty pages of your site —
or perhaps a hundred, even a thousand. What happens when you’re asked to modify this code? Perhaps
your marketing department needs the gray background universally changed to a light green, or they’ve
since standardized on Arial as their corporate typeface. In either event, you’ll need to edit, test, and rede-
ploy the markup used on each of those 20, 100, or 1,000 pages to meet their requirements.

Suffice it to say that this isn’t exactly an appealing prospect to us. Thankfully, we can use what we’ve
learned about XHTML and CSS to improve this navigation bar, as well as make our lives easier. First,
we’ll start with some fresh markup. Rather than relying on the bloated, font-heavy table from before,
let’s take a different approach.

<ul id=”nav”>
<li class=”first”><a href=”home.html”>Home</a></li>
<li><a href=”about.html”>About Us</a></li>
<li><a href=”products.html”>Our Products</a></li>
</ul>

That’s right, this is a simple unordered list. As we mentioned earlier in the chapter, we don’t need to be
worried about presentation at this level. We just need to ensure that we’re marking up our content in a sen-
sible way, which is exactly what we’ve done. So, we have our humble beginnings, as shown in Figure 2-11.

Figure 2-11: A simple unordered list

First, let’s get rid of that unseemly bulleted look — that’s so 1996.

ul#nav, ul#nav li {
list-style: none;
margin: 0;
padding: 0;
}

Figure 2-12 shows the result.

Figure 2-12: An unordered list . . . but sans bullets

60

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 60



As you can see, we’re using ID selectors quite liberally here. By specifying ul#nav in our rules, we’ll be
able to style our navigation list (and the elements within it) independently of the rest of the markup on
our page. And by grouping the ul#nav and ul#nav li rules into one comma-delimited selector, we can
simultaneously remove the bullets from the list items (list-style: none;) and remove superfluous
margin and padding at the same time (margin: 0; padding: 0;).

Of course, our original navigation table was horizontal, and our list currently isn’t anything remotely
resembling that. However, that’s easily fixed.

ul#nav, ul#nav li {
float: left;
list-style: none;
margin: 0;
padding: 0;
}

Figure 2-13 shows the result.

Figure 2-13: Using floats to get our list in order

Adding the float property to our rule gets our list back in line, literally. Each list item floats to the left of
the one before it, pulling them out of their vertical stacking order and into the horizontal line we see here.

The float model is a powerful CSS construct, and is, in fact, the basis for many CSS-based layouts. Eric
Meyer’s article “Containing Floats” (www.complexspiral.com/publications/containing-
floats/) explains floats in more detail, and clears up some common misconceptions about this
remarkably handy layout tool.

Now that we’ve established the basic layout, we can begin adding a few more of the visual components.
We’re sure you’ve missed the black border and gray background, so let’s make those our next priority:

ul#nav {
font-family: Verdana, Geneva, Helvetica, sans-serif;
font-size: .82em;
background-color: #DDD;
}

ul#nav li a {
border: 1px solid #000;
display: block;
float: left;
padding: 3px;
}

61

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 61



Figure 2-14 shows the result.

Figure 2-14: Applying borders and color to our navigation list

As you can see, we’ve applied the gray background color to the unordered list directly. And by setting the
font attributes on the list as well, we can use inheritance to apply a sans-serif font to all elements therein.
By default, anchors are rendered as inline elements. This presents a slight problem for us, because any
padding we apply to them will affect only their horizontal edges. Because we want 3 pixels of padding on
each side of our navigation links, we must turn our links into block-level items with display: block;.

However, things aren’t quite right. You’ll notice that the border is too thick between the Home and
About Us links, and again between About Us and Our Products. This is because the border on each item
abuts against its siblings, creating a doubled-up effect when two of the links touch. So, we’ll have to
rethink our style slightly:

ul#nav li a {
border-color: #000;
border-width: 1px 1px 1px 0;
border-style: solid;
display: block;
float: left;
padding: 3px;
}

Figure 2-15 shows the result.

Figure 2-15: Rethinking the borders

That’s more like it. Our more verbose border declarations (border-color, border-width, and border-
style) achieve the same effect as our earlier border: 1px solid #000;, but the final 0 in our border-
width declaration instructs the browser to leave off the left-hand border from each list item, whereas
the top, right, and bottom edges each get a 1px-wide border applied. Now, we simply need to restore the

62

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 62



border to the first list item, and only the first list item — we don’t need that double-border effect again,
thank you very much. To do that, let’s apply a class attribute to the first list item in our markup:

<ul id=”nav”>
<li class=”first”><a href=”home.html”>Home</a></li>
<li><a href=”about.html”>About Us</a></li>
<li><a href=”products.html”>Our Products</a></li>
</ul>

Now that we’ve supplied ourselves with that “hook” into our document’s structure, it should be pretty
straightforward to write a style rule that applies a border to that element, and that element alone:

ul#nav li.first a {
border-width: 1px;

}

Figure 2-16 shows the result.

Figure 2-16: The final list

And that’s done it! Here’s the entire set of rules we’ve written:

ul#nav, ul#nav li {
float: left;
list-style: none;
margin: 0;
padding: 0;
}

ul#nav {
font-family: Verdana, Geneva, Helvetica, sans-serif;
font-size: .82em;
background-color: #DDD;
}

ul#nav li a {
border-color: #000;
border-width: 1px 1px 1px 0;
border-style: solid;
display: block;
float: left;
padding: 3px;
}

ul#nav li.first a {
border-width: 1px;
}

63

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 63



We’ve successfully combined grouping, ID, and class selectors, and some well-placed inheritance to turn a
humble navigation list into a horizontal navigation menu. Instead of resting on our laurels (comfy though
they are), let’s consider the benefits of this approach. Is this really any better than building this in a table?

Absolutely. Granted, the number of lines of code hasn’t changed all that much, when you tally up the
XHTML and the CSS together. However, we’ve achieved a measure of abstraction of our content’s style
from its structure. Rather than muddying our markup with presentational cruft, we can instead let cas-
cading style sheets do all the heavy lifting in our user interface. Now, if we need to add another link to
our menu, we simply add another li to the end of our navigation list, and the CSS handles the rest of
the presentation.

Understanding the Cascade
Now that we’ve figured out the basics of CSS syntax, let’s take a closer look at the mechanics behind it,
to determine how it is that a user agent determines what styles are delivered to users.

Style Origin
To do so, we must first identify the appropriate rules because the origin of the style rule determines how
much “influence” it has in the cascade. Following are the three areas from which style sheets may originate:

❑ User agent. To fully conform to the CSS specification (www.w3.org/TR/CSS21/conform
.html#conformance), a user agent must apply a default style sheet to a document before any
other style rules are applied. This internal set of CSS rules establishes the default display rules
for every HTML element. This is how your browser knows to display an h1 in a garishly huge
serif font, or to put a bullet before every unordered list item.

❑ The user. Yes, that’s right — your users can write CSS, too. User style sheets were introduced in
the CSS2 specification, and conceived as a means of allowing users to override an author’s chosen
fonts and colors for any given page. While some designers might blanch at the thought, this is a
very important accessibility initiative. Under certain design conditions, some users might be
unable to perceive your site. Writing custom CSS enables users to increase font sizes that may be
illegible, or avoid certain color/contrast combinations that are otherwise invisible to them.

❑ Author. This means you. These are the style sheets you include in your markup, and are the 
primary focus of this book.

When a user agent is faced with evaluating style rules from these three distinct sources, it must figure out
which style sheet’s rules should be presented to the end user. To do so, it assigns a certain degree of
importance (or “weight”) to each. The listing of the origins is ordered in an increasing level of importance
(that is to say, the browser’s default style rules are considered less important than the user’s, which are in
turn less important than the rules you specify in the CSS files that reside on your site’s server).

However, both the author and the user can define !important rules:

h2 {
font-size: 2em !important;
color: #C00 !important;
}

64

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 64



According to the CSS specification (www.w3.org/TR/CSS21/cascade.html#important-rules), the
!important rules “create a balance of power between author and user style sheets.” As we mentioned,
rules contained in a user style sheet are typically weighted less than those in the author’s CSS. However,
the presence of an !important rule turns this relationship on its head; a user’s !important declara-
tions are always weighted more than the author’s, as shown in Figure 2-17.

Figure 2-17: Style origin and the cascade, from least to most
important

How does this affect our CSS? Let’s say that a browser is trying to determine the style for a basic para-
graph element (p). After parsing all available style sheets — browser, user, and author — all relevant
styles are evaluated, as shown in Listings 2-1, 2-2, and 2-3.

Listing 2-1: The Browser’s Style Sheet

p {
color: #000;
font-size:
1em;
margin: .9em;
}

Browser

User

Author

Author !important

User !important

65

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 65



Listing 2-2: The User’s Style Sheet

p {
color: #060 !important;
}

Listing 2-3: The Author’s Style Sheet

p {
color: #300;
font-size: 1.2em;
line-height: 1.6em;
padding: 10px;
}

Let’s set aside the user style sheet for a moment. Therefore, for general users, paragraphs will be styled
according to this final, calculated rule:

p {
color: #300;            /* author overwrites browser rule */
font-size: 1.2em;       /* author overwrites browser rule */
line-height: 1.6em;     /* specified only by author */
margin: .9em;           /* specified only by browser */
padding: 10px;          /* specified only by author */
}

Now, if someone views your page with the user style sheet from Listing 2-2, the final result is changed
somewhat:

p {
Color: #060;            /* user !important rule overwrites author rule */
font-size: 1.2em;       /* author overwrites browser rule */
line-height: 1.6em;     /* specified only by author */
margin: .9em;           /* specified only by browser */
padding: 10px;          /* specified only by author */
}

Sort by Specificity
Every selector is given a specificity rating, which is yet another qualitative assessment of a selector’s impor-
tance in the cascade (www.w3.org/TR/CSS21/cascade.html#specificity). The higher a rule’s 
specificity, the more influence it is granted when your browser sifts through all the rules in the cascade.
For example, id-based selectors are inherently more specific than class-driven selectors, as the id by
design occurs once in each document.

Specificity is calculated by the selector’s syntax itself, and is weighted according to four separate factors.

A. Whether or not the selector is the “style” attribute of an element, rather than a true selector.

B. The number of id attributes in the selector.

66

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 66



C. The number of other attribute (for example, [lang], [rel], [href]) and pseudo-class (for
example, :hover, :visited, :first-child) names in the selector. Remember that class selec-
tors (such as li.active) are a type of attribute selector, and are tallied up in this category.

D. The number of element (for example, a, li, p, and so on) and pseudo-element (for example,
:before, :after, and so on) names in the selector.

With these four components in hand, it’s rather easy to calculate a given selector’s importance in the 
cascade. The following table shows a list of selectors, from least to most specific (columns A–D).

Selector A B C D Specificity

a 0 0 0 1 1

h3 a 0 0 0 2 2

ul ol+li 0 0 0 3 3

ul ol li.red 0 0 1 3 13

li.red.level 0 0 2 1 21

#other-news 0 1 0 0 100

style=”...” 1 0 0 0 1000

With this information in hand, let’s return to our humble paragraph styles from before, and calculate
their specificity, as shown in Listings 2-4, 2-5, and 2-6.

Listing 2-4: The Browser’s Style Sheet

p { color: #000; font-size: 1em; margin: .9em; }
/* A:0, B:0, C:1, D:1  = specificity of 1 */

Listing 2-5: The User’s Style Sheet

p { color: #060 !important; }
/* A:0, B:0, C:1, D:1  = specificity of 1 */

Listing 2-6: The Author’s Style Sheet

p { color: #300; font-size: 1.2em; line-height: 1.6em; padding: 10px; }
/* A:0, B:0, C:1, D:1  = specificity of 1 */
p.gazette { color: #0C0; }
/* A:0, B:0, C:1, D:1 = specificity of 11 */
p#footer { color: #FFF; }
/* A:0, B:1, C:0, D:1  = specificity of 101 */

We can see from this that p#footer has the highest specificity, with p.gazette coming in second.
Assuming that your site’s visitor doesn’t have a user style sheet (and is, therefore, unaffected by the
!important rule):

67

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 67



1. The paragraph element with an id of footer will be displayed in white (#FFF).

2. Those paragraphs with a class of gazette will display in green (#0C0).

3. All others will display in a dark red (#300).

All paragraphs in the document obey the property values declared in the original p rule: a font size of
1em, line height of 1.6ems, and 10 pixels of padding. However, the browser’s default margin of .9em still
reaches the user’s display because the author’s CSS didn’t override it.

Sort by Order
Let’s assume that, for some odd reason, an author style sheet declared these two rules, one after the other:

p { color: #C00; }
p { color: #000; }

When multiple rules have the same specificity, weight, and origin, origin always wins. According to this
rule, all paragraphs will be rendered in black. Of course, we could change the weight:

p { color: #C00 !important; }
p { color: #000; }

The rules are no longer equivalent because !important author rules are weighted more heavily than 
regular author rules — therefore, all paragraphs will be rendered in red.

From Theory to Practice
Of course, talking at length about the CSS specification gets us only so far (and does wonders for your
attention span, we’re sure). Integrating the standards to practice into our daily workflow is another matter
entirely. To do so, let’s examine two critical items in a modern Web designer’s toolkit — and no, neither of
them has a magic wand tool or a layers palette in sight.

Build to a Reliable Browser
If you build a site when testing in a broken browser, you’re building code that relies upon broken rendering.
It’s as though you’re building a house on a foundation of sand. Once you begin testing on other browsers or
platforms, the flaws in your work will become far too apparent. Instead, start with a modern browser with
an acknowledged level of standards-compliance. As you’ll see later in this chapter, you can write hacks into
your code that will address lesser browsers’ rendering quirks.

This isn’t a browser snob’s apology, nor is it an attempt to switch your favorite browser. Rather, this
approach will save you time and resources when building your site. If you begin building to a flawed
browser’s bugs, you will spend far more time debugging when you test in a more standards-compliant
one. As of this writing, this means one of three options: Opera, Safari, or a Gecko-based browser such as
Camino, Mozilla, or Firefox.

You’ll note that Internet Explorer doesn’t appear in this list, and that’s unfortunately intentional. While its
standards implementation has increased dramatically over recent years, the Windows version of Internet

68

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 68



Explorer is universally regarded as lagging behind other modern browsers, with regard to support for
standards like CSS and XHTML.

However, there is some exciting news on the horizon for IE. Despite announcements from Microsoft that
development on standalone versions of Internet Explorer had been halted (http://slashdot.org/
articles/03/05/31/1650206.shtml), a new version of Internet Explorer has been promised for the
summer of 2005, with improved support for Web standards (http://blogs.msdn.com/ie/archive/
2005/03/09/391362.aspx). While the scope of that support is up for conjecture, we’re excited to see a
stated commitment to Web standards from IE’s developers.

Regardless, we’re not yet at the point where clients ask by name for better Firefox support, or improved
Opera layouts. While each is an excellent browser in its own right, they have some work to do before
capturing the hearts, minds, and — let’s face it — the market share of our clients.

The Need for Hacks
Of course, issues are bound to arise when working with CSS-based layouts. While browser implementa-
tions have vastly improved over the past few years, the playing field still isn’t level. Unless you’re support-
ing just one browser on just one platform, you’ll most certainly run into bugs when testing across different
browser/platform combinations. Proponents of table-layout techniques might interpret these issues as
weaknesses in cascading style sheets as a viable layout method. However, the fault lies with the browsers,
rather than the CSS specification itself.

But while every browser has its own rendering issues, we’re in a rather enviable position. Most of these
issues — and their causes — have been well documented and, in many cases, solved outright. What follows
is an example of one of the most widespread browser bugs. It’s not the only one you’ll encounter, but it’s a
fine example of some of the workarounds available to you. When the chips are down and the browsers
aren’t behaving, there’s almost always a way out.

The Bug
According to the CSS specification (www.w3.org/TR/CSS21/box.html), every element in your docu-
ment tree has a content area; this could be text, an image, or so forth. Additionally, padding, border, and
margin areas may surround that content area, as shown in Figure 2-18.

Figure 2-18: The box model

69

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 69



If seeing the box model in resplendent black-and-white leaves you scratching your head, Web designer
Jon Hicks has built a full-color, three-dimensional diagram that might be worth checking out as well
(www.hicksdesign.co.uk/journal/483/3d_css_box_model/).

Now, the dimensions of those three “extra” areas — padding, border, and margin — add to the total cal-
culated width and height of the content area. Let’s look at a style rule that demonstrates this in action:

p#hack {
border: 20px solid #C00;
padding: 30px;
width: 400px;
}

The width property declares that the content within our paragraphs will not exceed 400 pixels. On top of
that, we add 10 pixels of padding and a 10 pixels–thick red border to each side of the box — top, right, bottom,
and left. So, if we’re trying to figure out the full, calculated width of our paragraphs, we’d move from left
to right across the box’s properties and tally the final width:

Left Border:      20  +
Left Padding:     30  +
Content:          400 +
Right Padding:    30  +
Right Border:     20  =
TOTAL WIDTH:      500 PIXELS

In short, the padding and border are outside the declared width of the content area, as the specification
requires.

However, there are older versions of Internet Explorer on Windows that have an incorrect (or more
specifically, a “non-standard”) implementation of the box model, and instead put the border and
padding inside the declared width. Version 6 of that browser is the first to get the calculations right, but
only if the browser is in standards-compliant mode — that is, if there’s a DOCTYPE at the top of your
markup. Otherwise, these browsers incorrectly see our declared 400 pixels as the space into which all of
the box’s properties — content width, padding, and border — must be placed. So, the calculation in one
of these browsers would look something like this: 

Declared Width:     400 -
Left Border:        20  -
Left Padding:       30  -
Right Padding:      30  -
Right Border:       20  =
CONTENT WIDTH:      300 PIXELS

When you’re trying to ensure a consistent design across all browsers, a difference of even 1 pixel is 
unacceptable — a few hundred are enough to make you want to run back to your trusty tables.
Thankfully, there’s way out.

It’s worth noting that this rendering bug happens only when an element has a declared width and either
padding or borders. Another strategy to avoid all this CSS hackery is to apply the padding to an ele-
ment’s parent and leave the width on the child — or vice versa. Understanding the cause of a rendering
bug is, at times, more important than knowing the hack or fix, and can help you more strategically plan
your style sheet’s architecture.

70

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 70



The Solution
CSS hacks provide us with a workaround for browser inconsistencies such as this IE bug, and ensure
that we can have our layout looking sharp across the board. Typically, these hacks exploit a parsing bug
in a browser’s CSS implementation, allowing us to hide or display sections of our CSS to that browser. In
effect, this allows us to serve up the “correct” value to more CSS-compliant browsers, while delivering
the “incorrect” value to the ones with the poor math skills.

To work around our little IE bug, we’ll resort to using some hacks to ensure our display is looking sharp
across all our target browsers:

p#hack {
border: 20px solid #C00;
padding: 30px;
width: 400px;
}

* html p#hack {
width: 500px;
w\idth: 400px;
}

We’ve turned our single CSS rule into two. The first rule contains the border and padding information
to be applied to our paragraph, as well as the desired width of 400 pixels.

The second rule (beginning with the universal selector, *) contains our hackery. If we were to read out
the * html p#hack rule in plain English, it would tell us to “Select all p elements with an id attribute of
‘hack’ that are descendants of an html element that is itself a descendant of any element.” We’ve empha-
sized the last part of the rule because that’s where the hack lies. Because html is the root of our HTML
and XHTML documents, it can’t be a descendant of any other element. So, if this second rule shouldn’t
match any element, why include it?

Actually, this rule will return a valid match in all versions of Internet Explorer (Windows and Macintosh),
which erroneously disregard the universal selector and interpret the rule as html p#hack. As a result, this
rule is seen only by Internet Explorer, and disregarded by all other browsers. The first property declares an
“incorrect” width of 500 pixels, ensuring that the buggy browsers leave sufficient space for our content.
Because they put the padding and border inside the declared width, we must send them a pixel width that
matches a correct browser’s interpretation of the spec. And because our html p#hack selector is more
specific than the last, this new width value overrides the previous value of 400 pixels.

But we can’t rest on our laurels yet because we’ve one last hack to perform. Internet Explorer 6 on
Windows and Internet Explorer 5.x on the Mac implement the box model correctly, so we’ve just fed two
good browsers that “incorrect” value of 500px. To remedy this, the second width property contains the
proper value of 400px. However, by escaping the “i” with a backslash (w\idth), we can exploit a bug in
older versions of Internet Explorer and hide this rule from that browser. And with this hack-within-a-hack
approach, we’ve fixed our bug!

If your head’s spinning a bit, we feel your pain. Thankfully, there are some excellent resources available to
help you better understand this and other CSS hacks. We recommend reading through the CSS-Discuss
Wiki (discussed in greater detail in the next section), which has an in-depth analysis of the box model hack

71

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 71



we’ve used, as well as other approaches (http://css-discuss.incutio.com/
?page=BoxModelHack). Its near-exhaustive list of other style sheet hacks is worth poring over
(http://css-discuss.incutio.com/?page=CssHack), as are its tips for avoiding needless 
hacks (http://css-discuss.incutio.com/?page=AvoidingHacks).

The Road Is Long
As you’ve seen, the number of idiosyncratic browsers to which we build makes testing our CSS a necessary
part of a site’s development cycle. While browser support for the standard is excellent (especially when
compared with that of a few years ago), you’re bound to encounter some of these browser bugs in your
own code. But don’t worry: it’s a natural part of the site-development process.

Every CSS designer hits a roadblock at some point. If someone tells you that every site they’ve built
went off without a hitch, feel free to back away slowly — they’re either lying, or just downright talkin’
crazy-talk. When your own debugging fails to fix the problem (you did validate your code, right?), there
are some excellent sites to which you can and should turn.

If you’re facing an inexplicable bug in your layout, knowing the resources available to you is often more
important than immediately knowing the solution. If nothing else, it should lend you some security as
that deadline approaches. The chances are excellent that, at some point, someone’s encountered the
same issue that you are facing.

CSS-Discuss
The CSS-Discuss mailing list (www.css-discuss.org/) was founded in early 2002, and is currently
administered by Eric Meyer, CSS guru and former Netscape standards evangelist. According to the site’s
manifesto, the mailing list is “intended to be a place for authors to discuss real-world uses of CSS.” As
such, the list is an incredible success; a small army of helpful, CSS-aware Web designers and developers
are subscribed to the list. Each is willing and eager to help other Web professionals work through the tri-
als of CSS, so that they might better understand the joys of working with it.

Just as valuable as the list itself is the CSS-Discuss Wiki (http://css-discuss.incutio.com/), a 
community-authored and -edited site containing information regarding font sizing (http://css-
discuss.incutio.com/?page=FontSize), layout strategies (http://css-discuss.incutio.com/
?page=CssLayouts), CSS editors (http://css-discuss.incutio.com/?page=CssEditors), and of
course, CSS hacks (http://css-discuss.incutio.com/?page=CssHacks). The Wiki is a site worth
poring over and, once you’re ready, adding your own contributions.

Position Is Everything
The Position Is Everything (PIE) site (www.positioniseverything.net/) is an exhaustive CSS
resource, and one to which you should refer whenever you’re stumped by a browser issue. Maintained
by John Gallant and Holly Bergevin (two extremely capable CSS developers), PIE contains a dizzying
number of browser quirks, workarounds, and unresolved bugs — all written up in the clear, easy-to-
understand style for which John and Holly have become known.

The Problem with Hacks
Of course, it’s perfectly acceptable to write hacks directly into your CSS: find a bug in Internet Explorer 5
on Macintosh OS X, isolate the problematic rule, add a hack, move on to the next issue. This “as-you-go”

72

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 72



approach is one that most style sheet developers take, and it does afford you great flexibility in dealing
with browser inconsistencies. Besides, there comes a certain level of security with writing the
workaround directly into your code, anyway: write it, test it, and move on. Simple, right?

By now, our ability to lead with a loaded question should be obvious. While quite effective, this improvi-
sational approach to hack management does pose some problems for the long-term viability of your code.
First and foremost, it’s all too easy for your code to become weighed down with an unseemly number of
hacks, like so:

#album-thumbs {
float: left;
list-style-image: none;
list-style: none;
margin: 0;
padding: 0;
}

/* hide from MacIE5 \*/
* html #album-thumbs {
display: inline;
height: 1%;
width: auto !important;
width /**/: 90%;
}
/* hide from MacIE5 */

#album-thumbs a {
display: block;
float: left;
padding: 6px;
margin: 5px;
width: 70px;
}

#album-thumbs a {
\width: 60px;
w\idth: 50px;
}

Does this look like gibberish? It’s not too far from it. Granted, this style sheet’s author left us with 
nearly no comments to lead us through this goulash of style rules. The backslash in the first comment 
(/* ... \*/) will cause the Macintosh version of Internet Explorer to stop parsing the CSS until reaching
a properly formed comment (/* ... */). Only the 5.x versions of Internet Explorer will read the 
declaration with the backslash before the “w” in \width, and so forth down the daisy-chain of broken
CSS implementations.

What if you had to look at code like this, day in and day out? If this code is difficult for you to sift through,
you can bet it’s going to be difficult for someone else to maintain. Team members, coworkers, interns, stray
dogs — if anyone else is ever going to be responsible for editing your CSS, this approach to hack manage-
ment isn’t a viable one. But putting code readability (or the lack thereof) aside for a moment, these rules are
valid CSS, and they do serve their purpose — they fix bugs in different browser/platform combinations,
and they do it well. So what’s the problem?

73

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 73



Well, imagine that your CSS is littered with code like this. What happens when you need to obsolete a
given hack? Perhaps one of the problematic browsers passes over the upgrade horizon, or the next version
of Internet Explorer will stop reading your style sheet when it encounters a hack for the Opera browser. At
some point, you might need to edit your CSS and remove some of the hacks you introduced. But what if
these hacks aren’t spread over 30 lines of CSS, but over 3,000? What then?

Hacking Artfully
Rather than muddying our style sheet with browser-specific hacks, we’re much better served by placing
our workarounds into browser-specific style sheets. While this kind of “hack quarantine” isn’t strictly
necessary, it does have the benefit of keeping our “clean” CSS distinct from the hacks required to get it
working in less-compliant browsers. Consider Figure 2-19.

Figure 2-19: A more scalable hack management system

In this model, there’s a link to our style sheet — nothing unusual there. But this first style sheet simply
acts as a gateway to multiple other style sheets, which are invoked through the @import rule. The first
imported style sheet is the one that contains our site’s presentation, clean and hack-free. Thereafter, we
simply import browser-specific style sheets that contain the hacks necessary to ensure our site displays
consistently across all target browsers.

There are other ways to manage your hacks, of course. Web developer Mark Pilgrim describes how
he uses user agent detection on his Web server to deliver up browser-specific CSS hacks (http://
diveintomark.org/archives/2003/01/16/the_one_ive_never_tried). This kind of
server-side content negotiation is excellent, though it requires knowledge of, and an ability to configure,
the Apache Web server and its mod_rewrite component. So while the technical bar’s set a bit higher
than the solution offered here, this sort of server-side solution is an excellent alternative.

<html>
...

</html>

HTML CSS

– <link>
@import {

...
}

@import

@import

@import

Hacks

p {
...
}

p {
...
}

p {
...
}

74

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 74



For the first line of our gateway CSS file, let’s call in our core style sheet:

@import url(“core.css”);

There is nothing surprising there. A simple @import rule pulls in core.css, which has been well tested
in the more reliable CSS-aware browsers.

Now, were we to simply @import in additional files, there’s nothing to prevent all browsers from pars-
ing them. Instead, we need a way to serve these CSS files up selectively, so that only the problem user
agents digest the rules there. If possible, the “good” browsers should remain blissfully unaware of our
little hacks. How do we do this, you ask? Well, fire is the best way to fight fire. We’ll use CSS hacks to
hack more intelligently.

First, let’s deal with Internet Explorer 5.x on Windows. Its implementation of the CSS box model is notori-
ously problematic, and is bound to cause some issues for your layout. So, rather than adding our
workarounds to the core style sheet, we’ll make use of a wonderful technique known as the Mid Pass Filter:

/* Import IE5x/Win hacks */
@media tty {

i{content:”\”;/*” “*/}} @import ‘hacks.win.ie5.css’; /*”;}
}/* */

Developed by CSS pioneer and Web developer Tantek Çelik, the Mid Pass Filter allows you to deliver a
style sheet to the 5.x versions of Internet Explorer on Windows, and to those browsers alone. All other user
agents will skip right over this rule because they don’t fall prey to the same parsing bug as IE5.x/Win.

While the Macintosh version of Internet Explorer 5 is considered to have CSS support that’s far superior
to its Windows-based cousins, it’s not without its bugs. Development on the browser ended in mid-2003,
leaving us to deal with its occasional layout quirks. Thankfully, we’ve another filter at our disposal, the
IE5/Mac Band Pass Filter:

/* Import IE5/Mac hacks */
/*\*//*/
@import url(“hacks.mac.ie5.css”);
/**/

Also developed by Tantek Çelik and popularized by Web designer Doug Bowman, the IE5/Mac Band
Pass Filter will serve up only the imported CSS to — you guessed it — Internet Explorer 5 on the Mac OS.
Still, the effect is the same as the Mid Pass Filter. Other browsers will disregard the style sheet that’s tar-
geted for one browser’s quirks.

For a discussion of other CSS filters and hack-management techniques, read Molly Holzschlag’s article
“Integrated Web Design: Strategies for Long-Term CSS Hack Management” (www.informit.com/
articles/article.asp?p=170511). This section owes much to her excellent essay, in which
Molly discusses additional filters not mentioned here.

You might be asking yourself why these parsing bugs are the best way to manage other hacks. We’re not
trying to be needlessly abstract, honest. By isolating browser-specific hacks into one CSS file, and keeping
our core style sheet relatively pure, we’ve gained two rather tangible benefits. First and foremost, these
workarounds are easier for other folks to locate, maintain, and modify. Second, we’ve resolved the issue
of hack obsolescence. Now, if we need to stop supporting a browser, we simply delete a few lines from
our core style sheet and move forward.

75

Best Practices for XHTML and CSS

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 75



Summary
In coming chapters, you’ll learn real-world, professional strategies for getting the most out of your style
sheets. We hope this chapter has shown you some of the foundations for high-octane XHTML/CSS design,
ideas and goals that you can bring forward into the more applied chapters that await. By beginning with a
foundation of valid, well-structured markup, we can use CSS to layer our pages’ presentation thereupon.
This lightens our pages’ weight, lowers the cost of maintenance and future redesigns, and increases our
sites’ accessibility.

In the next chapter, we’ll take an in-depth look at the first of several companies to be profiled in this book,
Google. Taking to heart some of these benefits, their recent redesign of the Blogger site makes for a com-
pelling case study, and demonstrates that it’s an exciting time indeed to be pursuing CSS-driven design.

76

Chapter 2

04_588338 ch02.qxd  6/22/05  11:19 AM  Page 76



Blogger: Rollovers and
Design Improvements

In August 1999, a small company known as Pyra Labs released a new product called “Blogger” to
the Web. Not only would it go on to earn that team fame and fortune, it would also kick-start the
blogging revolution.

Blogger lets people such as you, your friends, and really anyone publish a Web site, or more
specifically, a blog. It makes this process simple, fast, and really very friendly indeed. It’s also free,
which is a bit of a bonus on the Web, where no one wants to pay for anything.

In February 2003, a company called Google (you might have heard of them) whipped out their
checkbook and acquired Pyra Labs, bringing Blogger into the Google fold. Along with the con-
tracts and funding came something rather nice as far as the Blogger Team was concerned: the
appearance of a BlogThis! button on the Google Toolbar. The overwhelming number of people
using the Google Toolbar each day has enabled blogger.com to experience a huge surge in traffic.
Sign-ups should have gone through the roof. But they didn’t. What was going on?

A few phone calls later and user experience experts Adaptive Path were on the case. With them
came designer and CSS maestro Douglas Bowman of Stopdesign. Together they would examine
the behavior of visitors to blogger.com and realize that something fundamental was stopping the
conversion of these new visitors into new customers: the design of the site itself.

Plans were drawn up, ideas bandied about, and eventually, after 6 months of development, a new
design was released. Blogger.com had a new face, and with it would come (one hoped) a mass of
new customers.

Bowman’s redesign of blogger.com involved a number of subtle (yet effective) design touches:
rounded corners, rollovers on links, graphical buttons, boxes whose borders faded to nothing, and
a delightfully simple method of style-switching put in place not to help visitors, but to aid the
Blogger Team in the production of the site.

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 77



This chapter discusses some of these design touches and looks at how to re-create them using the clean-
est XHTML and the cleverest CSS around today. We also touch upon issues these solutions have with
Internet Explorer (IE), and provide workarounds (where possible) for this troublesome browser.

This chapter should provide some understanding of what is possible if your first thought is not, “Does this
work in Internet Explorer?” but rather “What is the cleanest, most forward-looking way I can build this?”

The solutions provided here might not be suitable for you to push into production today (that decision is
up to you), but they provide a starting point in the whole development process. Kick off with an ideal
solution, and then work your way backward until you reach a practical solution. For many developers,
those two points may be one and the same, in which case the techniques described here can be slotted in
to the next site they build. For others, there may be some distance between those two points, with more
weight being given to ensuring a design works 100 percent on IE and less weight being given to the
cleanliness of the solution.

So, read the chapter, take in the lessons, and decide, project by project, Web site by Web site, to what
extent you compromise your ideal solution.

Interviewing the Designer
Douglas Bowman is an influential designer whose highly publicized and hugely successful redesigns of
sites such as Blogger, Wired News, and Adaptive Path have pushed him to the forefront of standards-
compliant Web design. He is the principal of Stopdesign, a design consultancy based in San Francisco,
California.

Q: First off, are you pleased with how things have turned out?

A: I’m quite pleased with results of the entire project. The first measure of success in any project for
me is whether or not it met or exceeded the client’s goals. Usually, if the client is happy, I’m
happy. In this case, one of the project’s goals was to increase user sign-ups. Another goal was to
increase use (by its existing user base) of Blogger in general. I can’t be specific about numbers,
but I can say that end results far exceeded Google’s expectations.

This project had multiple facets to it; all of them contributed to the ultimate success of the
Blogger redesign. Adaptive Path and Stopdesign worked with Google to redesign and simplify
Blogger’s home page and registration system. In addition to this site redesign, Stopdesign con-
tracted 5 other designers to help create over 30 new user templates. Adding to the impact,
Google worked really hard to up the ante by expanding Blogger’s feature set and capabilities.
User profiles, commenting, new ad-free hosted blog pages on BlogSpot, and blog search were
just some of the new features that were added at or around the same time as the redesign.

Q: Which bit of the design is the internal team most pleased with? And which part are the site’s visitors most
pleased with?

A: I think this probably depends on whom you ask on the team. From talking with the developers
and engineers at Google, I think they’re most pleased with the design system, and how easy it is to
expand and tweak the pages. The design is simple and straightforward. Obviously, it uses very
simple HTML and an all-CSS layout. Google ended up taking the XHTML templates and CSS we
provided for the home page and registration pages, and used them as a base to redesign the entire
application. In addition to the required page types Google needed from us, we also provided some
generic templates that they’re able to quickly grab and repurpose for new sections of the site.

78

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 78



If you were to ask a product manager, they might say they like the simplified design the best.
Especially in regards to how much better the new home page helps communicate what a blog is,
and the benefits of starting one immediately by using Blogger.

Blogger’s visitors probably don’t notice the site’s design as much. In fact, if we did our job right,
users might have a small affinity to the look of Blogger, but they wouldn’t really pay as much
attention to the design. They should be able to immediately grasp the benefits, and see a clear
path to publishing their own blog in as short amount of time as possible.

Users immediately noticed the huge increase in number of available templates from which they
could choose for their own blog. When it comes to customization, an abundance of pre-fabbed
choices gives them lots of options with which to express their voice and personality.

Q: Later on in this chapter, we look at the code behind the rounded corners on blogger.com, but present a dif-
ferent solution to the one you used on the site. Our method requires no additional divs, but sacrifices
some cross-browser performance, with IE receiving no corner styling. If you were doing the project again
would you consider such an approach, or, as a designer, do you demand that each and every element of the
design be adhered to?

A: If the choice were strictly up to me, and I was the only one working with the code, I’d go for the
leaner, no-additional-divs option. I have the benefit of understanding exactly what the benefits
and tradeoffs are, and exactly how the more advanced CSS operates. Leaner, simpler HTML is
always a plus, especially if HTML can be removed that was inserted specifically for the purpose
of style hooks. Page module code would not only be simpler, but more stable, and less reliable
on a precise number of classed divs.

I’ve made several choices with recent personal projects to give IE only a base set of styling, and
then give other more CSS-capable browsers additional advanced styles. The term for this
approach is “Progressive Enhancement,” coined by Steven Champeon, in an article he wrote for
Webmonkey a couple of years ago. Give some browsers an acceptable base design that functions
well, give more capable browsers a more and more advanced design that builds on the base.

But the choice isn’t only mine to make. In this case, the rounded corners throughout the site
design were pretty big players in helping to give Blogger a simple, friendly feeling. A large
number (possibly the majority) of Blogger users are still using IE as their default browser. If we
had gone with the progressive enhancement approach, those IE users would see a page design
that didn’t quite mesh with the new Blogger “appearance.”

With other projects, getting all the design details in IE correct may not have been important.
But because Google was specifically targeting a wider, less-techy audience with this Blogger
redesign — one that is also more likely to be using IE as their browser — compromising on this
design aesthetic in IE browsers for the sake of leaner HTML wouldn’t necessarily have been a
good choice.

Q: Has Blogger noticed any benefits from the redesign, either financial or just in the number of customers
they’re attracting?

A: As stated previously, I can’t be specific with numbers. But I can say that the number of new user
registrations Blogger receives went up dramatically after the redesign of the home page and reg-
istration system. The revamped home page drove more users into the registration system. The
simpler registration system had fewer pages than the previous system. And it was designed to
guide the user all the way through as quickly and as effortlessly as possible, allowing them to
set up a blog and be posting to it in less than 5 minutes. Those changes basically guaranteed
success. But not even Google knew how big the success would be.

79

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 79



Q: Would you have done anything differently, looking back?

A: Ask any designer who coded her or his own design a year after the fact, and I bet every one of
them would do something differently. We’re all in a constant state of learning when it comes to
design on the Web. No one person has figured out how to do everything perfectly. Technology
changes, techniques evolve, and new methods are discovered.

With each major redesign I complete, I usually discover a better way to do something within a
week or two of completing that redesign. A light bulb that turns on. A tweak to the design that
could have made coding it so much easier. A CSS selector that I never tried to use before sud-
denly makes sense and I can see all its various uses.

Specifically, with Blogger’s CSS, there are lots of floats used that I wish didn’t need to be there.
Some were used solely to fix bugs in one or two browsers. Others were used for more legitimate
purposes, like containing other nested floated elements.

I also wish I could have been involved in more of the latter aspects of the project. The team at
Google did a great job at expanding the designs and templates we provided. But I wish I could
have helped or overseen some of that expansion in order to maintain the consistency and quality
of the design approach. Budget is always a limiting factor in this regard, and there simply wasn’t
enough of it to have Stopdesign or Adaptive Path involved at every major step of the project.

Q: How much interest has the Blogger redesign produced for you, personally? Are other large companies
looking at the finished product and wanting to go the same route?

A: The Blogger redesign was a great project all around. Collaborating with Adaptive Path is always
a fun learning experience; working with the Blogger team produced good results because they
naturally “get it.” Having the opportunity to execute successfully on a big project for Google
brought lots of attention to both Adaptive Path and Stopdesign. Both companies have picked up
a few projects as a result of people really noticing the Blogger redesign, and with the help of a
few referrals from Google.

I think the Blogger redesign is just one more solid example, added to the heaps of others, that
helps convince large companies that standards-based design is really the only way to go now.
Pair all the benefits of standards together with the strengths and talents of a couple design con-
sultancies. Then add on top of that the fact that the project was done for a high-profile client
with a product that tons of people use and write about on a daily basis. No doubt there has
been, and will be, a lot of attention given to the Blogger redesign. It stands out as a good exam-
ple of the importance of effective design and a sound implementation of that design. Let’s hope
that Blogger bolsters another developer’s case, and gives one more reason for a designer’s plea
to value properly executed design.

Q: Two of Blogger’s three “competitors” have been using standards-based design for some time now. Do you
think this was the main driving force behind Blogger’s adoption of standards, or was it just a natural pro-
gression to commission the site in this way?

80

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 80



A: I don’t necessarily think Google was thinking, “Uh-oh, our competitors are all using standards-
based design, we need to get on the ball and do the same.” When they came to us, they had a
few simple objectives in mind. They probably hadn’t thought out exactly how those objectives
were to be achieved. But they knew we were capable of helping them solve their problems and
greatly improve the user experience. Both Google and Adaptive Path also knew, by default,
Stopdesign’s philosophy when it comes to implementing its designs, so I think a standards-
based solution was probably assumed by default.

Sometimes, clients are remotely aware of the benefits of standards. But they really start to
understand and get excited about a standards-based approach once they start working with one
for their own site. The benefits are logical on paper, but they’re tactical once the benefits are
experienced.

No matter what CMS or scripting language is used to output code, simpler leaner HTML is
always appreciated. It’s just easier and faster to work with, and it’s usually immediately
parsable without needing to dissect multiple tables and rows and cells. Once the basic design
was approved and fairly stable, the fact that Google’s engineers and developers were able to
continue making changes to the underlying code base, while we hosted the CSS files and contin-
ued making small changes to the design proved a convenient method of simultaneous iteration
from both sides.

Bounding Boxes
Sooner or later, every article, book, or workshop on CSS gets around to talking about the box model. It’s
one of the fundamental elements of cascading style sheets, and if you want to strengthen your CSS-foo,
you better have a good understanding of the box model’s ins and outs.

To refresh your memory, here are examples to explain the box model basics. Figure 3-1 contains a three
dimensional (3D) version of the model, showing the creation of a simple div, and then highlighting the
order in which the div’s elements are stacked.

It’s important to note that the box’s content, so often shown to be layered “below” the border, is actu-
ally the topmost of all elements. In the following pages, we’ll see how vital that fact is in letting us create
one of Blogger’s trademark looks: rounded corners.

Figure 3-2 contains a series of images that show the effect padding, border, and margin have on the
overall width and height of an element.

81

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 81



Figure 3-1: A 2D and 3D representation of the box model in action

<div>
<p>Here is some sample content. It is constrained by
the width of its containing element.</p>

<p>Here is some sample content. It is constrained by
the width of its containing element.</p>

<p>Here is some sample content. It is constrained by
the width of its containing element.</p>
</div>

div {
  background-color: #EFOF6A;
  background-image: url(‘lamb.jpg’);
  border: 10px solid #000;
  margin: 20px;
  padding: 20px;
}

p{
  margin: 0 0 20px 0;
  padding: 0;
}

Transparent area

margin content

background-color

background-image

padding

border

82

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 82



Figure 3-2: The overall dimensions of an element increase with the addition of padding, border,
and margins.

Transparent area

<img src=“lucas.jpg” width=“200” height=“150”
alt=“Portrait of a young boy”/>

img{
 height: 150px;
 width: 200px;
}

img {
 backgound-color-: #5b5b5b;
 height: 150px
 padding: 20px
 width: 200px
}

img {
 backgound-color-: #5b5b5b;
 border: 10px solid #000;
 height: 150px;
 padding: 20px;
 width: 200px
}

img {
 backgound-color-: #5b5b5b;
 border: 10px solid #000;
 height: 150px;
 margin: 30px;
 padding: 20px;
 width: 200px
}

83

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 83



If you find that those two figures completely confuse you, then it might be a good idea to read up on the
box model before you continue (www.w3.org/TR/REC-CSS2/box.html).

The Straight Lines of the Box Model
Given the name and nature of the box model, it’s not terribly surprising that the vast majority of Web
sites using CSS end up looking a little “boxy.” Straight lines abound in CSS-centric designs because the
edges of CSS elements are straight. Pointy corners poke out everywhere from CSS-based sites because
the corners of CSS elements are pointy, as shown in Figure 3-3. That’s just the way it is.

Figure 3-3: All the elements of the box model have pointy corners and straight edges.

In the past, designers were too busy struggling with browser bugs to confront this issue. When four dif-
ferent browsers display your markup in four different ways, you don’t have much time to think of life
“outside the CSS box.”

84

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 84



Today, though, is a different story. Our understanding of CSS, and the browsers’ ability to interpret CSS,
has risen to such a level that designers are now asking, “Why do our sites have to look like this? Why
am I limited in this way?”

Having a million Web sites that all look fundamentally the same isn’t a good advertisement for CSS, nor
is it going to impress our clients or bosses. Sure, our sites are easier to maintain, and, yes, we can make
site-wide changes by altering single CSS files. But who cares when our work looks just like every other
boxy CSS creation out there?

What we need, and what CSS needs to ensure its popularity, is a way of blurring these straight lines and
of rounding these corners. We must find a way to hide the fact that our site is made up of a series of rect-
angles, and present a more varied, more designed front. Because we can’t alter the way CSS functions,
we must create an illusion of change.

To take an example we’re all familiar with, let’s think of photographs and the frames we use to display
them. Photographs pretty much come in one shape: rectangles, but photo frames come in an amazing
variety of shapes. Photos displayed in these differently shaped frames appear to be the shape of the
frame, even though they are still rectangular.

Figure 3-4 shows an example of this illusion in action, using a teddy bear picture frame bought at a local
market, and a photo of a cute child.

The lesson to learn here is that you can take one photo, slip it into any kind of frame, and give the illusion
of having changed the shape of that photo. That’s exactly what we’re trying to achieve with CSS and our
site designs: hiding the dull, dictated, underlying structure, and instead presenting an interesting, person-
alized front. Take one set of XHTML markup and slip it into a variety of exciting CSS-driven front-ends.

The question you’re probably asking now is, “Exactly how do I apply that idea to my Web site?” Well,
before we get into markup-specifics, let’s see how Douglas Bowman used it in his 2004 redesign of 
blogger.com.

85

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 85



Figure 3-4: Altering the perceived shape of a photo by placing it in a frame

Blogger’s Curvy Corners
If, as a designer, you’re seeking to banish sharpness and rigidity from your work a natural place to start
is by rounding off any pointy corners a design has. When the site you’re working on is information-
centric (as blogger.com is) and you’ve used boxes to compartmentalize sections of information (as 
blogger.com does) then there are a significant number of corners to smooth out.

86

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 86



Glance at Figure 3-5 and you’ll notice that practically every element of the Blogger design has smooth,
rounded corners. The sidebar, the main content panel, the buttons, even the logo and the header back-
ground are all curved.

Figure 3-5: The blogger.com site is full of rounded corners.

Bowman hasn’t gone crazy in his efforts to mellow out the design. He’s taken a subtle approach, match-
ing shape and color to create a comfortable, calm, and friendly site. And, as we’ve already noticed, key
to that are those lovely rounded corners.

Creating Fixed-Width, Round-Cornered Boxes
There are many ways to produce rounded corners, from the horrible, hacky use of tables, to lovely,
advanced use of CSS. This book obviously favors CSS solutions, and one of the best of those utilizes
CSS’s :before and :after pseudo-element selectors. It may be a fairly advanced technique, but it’s
probably the cleanest and most forward-looking method available as of this writing. And, with a little
care, it can degrade nicely for older, less-capable browsers as well.

Figure 3-6 shows part of the Blogger Tour. Take a good look at the left-hand side of the page, which con-
tains a box entitled “Users say . . . “; it’s going to be our focus in these next few sections. (Note also that
all of blogger.com’s boxes are fixed-width, which means their width won’t change as you resize your
browser window or alter your browser’s font-size. You can’t tell they’re a fixed width from Figure
3-6, but visit the site and you’ll see they are.)

87

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 87



Figure 3-6: The “Users say . . . ” box used throughout this section

Let’s take a quick look at the XHTML we’d need to re-create the “Users say . . . “ box using this
advanced CSS technique.

The XHTML
Following is the XHTML:

<div id=”sidebar”>
<div class=”box”>
<h2>Users say...</h2>

<p><q>I love Blogger - it has been a great addition to my life online!</q> -
Roseanne</p>

<p><q>You guys do a wonderful job... Thanks for the exemplary service in pioneering
mass, user-friendly, web logs on the internet. Seriously... I, along with thousands
of other users, definately appreciate the service you provide.</q> - Josh</p>

<p><q>Thanks, your system is perhaps the easiest content management application
I’ve ever seen... It simply amazes me how easy it is, and I’ve been working with
computers for 20 years.</q> - Michael</p>

“Users say...” box

88

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 88



</div>

<!-- more “boxes” can be placed in this sidebar -->
</div>

That’s pretty clean markup, with only one encompassing div needed to create the “box.” Let’s see if the
CSS is just as tidy.

The CSS
Following is the CSS:

#sidebar {
width: 200px;
}

.box {
background-color: #f5ece3;
border: 2px solid #e1d4c0;
padding: 8px;
}

.box:before {
content: url(box-top.gif);
display: block;
line-height: 0.1;
margin: -10px -10px -22px -10px;
}

.box:after {
clear: both;
content: url(box-btm.gif);
display: block;
line-height: 0.1;
margin: 0 -10px -10px -10px;
}

.box h2 {
margin-top: 0;
}

That looks good as well. And don’t worry if you don’t understand any of that. We’re going to break it
down, line by line, in just a moment.

The Images
Finally, here are the two images we’ll use, one for the top set of rounded corners (see Figure 3-7), and
one for the bottom set (see Figure 3-8).

Figure 3-7: The box-top.gif file at 200 × 30px

89

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 89



Figure 3-8: The box-btm.gif file at 200 × 8px

What Does It All Mean?
Now, you’re no doubt scratching your head a little and wondering what all that CSS does, so here’s a
more detailed explanation of each bit.

Rounding the Top of the Box
Because this is a fixed-width example, the first thing we need to do is set the width for the sidebar div
(#sidebar), as shown in Figure 3-9. We set the width here, and not on the box (.box) itself because
this way we avoid any problems with Internet Explorer’s faulty handling of the box model (www
.positioniseverything.net/articles/box-model.html).

#sidebar {
width: 200px;
}

Figure 3-9: Setting the width of the sidebar

Next we’ll style the box itself, giving it a background-color and a border, as shown in Figure 3-10:

.box {
background-color: #f5ece3;
border: 2px solid #e1d4c0;
}

90

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 90



Figure 3-10: Styling the box

If you’re wondering about the space at the top of the box, that’s the h2’s top margin; we’ll be removing
that later on.

Now we’ll add some padding to the box, to put some space between the text and the border, as shown
in Figure 3-11:

.box {
background-color: #f5ece3;
border: 2px solid #e1d4c0;
padding: 8px;
}

Now it’s time for the cleverness. The problems we now face are slightly complicated, so we’re going to
take this bit quite slowly:

❑ Problem 1. We must find a way to apply two sets of images to our box, one at the top, and one
at the bottom.

❑ Problem 2. However we apply these images, they must be able to overlap the box’s borders,
hiding its sharp corners with smooth, rounded, graphic corners.

Let’s think back to our 3D box model. If the images need to overlap the box’s borders, then there’s only
one bit of the box model in which they can appear: the “content.” Only the box’s “content” layer appears
on top of the border layer. If we placed the images anywhere else and tried to move them, they’d just
slide under the border.

91

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 91



Figure 3-11: Adding padding to the box

So, we know we have to place them in the content section, but how? We don’t have any extra, blank
divs to use . . . Hmm, could we maybe use the h2 and p tags?

Well, that does seem like a good idea, doesn’t it? They’re there, and they have no other images applied to
them, so why not use them?

Basing an Element’s Style on the Contents of That Element
A good rule in CSS is to never use the contents of an element to style the element itself. Unless you have
absolute and total control over every tiny piece of your site, you can’t be sure that the necessary content
will be there to aid in the styling of its parent. (And, if you insist that the content be there, then you’re
doing something very odd indeed: you’re letting your CSS dictate the content of your site, and that’s cer-
tainly not the way to go.)

Let’s say we set up the .box style to be reliant on an h2 at the start, and a p tag at the end, applying a
background-image to each one. Blogger.com has thousands of users, so what are the odds that every
single one of them will always use those two elements in every “box” they create?

And if we get clever and say, okay, let’s not specify actual tags in our CSS, let’s use :first-child and
:last-child, or let’s insert a .first and .last class in the XHTML, we’ll still run into problems. Not
every browser understands :first-child and :last-child, and not every user will remember to
insert .first and .last classes into their documents. Do they even know what classes are?

And finally, what happens if the box contains only one element? How can you apply two background
images to a single element? You can’t.

92

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 92



So, you see, it really is a bad idea to base an element’s style on the contents of that element. It is much
better to find a way to style it directly.

Let’s look at what we now know:

❑ We must insert the images into the box’s content area.

❑ We can’t use the box’s contents (the h2 and p tags) to style the box.

Isn’t that a bit of a contradiction? How are we going to solve this problem? What else is there in the
box’s content area, except for the content the user puts in?

Bending Our Own Rules with the :before and :after Pseudo-Elements
Hurrah for CSS, and hurrah for its surprising ability to create and insert content into a document.

The :before and :after pseudo-elements (www.w3.org/TR/REC-CSS2/generate.html#before-
after-content) are two spankingly gorgeous (and fairly advanced) bits of CSS and they are exactly
what we’re looking for. They allow us to insert content (in this case, two images) into the box’s content
area, and then style it as we wish. In this way, we’re not relying on content generated by the user to style
our box. We’re inserting some of our own.

Once they’ve been inserted, we can treat these pseudo-elements like spare divs, adding in content (via
the content property), giving them padding, borders, margins, background colors — whatever we
want, and all through a few additional lines in our style sheets. 

Now, you may be thinking, “Ahem, didn’t we just agree not to use an element’s contents to style the ele-
ment itself?” You’re right, but that’s why this section is entitled “Bending Our Own Rules . . .” If we
insert the content, and we do so using CSS, then we skip around all the problems mentioned in the pre-
vious section. It is our (virtually) perfect solution.

But enough sidetracking; let’s get back to making these curves work. If we once again look at our
XHTML, we can see where our CSS is going to insert the :before pseudo-element:

<div id=”sidebar”>
<div class=”box”>
OUR :BEFORE PSEUDO-ELEMENT IS INSERTED HERE
<h2>Users say...</h2>

<p><q>I love Blogger - it has been a great addition to my life online!</q> -
Roseanne</p>

<p><q>You guys do a wonderful job... Thanks for the exemplary service in pioneering
mass, user-friendly, web logs on the internet. Seriously... I, along with thousands
of other users, definately appreciate the service you provide.</q> - Josh</p>

<p><q>Thanks, your system is perhaps the easiest content management application
I’ve ever seen... It simply amazes me how easy it is, and I’ve been working with
computers for 20 years.</q> - Michael</p>
</div>
</div>

93

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 93



Figure 3-12 shows where the new element will appear.

Figure 3-12: Indication of where the :before pseudo-element will
appear

This is a pretty powerful thing to be able to do when you think about it. We’re using CSS not just to style
something, but to actually generate content and insert it into the document.

Here’s how we do it. First we create our pseudo-element:

.box:before {

}

Then we use the content property to insert an image into the document. You can see the new image
appear in Figure 3-13, just above the heading “Users say . . . “

.box:before {
content: url(box-top.gif);
}

Figure 3-13: New image

Although we’ve managed to insert an image using the CSS content property, it’s not exactly perfectly
aligned. Why is this? Well, remember the 8px of padding and 2px of border that we applied to the box
earlier on? Those two properties are vertically and horizontally offsetting the pseudo-element, by a total
of 10px, as shown in Figure 3-14.

We must find a way to counteract this offset, and move the new image into its correct position, at the top
of the box.

94

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 94



Figure 3-14: Padding and border applied to the box offset the :before
pseudo-element.

We start doing that by giving the pseudo-element a top-margin of -10px. This “pulls” the pseudo-ele-
ment up and sits it flush with the top of the box. We also set display: block because only block-level
elements can have margins applied to them, as shown in Figure 3-15:

.box:before {
content: url(box-top.gif);
display: block;
margin: -10px 0 0 0;
}

Figure 3-15: “Pulling” the pseudo-element up

We then add in negative values for both the left and right margins, to pull the pseudo-element into place
horizontally, again counteracting the 8px of padding and 2px of border we gave the box, as shown in
Figure 3-16:

.box:before {
content: url(box-top.gif);
display: block;
margin: -10px -10px 0 -10px;
}

It’s looking pretty good now, but we have two more things left to do.

95

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 95



Figure 3-16: Positioning the pseudo-element horizontally

First we have to pull the text up, so the heading (“Users say . . . “) sits in the correct place. We do this by
applying another negative margin to the pseudo-element, this time a bottom margin of -22px. We also
apply a top margin of 0 to the h2, as shown in Figure 3-17:

.box:before {
content: url(box-top.gif);
display: block;
margin: -10px -10px -22px -10px;
}

h2 {
margin-top: 0;
}

Figure 3-17: Positioning the heading text

And, finally, we must take care of a little problem caused by line-height.

Line-height is the vertical distance between two lines of text. Set a large line-height and it increases
the vertical gap between the lines; set a small line-height and the lines of text can start to overlap, as
shown in Figure 3-18.

Although we haven’t specifically set a line-height on the :before pseudo-element, it’s inherited a
value from the default styles applied to the HTML document by the Web browser.

This vertical spacing can often cause problems when playing with pixel-perfect design, and in this case
it’s introducing a very small gap underneath our box-top.gif image. We don’t notice this gap because
the background of the pseudo-element is transparent. But, if we change the background-color to
green, the gap becomes more apparent, as shown in Figure 3-19.

96

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 96



Figure 3-18: The CSS property line-height affects the vertical spacing
between lines of text.

Figure 3-19: Line-height can cause unexpected vertical spacing
problems (shown here as a darker line).

Even though it’s not affecting our design at this moment, it’s a good idea to cancel out line-height
when you can. In this case, we’ll do it by setting the line-height to 0.1, as shown in Figure 3-20:

.box:before {
content: url(box-top.gif);
display: block;
line-height: 0.1;
margin: -10px -10px -22px -10px;
}

Figure 3-20: Rounded corners on the top of the box

97

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 97



And now we have rounded corners and a nicely blended background, all through the power of CSS, and
not an extra div or table in sight.

All that’s left to do now is use the same technique to apply rounded corners to the bottom of the box as
well.

Rounding the Bottom of the Box
This time we’ll be using the :after pseudo-element, which is inserted after the rest of the box’s content:

<div id=”sidebar”>
<div class=”box”>
<h2>Users say...</h2>

<p><q>I love Blogger - it has been a great addition to my life online!</q> -
Roseanne</p>

<p><q>You guys do a wonderful job... Thanks for the exemplary service in pioneering
mass, user-friendly, web logs on the internet. Seriously... I, along with thousands
of other users, definately appreciate the service you provide.</q> - Josh</p>

<p><q>Thanks, your system is perhaps the easiest content management application
I’ve ever seen... It simply amazes me how easy it is, and I’ve been working with
computers for 20 years.</q> - Michael</p>

OUR :AFTER PSEUDO-ELEMENT IS INSERTED HERE
</div>
</div>

Figure 3-21 shows where the new pseudo-element will appear.

Figure 3-21: Indication of where the :after pseudo-element will
appear

First, let’s create the :after pseudo-element:

.box:after {

}

98

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 98



Now let’s insert the image (box-btm.gif) using the content property, and make the whole pseudo-
element block-level (see Figure 3-22):

.box:after {
content: url(box-btm.gif);
display: block;
}

Figure 3-22: Inserting the image and making the pseudo-element
block-level

Next we apply a negative bottom margin, to pull the pseudo-element down toward the bottom of the
box, as shown in Figure 3-23. (Remember, it’s being offset by the 8px of padding and 2px of border.)

.box:after {
content: url(box-btm.gif);
display: block;
margin: 0 0 -10px 0;
}

Figure 3-23: Pulling the pseudo-element toward the bottom of the
box

Notice that it hasn’t been pulled perfectly into place? That’s line-height at work again. If we set that
to 0.1, we’ll see the image line up perfectly with the bottom of the box (see Figure 3-24):

.box:after {
content: url(box-btm.gif);
display: block;
line-height: 0.1;
margin: 0 0 -10px 0;
}

99

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 99



Figure 3-24: Lining up the image with the bottom of the box

We then apply negative left and right margins to pull the pseudo-element into place, horizontally, as
shown in Figure 3-25:

.box:after {
content: url(box-btm.gif);
display: block;
line-height: 0.1;
margin: 0 -10px -10px -10px;
}

Figure 3-25: Pulling the pseudo-element into place horizontally

And finally, just to be on the safe side, we’ll apply a clearing rule to the pseudo-element:

.box:after {
content: url(box-btm.gif);
clear: both;
display: block;
line-height: 0.1;
margin: 0 -10px -10px -10px;
}

100

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 100



That rule has no effect in this example, but it’s helpful to have in there for safety’s sake. If we didn’t
insert it, and the final elements in the box were floated, it could potentially cause a problem.

And there we have it: rounded corners, lovely clean markup, and some fancy-pants CSS (see Figure 3-26).

Well, that may be it for browsers such as Firefox, Opera, and Safari, but what about Internet Explorer?
How does that handle our code?

Figure 3-26: Rounded corners on the top and bottom of the box

Dealing with Internet Explorer
Unfortunately IE doesn’t interpret :before and :after and, as a consequence, our lovely curves and
that attractive gradient fill are lost, as shown in Figure 3-27.

What can we do? Well, IE may not interpret :before and :after, but it does understand the 
background-image property. With a little bit of a rethink, we can take the image we used for the
:before pseudo-element and insert it as the background to the h2.

Let’s see how that works.

101

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 101



Figure 3-27: Internet Explorer applies no rounded corner styling.

First we set the background-image on the h2 (see Figure 3-28):

.box h2 {
background: transparent url(box-top.gif) no-repeat top left;
}

102

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 102



Figure 3-28: Setting the background image on the h2

Now we need to counteract the 8px of padding and 2px of border we applied to the box. We’ll do so using
negative margins, pulling the h2 and its background-image up and to the left, as shown in Figure 3-29:

.box h2 {
background: transparent url(box-top.gif) no-repeat top left;
margin: -10px -10px auto -10px;
}

Figure 3-29: Counteracting the padding and border

We’ll then add in some padding to nudge the heading text back to its normal position, as shown in
Figure 3-30:

.box h2 {
background: transparent url(box-top.gif) no-repeat top left;
margin: -10px -10px auto -10px;
padding: 10px 10px 0 10px;
}

Figure 3-30: Altered styling for IE

103

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 103



And voilà, this is a nice fix for IE users . . . or is it?

Well, it’s certainly a fix, but is it necessarily “nice”? In this instance, we’re fortunate enough to know that
(a) the h2 is there, (b) it doesn’t already have a background-image applied to it, and (c) we can tweak our
h2’s padding after the fact to return the text to its normal position. But what if we didn’t know those three
things? What if we didn’t know what kind of content the box would contain? Could we put this out as part
of a template for Blogger’s clients to use and still expect our IE hack to work? The answer is probably not.

Although we bent our “it’s not a good idea to base an element’s style upon the contents of that element”
rule with the use of :before and :after, we’ve totally shattered it with the IE-specific CSS shown pre-
viously. We’re on dangerous ground here.

So, is the IE hack outlined here “good”? In this instance, yes, it’s okay. Could we implement it on blog-
ger.com and guarantee it would work every time? No, we couldn’t. Should you use it on your site? Well,
that’s up to you . . . 

Fixing the Fix
That may well be it for IE, but we’ve a little bit of housekeeping to do now before we can say we’re
entirely done.

The IE-focused CSS that we’ve just written isn’t just understood by Internet Explorer; it’s understood by
all the main browsers. Browsers such as Firefox, Opera, and Safari now have three sets of images on-
screen: the image we inserted using :before, the image we inserted using :after, and the image we
inserted behind the h2.

Luckily we’ve been so accurate in our placement of these images that you can’t tell the top section has
two images applied to it, as shown in Figure 3-31.

Figure 3-31: Advanced browsers now apply three sets of images.

104

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 104



However, it’s silly having them both there, so let’s write some CSS that will tell Firefox, Opera, and
Safari to remove the extra h2 styling, but that IE will skip over and ignore.

To do this, we’ll use something called a child selector (www.w3.org/TR/2001/CR-css3-selectors-
20011113/#child-combinators). The child selector does exactly what its name suggests. It helps us
select one element that is the child (not the grandchild or other descendant) of another element. Here’s a
quick example to illustrate that:

span {
background-color: green;

}

div > span {
background-color: yellow;

}

<div>
<span> <!-- child of div -->

I will be yellow
</span>
<span> <!-- child of div -->

I will also be yellow
<span> <!-- grandchild of div -->

But I will be green
</span>

</span>
</div>

In this instance, only the spans that are children of the div will have a background color of yellow. The
one span that is a grandchild of the div will keep its green background.

Not only does the child selector add a bit more finesse to our style sheet, but it has the added benefit of
being one of the CSS elements that IE doesn’t interpret. Because browsers skip over rules they can’t
understand, we are able to use the child selector to feed CSS to the more advanced browsers, while hid-
ing that CSS from IE.

In this instance we are able to use the child selector to return the h2 to its pre–IE hack self. We must remove
its background-image, reset its margin, and set its padding back to zero. Let’s do that (see Figure 3-32):

.box > h2 {
background-image: none;
margin: 0 0 auto 0;
padding: 0;
}

105

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 105



Figure 3-32: The finished article as seen in Firefox, Opera, and
Safari

As far as Firefox, Opera, and Safari are concerned, things are back to normal. It’s as if this “Dealing with
Internet Explorer” section never happened.

IE, on the other hand, now has something a bit nicer to show, as shown in Figure 3-33.

It’s not perfect, but it’s perfectly acceptable if we understand the limitations. We’ve dealt with IE in a
very friendly manner, and, unless users were to compare the two browser displays side-by-side, they’d
never be aware that they were being fed a degraded design.

106

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 106



Figure 3-33: The finished article in IE6

Creating Fluid-Width, Round-Cornered Boxes
The previous section looked at creating rounded corners on boxes of a known and fixed width (200px
wide in that case). A much harder challenge is to add rounded corners to a box whose width you don’t
know — a fluid box.

Blogger.com uses only fixed-width boxes, but many sites on the Web use a fluid layout — one that
changes with the width of the browser window or the size of the browser’s text.

107

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 107



Figure 3-34 shows a tweaked version of the blogger sidebar. Its width has been set at 50 percent of the
width of the document’s body. See how the content flows to match the changes in width of the browser
window? That’s fluid design.

Figure 3-34: A box with a width of 50 percent reflows and resizes along with the browser
window.

108

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 108



Let’s take a quick look at the XHTML we’d need to create rounded corners for such a design.

The XHTML
Following is the XHTML:

<div id=”sidebar”>
<div class=”box”>
<h2>Users say...</h2>

<p><q>I love Blogger - it has been a great addition to my life online!</q> -
Roseanne</p>

<p><q>You guys do a wonderful job... Thanks for the exemplary service in pioneering
mass, user-friendly, web logs on the internet. Seriously... I, along with thousands
of other users, definately appreciate the service you provide.</q> - Josh</p>

<p><q>Thanks, your system is perhaps the easiest content management application
I’ve ever seen... It simply amazes me how easy it is, and I’ve been working with
computers for 20 years.</q> - Michael</p>
</div>

<!-- more “boxes” can be placed in this sidebar -->
</div>

That’s exactly the same XHTML as we used in the first example. See how great this is? The same
XHTML, different CSS, provides a new look. That’s the benefit of CSS right there.

Let’s see our new CSS.

The CSS
The following is the CSS:

#sidebar {
width: 50%;
}

.box {
background: #f5ece3 url(box-tm.gif) repeat-x top left;
border: 2px solid #e1d4c0;
padding: 8px;
}

.box:before {
background: transparent url(box-tr.gif) no-repeat top right;
content: url(box-tl.gif);
display: block;
line-height: 0.1;
margin: -10px -10px -12px -10px;
}

.box:after {
background: transparent url(box-br.gif) no-repeat bottom right;
clear: both;

109

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 109



content: url(box-bl.gif);
display: block;
line-height: 0.1;
margin: 4px -10px -10px -10px;
}

Well, well, that’s really not that different from the fixed-width CSS we wrote in the previous section. In
fact, the only changes are the addition of background images to both pseudo-elements, and the tweaking
of some padding and margins.

The Images
The images themselves are too small to print with any clarity. So, to help out, we’ve placed expanded
versions (8x) of each image next to the originals, as shown in Figure 3-35.

Figure 3-35: The images used to create rounded corners on a fluid-width box. Zoomed-
in versions are presented alongside their “actual size” counterparts.

Here’s an odd thing. It seems these images we’re inserting into the pseudo-elements must be 5px or
more in height. If they’re not, and we try to insert, say, a 4px high image, then we get some odd spaces
appearing in our layout.

In Figure 3-36, the corner images are only 4px high, and the pseudo-element’s background has been set
to green to help illustrate the 1px gaps that have appeared.

Figure 3-36: Images below 5px in height cause layout problems that can’t be solved
using line-height or height (shown with a line).110

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 110



Why these gaps should appear is a mystery, but they do, and no amount of fiddling with line-height
and height will make them go away.

So, always ensure your images are at least 5px high when using the techniques outlined in the following
sections.

What Does It All Mean?
Once again, let’s take a closer look at each bit of the CSS.

Rounding the Top of the Box
First we must set the width of the sidebar div (#sidebar). We set the width here, and not on the box
(.box) itself because this way we avoid any problems with the faulty handling of the box model in IE
(www.positioniseverything.net/articles/box-model.html).

We’re using an arbitrary figure of 50% for the width, but this can be anything you like, whatever it takes
to fit in with your design (see Figure 3-37):

#sidebar {
width: 50%;
}

Figure 3-37: Setting the width of the sidebar

Next we’ll style the box, giving it a border and some padding (to keep a gap between the text and the
border). We also add in a background color and a background image. This image produces the gradient
at the top of the box, as shown in Figure 3-38.

.box {
background: #f5ece3 url(box-tm.gif) repeat-x top left;
border: 2px solid #e1d4c0;
padding: 8px;
}

111

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 111



Figure 3-38: Producing the gradient at the top of the box

Now for the clever bits. First, let’s create our :before pseudo-element:

.box:before {

}

Next, we’ll insert our top-left rounded-corner image into the pseudo-element (see Figure 3-39):

.box:before {
content: url(box-tl.gif);
}

Figure 3-39: Inserting the top-left rounded-corner image

Now we’ll add in the top-right rounded-corner image. We do this by setting a background-image on
the pseudo-element, and making the whole thing block-level (see Figure 3-40):

112

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 112



.box:before {
background: transparent url(box-tr.gif) no-repeat top right;
content: url(box-tl.gif);
display: block;
}

Figure 3-40: Adding the top-right rounded-corner image

We have to counteract the 8px of padding and 2px of border we applied to the box. We do this by applying
negative top, right, and left margins to the pseudo-element, pulling it into place, as shown in Figure 3-41:

.box:before {
content: url(box-tl.gif);
background: transparent url(box-tr.gif) no-repeat top right;
display: block;
margin: -10px -10px 0 -10px;
}

Figure 3-41: Counteracting the border and padding

Finally, we apply a line-height to the pseudo-element (to fix that problem with the left-hand corner)
and a negative bottom margin, to pull the heading (“Users say . . . “) up, and back to its proper place, as
shown in Figure 3-42:

.box:before {
background: transparent url(box-tr.gif) no-repeat top right;
content: url(box-tl.gif);
display: block;
line-height: 0.1;
margin: -10px -10px -12px -10px;
}

And that’s it. Rounded corners, a gradient background, and fluid width, as shown in Figure 3-42.

113

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 113



Figure 3-42: Rounded corners at the top of a fluid-width box

What’s neat about this method is that by using both the background-image and content properties,
we’ve managed to insert two images into a single pseudo-element. Without that ability this fluid layout
would be beyond our “minimalist markup” approach, and we’d have to resort to hacky CSS or even
adding in extra divs.

Now, having mastered the top of the box, let’s do the same for the bottom corners.

Rounding the Bottom of the Box
First, we create our :after pseudo-element:

.box:after {

}

Next we’ll insert our bottom-left rounded-corner image into the pseudo-element, via the content
property (see Figure 3-43):

.box: after {
content: url(box-bl.gif);
}

Figure 3-43: Inserting the bottom-left rounded-corner image

Now we’ll add in the bottom-right rounded-corner image. We do this by setting a background-image
on the pseudo-element and making the whole thing block-level, as shown in Figure 3-44:

.box: after {
background: transparent url(box-br.gif) no-repeat bottom right;
content: url(box-bl.gif);
display: block;
}

114

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 114



Figure 3-44: Inserting the bottom-right rounded-corner image

We must counteract the 8px of padding and 2px of border we applied to the box. We do this by applying
negative bottom, right, and left margins to the pseudo-element, pulling it into place. We also add in 4px of
top margin to make the gap between the text and bottom border a bit nicer (see Figure 3-45).

.box:after {
background: transparent url(box-br.gif) no-repeat bottom right;
content: url(box-bl.gif);
display: block;
margin: 4px -10px -10px -10px;
}

Figure 3-45: Counteracting the padding and border

The right-hand side looks fine, but what’s happening on the left side of Figure 3-46? Ah, it’s 
line-height at work again.

Figure 3-46: Line-height can cause vertical spacing problems.

115

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 115



Let’s set a value of 0.1 and fix it (see Figure 3-47):

.box:after {
background: transparent url(box-br.gif) no-repeat bottom right;
content: url(box-bl.gif);
display: block;
line-height: 0.1;
margin: 4px -10px -10px -10px;
}

Figure 3-47: Fixing the rounded corners on the left side

To finish up, we simply add in a clearing declaration, as we did in the fixed-width example, and that’s it
(see Figure 3-48).

.box:after {
background: transparent url(box-br.gif) no-repeat bottom right;
clear: both;
content: url(box-bl.gif);
display: block;
line-height: 0.1;
margin: 4px -10px -10px -10px;
}

116

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 116



Figure 3-48: The finished article as seen in Firefox, Opera, and Safari

117

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 117



Dealing with Internet Explorer
Unfortunately, and unlike in the previous section, there’s no wonderfully easy way to give IE users a
taste of what we’ve done here (see Figure 3-49). After a bit of margin-tweaking to remove the gaps at the
top and bottom of the box, IE users will have to be satisfied with the carefully thought-out color scheme,
the excellent use of white space, and the overall feeling of calm that blogger.com’s layout brings.

Figure 3-49: No lovely styling for IE

Of course, if it’s vital that IE users see your rounded corners, then you can’t use this technique. You’ll
have to resort to the slightly less elegant method of inserting a series of extra divs in your XHTML.

Better Thinking Through Pseudo-Elements
You should now have a fair understanding of the capabilities of the :before and :after
pseudo-elements. They really are wonderfully powerful tools.

One of their main benefits is that they allow you to change your markup mindset. No longer should your
first thought be “Well, I’ll have to add in a whole bunch of extra divs to build this layout.” You now have
a set of tools that let you say, “Can I build this layout without altering the XHTML markup in any way?”

As CSS grows more powerful, and as browsers become better at interpreting it, this thought process will
become second nature to all of us.

118

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 118



Implied Boxes
If rounded corners go a long way toward mellowing out Blogger’s boxy design, then Bowman’s second
idea, the implied box, finishes the job.

There’s really no easier way to explain what an implied box is than to show you one of them in situ.
Figure 3-50 shows one in use on the front page of blogger.com.

Figure 3-50: An implied box (top right) on blogger.com

See it? It’s the bit in the top-right corner of the page. Figure 3-51 shows it close-up.

Figure 3-51: An implied box in action in the Sign In form

There’s nothing super-clever about the CSS here. It’s just the application of a simple background-image
to a form or div, but the effect is very soothing and allows the design to retain a level of openness while
still providing a way for visually demarcating sections of the document. In essence, it removes visual
clutter and lets our brains fill in the blanks. It’s a very clever move in such a busy site.

119

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 119



Here’s the relevant CSS for that example:

#header form {
background: url(ibox-login.jpg) no-repeat left top;
padding: 12px 15px 0;
width: 290px;
}

Figure 3-52 shows the image being used.

Figure 3-52: The ibox_login.jpg image at 320 × 290px

So, you don’t always have to use advanced CSS to implement a nice piece of design. This is about as
simple as it gets, and it does the job admirably.

Writing CSS That Benefits Your Site
Maintainers

There’s something rather clever going on at blogger.com, although at first glance you won’t be able to
tell what it is. In fact, the only people who really appreciate this cleverness are the people who have to
maintain the site, the Blogger Team.

This section looks at the styling of Blogger’s content divs and shows how, with the addition of a simple
class, the Blogger Team can quickly (and easily) change the layout of their site by moving from one col-
umn to two, or from sidebar positioned on the left to a sidebar positioned on the right.

To find out how this style-swapping works, we must first understand the basic structure of Blogger’s pages.

Basic Page Structure
Each of the pages on blogger.com is divided into two mains sections: a “header” (<div id=”header”>)
containing the logo and tagline, and a “body” (<div id=”body”>) containing everything else. (Don’t get
that “body” div confused with the body tag (<body>); they’re two separate things.)

To put this in perspective, here’s a quick outline of a Blogger page:

<html>
<head>
<title></title>
</head>

<body>

<div id=”header”>

120

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 120



</div>

<div id=”body”>
<div id=”main”>
</div>

<div id=”sidebar”>
</div>

</div>

</body>
</html>

We’re going to be looking closely at <div id=”body”> and its descendants.

Inside the body div
Almost every page on blogger.com contains a “body:” div (<div id=”body”>). Its sole purpose is to
constrain the site contents to a width of 710px, and center it horizontally, as shown in Figure 3-53.

Figure 3-53: The <div id=“body”>

<div id=“body”>

121

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 121



Almost every page on blogger.com also contains a “main” div (<div id=”main”>), which sits inside the
body div and holds the main content of the page, as shown in Figure 3-54.

Figure 3-54: The <div id=“main”>

This main div can either be presented on its own (as in Figure 3-54), taking up all the available width, or
it can be narrowed and displayed in conjunction with a “sidebar” div (<div id=”sidebar”>), which
can appear on the left or on the right of the page, as shown in Figure 3-55.

<div id=“main”>

122

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 122



Figure 3-55: The <div id=“sidebar”> and <div id=“main”>

Providing alternate layouts is nothing terribly clever, but what is rather nice is the way that Bowman
triggers such layout changes: by altering the value of a class applied to the body tag.

Assign a class of “ms” to the body tag and the main div (m) and sidebar div (s) will display alongside
each other — main on the left, sidebar on the right (see Figure 3-56).

<body class=”ms”>

<div id=“sidebar”> <div id=“main”>

123

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 123



Figure 3-56: The result of <body class=“ms”>: <div id=“main”> is on the left and <div
id=“sidebar”> is on the right.

Swap that around and assign a class of sm to the body tag and the two divs swap places. Now the
sidebar (s) is on the left and the main div (m) on the right (see Figure 3-57).

<body class=”sm”>

124

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 124



Figure 3-57: The result of <body class=“sm”>: <div id=“sidebar”> is on the left and <div
id=“main”> is on the right.

Leave the class attribute out entirely and the main div will expand to fill the full width of the body
div. The sidebar, if it exists, will be hidden (see Figure 3-58):

<body>

125

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 125



Figure 3-58: The result of setting no class attribute on <body>. Only <div id=“main”> displays.

See how easy that is? See how easy Bowman has made it for the Blogger Team to mix and match the 
layout of their pages?

Let’s see the XHTML and CSS that enables this layout swapping to occur.

The XHTML
The following is the XHTML:

<body>

<div id=”header”>
</div>

<div id=”body”>
<div id=”main”>
</div>

<div id=”sidebar”>
</div>

</div>

</body>

126

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 126



The CSS
The following is the CSS. (This is a simplified set of styles, dealing with layout only. Colors, borders, and
so on have been left out.)

div#body {
margin: auto;
width: 710px

}

div#sidebar {
display: none;

}

body.ms div#main, 
body.sm div#main {

width: 490px;
}

body.ms div#sidebar, 
body.sm div#sidebar {

display: block;
width: 200px;

}

body.ms div#main, 
body.sm div#sidebar {

float: left;
}

body.sm div#main, 
body.ms div#sidebar {

float: right;
}

What Does It All Mean?
Okay, let’s break that CSS down rule by rule.

First off, let’s look at the styling for the body div. This div helps constrain everything and provides
room for the two divs (main and sidebar) to sit side by side (when they need to). We set its width at
710px, and set margin-left and margin-right values to auto to center the content:

div#body {
margin: 0 auto;
width: 710px

}

Next is the default style for div#sidebar. Unless some kind of class is specified in the body tag, the
sidebar div will not be displayed and will be removed from the document flow.

div#sidebar {
display: none;

}

127

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 127



If a class has been specified, then the following rule will constrain the width of div#main to 490px
(from its browser default of 100 percent) to make room alongside it for the sidebar:

body.ms div#main, 
body.sm div#main {

width: 490px;
}

If a class has been specified, we also must set some styles that will be applied to the sidebar div:

body.ms div#sidebar, 
body.sm div#sidebar {

display: block;
width: 200px;

}

The display: block counteracts the display: none (which we set as our default style for the sidebar),
making it visible again. We also set the sidebar’s width at 200px.

Now that we’ve set up the display and widths of the main and sidebar divs, it’s time to position them
on the left or right. We’ll do this by using floats, and to save space in our CSS file, we’re going to com-
bine what should be four rules (two for the main div, and two for sidebar div) into just two rules.

The first rule floats the divs left. For the main div, this rule will be applied when the body tag has the class
ms applied to it. For the sidebar div, this rule will be applied when the body tag has class sm applied to it.

body.ms div#main, 
body.sm div#sidebar {

float: left;
}

The second rule floats the divs right. For the main div, this rule will be applied when the body tag has
the class sm applied to it. For the sidebar div, this rule will be applied when the body tag has class ms
applied to it.

body.ms div#sidebar {
float: right;
}

And that’s all there is to it. By simply altering the class of the body tag, members of the Blogger Team
can easily (and quickly) affect the layout of the page. This is yet another example of why CSS is so
darned good.

128

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 128



CSS-Enabled Rollovers
If there’s one thing that CSS has helped to simplify on the Web, it’s the humble rollover — the act of
swapping one image (or color) for another when the user moves the mouse over a section of the page.
Until about 2001, the only reliable way to achieve such an effect was by breaking out JavaScript and
writing something like this:

<html>

<head>
<title></title>
<script type=”text/javascript”>
<!--
function SwapOut()

{
document.getElementById(‘picture’).src = ‘picture-rollover.jpg’;
return true;
}

function SwapBack()
{
document.getElementById(‘picture’).src = ‘picture.jpg’;
return true;
}

--> 
</script>
</head>

<body>

<p><a href=”” onmouseover=”SwapOut()” onmouseout=”SwapBack()”><img id=”picture”
src=”picture.jpg” width=”100” height=”150” /></a></p>

</body>
</html>

CSS, thank heavens, has given us a number of different ways to achieve the same goal, and they’re all
delightfully simple. Let’s take a look at them. . . .

Changing the Color and Background Color 
of Links (Simple)

This is the simplest (and most common) of all CSS rollover techniques. It is used to alert the user that the
mouse is placed over a hyperlink.

Figure 3-59 shows some examples of the rollover in action.

129

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 129



Figure 3-59: Default and :hover link styling from stopdesign.com,
simplebits.com, 37signals.com, mezzoblue.com, sidesh0w.com, and
1976design.com

130

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 130



Let’s look at that last example and see how it might be copied.

The XHTML
Following is the XHTML:

<p> If you’re interested then <a href=””>bung me an email</a> and we can talk about
what you want </p>

So, all that’s needed is a simple a tag. How about the CSS?

The CSS
Following is the CSS:

a {
border-bottom: 1px solid #eee;
color: #d17e62;
text-decoration: none;
}

a:visited {
border-bottom: 1px solid #eee;
color: #9d604c;
text-decoration: none;
}

a:hover {
background-color: #ffffda;
border-bottom: 1px solid #ddd;
color: #c30;
text-decoration: none;
}

It’s important to note the order in which those rules are written. The first rule, a {}, affects all links. The
second rule, a:visited {}, affects those links that the user has already visited (this is determined by the
browser’s cache). The third rule, a:hover {}, affects those links that the mouse is currently hovering over.

Following the logic of the CSS Cascade (www.htmlhelp.com/reference/css/structure.html#
cascade) each of those rules has precedence over the one before it. So, a normal link will have its styles
overwritten by a visited link, and a visited link will have its styles overwritten when the user hovers
over it. Simple, really, but you’d be surprised how many people get those in the wrong order.

Changing the Color and Background Color of Links
(Complex)

This is a great trick for fast, low-bandwidth rollovers, and it’s something Bowman has used on the front
page of Blogger. It involves nothing more than altering the background color of an element, while keep-
ing the image on top of that background (be it an inline image or a CSS background image) the same.

To see it in action, Figure 3-60 shows four links on the front page of blogger.com.

131

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 131



Figure 3-60: Four links on the front page of blogger.com. (The rest of the page has been dimmed
so you can clearly identify the links.)

Figure 3-61 shows what happens when you move the mouse over one of those links.

Figure 3-61: One of the rollover links in action
132

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 132



You’ll see that the background color has changed color and the word “thoughts” has become black. The
actual button image, however, hasn’t changed at all.

How has this been achieved? Well, first off, let’s look at the XHTML, CSS, and images that make up this
section.

The XHTML
Following is the XHTML:

<ul>
<li id=”publish”><a href=”tour_publish.g”><strong>Publish</strong> thoughts
</a></li>
<li id=”feedback”><a href=”tour_feedback.g”><strong>Get</strong> feedback</a></li>
<li id=”people”><a href=”tour_people.g”><strong>Find</strong> people</a></li>
<li id=”more”><a href=”tour_more.g”><strong>And</strong> more...</a></li>
</ul>

The CSS
Following is the CSS:

ul {
list-style: none;
margin: 0;
padding: 0;
}

ul li {
float: left;
margin: 0;
padding: 0;
}

ul li a {
color: #777;
display: block;
padding: 80px 10px 5px;
text-align: center;
text-decoration: none;
width: 75px;
}

ul li#publish a {
background: #fff url(icon_publish.gif) no-repeat top left;
}

ul li#feedback a {
background: #fff url(icon_feedback.gif) no-repeat top left;
}

ul li#people a {
background: #fff url(icon_people.gif) no-repeat top left;
}

ul li#more a {

133

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 133



background: #fff url(icon_more.gif) no-repeat top left;
}

ul li#publish a:hover, 
ul li#feedback a:hover, 
ul li#people a:hover, 
ul li#more a:hover {
background-color: #f8f2eb;
}

ul li a strong {
color: #000;
display: block;
font-size: larger;
}

ul li a:hover {
color: #000;
}

The Images
For this to work, the images being used must have transparent sections that let the background color of
the image (or of the parent element) show through. In each case, the images shown in Figure 3-62 have
had their transparent sections replaced with a checkered pattern, so you can see which bits are see-
through, and which aren’t.

Figure 3-62: The checkered pattern indicates transparent areas.

What Does It All Mean?
Figure 3-63 shows our starting display.

Figure 3-63: The unstyled display

Now, let’s go through the CSS line by line and see what effect each part has. First off, we’ll remove the
bullets (dots) that precede each list item, as shown in Figure 3-64:

ul {
list-style: none;
}

134

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 134



Figure 3-64: Removing the bullets

Then we’ll remove any margin and padding the unordered list might have, as shown in Figure 3-65. We
do this so that when we come to position the finished list in the page, we’re not fighting against the
default browser settings for padding and margin on unordered lists.

ul {
list-style: none;
margin: 0;
padding: 0;
}

Figure 3-65: Removing margins and padding

Next, we style the list items. First, we float each item left, so that they no longer display vertically, and
instead line up next to each other, horizontally, as shown in Figure 3-66. We also remove their margin
and padding.

ul li {
float: left;
margin: 0;
padding: 0;
}

Figure 3-66: Floating each item in the list

Now we style the links. First we set a font color (see Figure 3-67):

ul li a {
color: #777;
}

Figure 3-67: Setting a font color

135

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 135



Next we set the links to display: block, and apply a width of 75px, as shown in Figure 3-68. (This is
equivalent to the width of the images we’ll be using.)

ul li a {
color: #777;
display: block;
width: 75px;
}

Figure 3-68: Blocking the elements

Now we must insert some white space so that our images (which we’ll be adding in a short while) will
have somewhere to sit, as shown in Figure 3-69. We do this by adding in 80px of padding at the top
(75px for the image, and 5px to make a gap between the image and the text).

ul li a {
color: #777;
display: block;
padding: 80px 0 0 0;
width: 75px;
}

Figure 3-69: Inserting white space for placement of the images

Next we add in 10px of padding on the left and padding on the right, and 5px of padding on the bottom
(see Figure 3-70):

ul li a {
color: #777;
display: block;
padding: 80px 10px 5px;
width: 75px;
}

Figure 3-70: Adding padding

136

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 136



And, to finish off the generic link styling, we center align the link text and remove its underline (see
Figure 3-71):

ul li a {
color: #777;
display: block;
padding: 80px 10px 5px;
text-align: center;
text-decoration: none;
width: 75px;
}

Figure 3-71: Centering text and removing underlining

Now it’s time to add in the background images for each of the links, as shown in Figure 3-72:

ul li#publish a {
background: transparent url(icon_publish.gif) no-repeat top center;
}

ul li#feedback a {
background: transparent url(icon_feedback.gif) no-repeat top center;
}

ul li#people a {
background: transparent url(icon_people.gif) no-repeat top center;
}

ul li#more a {
background: transparent url(icon_more.gif) no-repeat top center;
}

Figure 3-72: Adding background images

137

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 137



Things are coming together nicely. Next, we’ll make the first word of each link darker and larger, as
shown in Figure 3-73:

ul li a strong {
color: #000;
font-size: larger;
}

Figure 3-73: Making the first word of the links darker and larger

We’ll also add in a rule to ensure that the second word of each link is forced onto a new line (see 
Figure 3-74):

ul li a strong {
color: #000;
display: block;
font-size: larger;
}

Figure 3-74: Forcing the second word of the link to a new line

That’s all looking very nice, so let’s add in the CSS that will make the rollovers work.

This rule alters the background color of each link as the user hovers the mouse over it (see Figure 3-75):

ul li#publish a:hover, 
ul li#feedback a:hover, 
ul li#people a:hover, 
ul li#more a:hover {
background-color: #f8f2eb;
}

Figure 3-75: Altering the background color
138

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 138



To finish things off, this little rule will alter the color of the text on :hover so that it changes from gray
to black, as shown in Figure 3-76:

ul li a:hover {
color: #000;
}

Figure 3-76: The finished product in action

And we’re done!

Dealing with Internet Explorer
The previous example works perfectly for users of IE. However, if you’re not careful, you can cause
problems for the few people out there who claim IE5 for the Mac as their browser of choice. It turns out
that this browser has an odd disliking for quotation marks around image filenames in CSS.

For example, this will work:

ul li#publish a {
background: #fff url(icon_publish.gif) no-repeat top left;
}

But this will not:

ul li#publish a {
background: #fff url(‘icon_publish.gif’) no-repeat top left;
}

And neither will this:

ul li#publish a {
background: #fff url(“icon_publish.gif”) no-repeat top left;
}

Many coders like to put quotation marks around such filenames, triggering color-coding in their text
editors, as shown in Figure 3-77. Unfortunately, it seems that by doing so, they’re depriving IE5 Mac
users of the full, visual experience.

139

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 139



Figure 3-77: Using quotation marks activates friendly code-coloring in some text
editors.

This is an odd little bug, and one that can easily slip past you when you’re not concentrating, so watch out.

Changing the Background Color of Table Rows
The use of alternating row colors in tables has become a well-recognized design touch (think of iTunes),
providing structure to long tables, and letting the eye scan easily across a row of information.

If this is combined with a hover effect to highlight the row under the mouse pointer, it can produce an
attractive and functional look, as shown in Figure 3-78.

Figure 3-78: An example of alternate row coloring and row highlighting

The code for this hover effect couldn’t be simpler. Using the previous example, here’s the XHTML and
the CSS needed to style the table rows.

The XHTML
Following is the XHTML:

<table cellpadding=”5” cellspacing=”0” border=”1”>
<caption>Family Statistics</caption>

<thead>
<tr>

<th>Name</th>
<th>Age</th>
<th>Sex</th>

140

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 140



<th>Hair Color</th>
</tr>
</thead>

<tbody>
<tr class=”odd”>

<td>Alastair</td>
<td>31</td>
<td>Male</td>
<td>Brown</td>

</tr>
<tr class=”even”>

<td>Dunstan</td>
<td>29</td>
<td>Male</td>
<td>Brown</td>

</tr>
<tr class=”odd”>

<td>Lucas</td>
<td>3</td>
<td>Male</td>
<td>Brown</td>

</tr>
<tr class=”even”>

<td>Mariella</td>
<td>33</td>
<td>Female</td>
<td>Brown</td>

</tr>
<tr class=”odd”>

<td>Morag</td>
<td>55</td>
<td>Female</td>
<td>Brown</td>

</tr>
<tr class=”even”>

<td>Nicole</td>
<td>29</td>
<td>Female</td>
<td>Black</td>

</tr>
<tr class=”odd”>

<td>Paul</td>
<td>59</td>
<td>Male</td>
<td>Black</td>

</tr>
<tr class=”even”>

<td>Poppy</td>
<td>3</td>
<td>Female</td>
<td>White</td>

</tr>
</tbody>
</table>

141

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 141



The CSS
Most of the following CSS is needed to style the table. The rules that actually do the hover effect have
been boldfaced for you.

table {
background-color: #fff;
border: 1px solid #ddd;
empty-cells: show;
font-size: 90%;
margin: 0 0 20px 0;
padding: 4px;
text-align: left;
width: 300px;

}

table caption {
color: #777;
margin: 0 0 5px 0;
padding: 0;
text-align: center;
text-transform: uppercase;

}

table thead th {
border: 0;
border-bottom: 1px solid #ddd;
color: #777;
font-size: 90%;
padding: 3px 0;
margin: 0 0 5px 0;
text-align: left;

}

table tbody tr.odd { 
background-color: #f7f7f7;

}

table tbody tr.even { 
background-color: #fff;

}

table tbody tr:hover {
background-color: #ffe08e;

}

table tbody td {
color: #888;
padding: 2px;
border: 0;

}

table tbody tr:hover td {
color: #444;

}

142

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 142



What Does It All Mean?
We’re not going to go through each and every line of that CSS because it’s not all relevant to this rollover
section. However, let’s look at the last few rules in detail.

The first thing to note is that we’ve given each of the two row classes (.odd and .even) a background
color. This lets us create our alternating row-color effect.

table tbody tr.odd { 
background-color: #f7f7f7;

}

table tbody tr.even { 
background-color: #fff;

}

Next, we set a rule that changes the background color of a row when the user hovers over it:

table tbody tr:hover {
background-color: #ffe08e;

}

And finally, we change the color of the text contained within the row that is being hovered over, making
it darker to stand out against its new background color:

table tbody tr:hover td {
color: #444;

}

It really is wonderfully simple stuff.

Changing the Color of Text
The final hover application we’re going to look at in this section is highlighting text (be it plain text or
linked text) when a user hovers over a div or similar element.

Why might this be useful? Imagine a site that contains many links. Developers usually style their links
so that they’re a bright color, making them stand out from the surrounding text. That’s all very well
when you have a few links per page, but what happens if your site contains hundreds of links per page?
The eyes of the user will be assaulted by a mass of bright color as hundreds of links vie for their atten-
tion. How can you expect to pick out the subtleties of your design if all you can see is a sea of color?

The solution (or one of them) is simple. If we hide the bright colors of these links until the user hovers
the mouse over the relevant section of the page, then we can present users, at first glance, with a much
calmer site. We’ll make the links obvious only when the user is indicating that he or she is interested in
that section of the page, by moving the mouse over it.

Figure 3-79 shows that approach in action.

143

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 143



Figure 3-79: Text can be highlighted when the mouse hovers over divs or links.

See how effective that is? Let’s see how we might re-create that.

The XHTML
Following is the XHTML:

<div id=”links”>
<h3>Blogmarks</h3>

<p>A collection of miscellaneous links that don’t merit a main blog posting, but
which are interesting none-the-less.</p>

<ul>
<li><a href=””>What WordPress is currently doing to combat comment spam</a>.</li>
<li><a href=””>Mobile web tools</a>, from <a href=””>Pukupi</a>.</li>
<li><a href=””>The photography of E.J. Peiker</a>.</li>
<li><a href=””>Some handy tips for advanced Google use</a>.</li>
<li><a href=””>Make your own church signs</a>, or <a href=””>view some real
ones</a>.</li>
<li><a href=””>Michael Heilemann</a> is doing a great job with his new <a
href=””>WordPress</a> theme, <a href=””>Kubrick</a>.</li>
<li>I’m late to the party, but <a href=””>Dan</a> has a <a href=””>book
out</a>.</li>
<li><a href=””>A crazy concept for laying our housing estates</a>.</li>

144

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 144



<li><a href=””>Spiderman reviews crayons</a>.</li>
<li>Some <a href=””>beautiful images</a> from photographer <a href=””>Greg
Downing</a>.</li>
<li><a href=””>Lots of links from the Link Bunnies</a>.</li>
<li>Nice <a href=””>&#8220;when I was a child&#8221;</a> sort of post frin
Stuart.</li>
<li><a href=””>How much does SafariSorter cost?</a></li>
<li>Some handy <a href=””>maintenance tips for Mac owners running Panther</a>.</li>
<li><a href=””>Ming Jung</a>, <a href=””>Anil Dash</a>, and I get <a
href=””>interviewed for HBO’s Real Sex</a>.</li>
</ul>
</div>

The CSS
Following is the CSS:

div#links {
color: #333;
border: 2px solid #ddd;
padding: 10px;
width: 240px;

}

html > body div#links {
width: 220px;

}

div#links ul {
margin: 0 0 0 19px;
padding: 0;

}

div#links ul li {
list-style-image: url(‘list-dot.gif’);
margin: 0 0 .5em 0;

}

html > body div#links ul li a {
color: #333;
text-decoration: none;

}

div#links:hover ul li a {
color: #0000ff;
text-decoration: underline;

}

div#links ul li a:hover {
background-color: #ffff66;
color: #000;
text-decoration: none;

}

145

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 145



Images
All we’re using is a little “dot” image to replace the browser’s default “list dot” (or bullet), as shown in
Figure 3-80.

Figure 3-80: A replacement list dot (or bullet)

What Does It All Mean?
Again, we’re not going to look at every little bit of that CSS code because it’s not all relevant to the
rollover technique we’re discussing. However, here are a few bits that are worth examining.

First, we set the default text color for everything in the div. We choose a shade of gray because gray is a
nice calm color, and that’s one of the things we’re trying to achieve here — calm.

div#links {
color: #333;

}

Next, we style the links so that they fit in with the gray text, removing anything that would make them
stand out from their surroundings:

html > body div#links ul li a {
color: #333;
text-decoration: none;

}

We use the child selector (>) to style the links so that IE (which doesn’t interpret rules containing the
child selector) won’t apply the rule. For a full explanation of why we do this, see the following section,
“Dealing with Internet Explorer.”

Now come our two :hover rules. The first will be activated when the user moves the mouse over the
div. It will cause the links to change from gray to blue and to show their underline text decoration.

div#links:hover ul li a {
color: #0000ff;
text-decoration: underline;

}

The second :hover rule activates when the user moves the mouse directly over a link. It changes the
text color to black, removes the underline, and makes the background of the link bright yellow.

div#links ul li a:hover {
background-color: #ffff66;
color: #000;
text-decoration: none;

}

And that’s all there is to it.

146

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 146



Dealing with Internet Explorer
As mentioned earlier, IE doesn’t understand the :hover selector on elements other than links.

So, Firefox, Opera, Safari, and IE all understand this:

a:hover {
color: red;
}

But only Firefox, Opera, and Safari understand these:

div:hover {
color: yellow;
}

div:hover a {
color: green;
}

Why is that relevant? Well, it affects what we’ve just done in this demonstration. Imagine that you’re
using Firefox to browse a Web site. The page loads, and CSS turns all the text and links gray, to mellow
things out for you. You zero in on a section that interests you. You move your mouse over it and, ah! The
links turn bright blue. You can now see what’s a link and what’s plain text.

Now, imagine that you’re browsing the same site using IE. The page loads, and CSS turns all the text and
links gray. You zero in on a section that interests you. You move your mouse over it and nothing. No links
pop out at you and you’re just left with a sea of unresponsive gray text. Why? Because IE doesn’t under-
stand that you’re hovering over a div, and so it can’t apply a different, brighter style to the links. Disaster!

So, you can see why we have to stop the links being turned gray right at the start in IE. There’s no point
turning them gray if the browser can’t turn them back to blue at the appropriate moment. Hence, we use
the child selector.

Now, here’s the bugger of using a child selector to hide styles from IE: IE for the PC doesn’t understand
the child selector (great!), but IE5 for the Mac does!

So, any time we use > to block IE, we must remember we’re blocking only IE for the PC, not IE for the Mac.

This wouldn’t be a problem if IE5 for the Mac handled things like :hover on any element, but it doesn’t.
It’s just as bad there as its PC cousin.

What this means is that if you’re at all worried about annoying IE5 for the Mac users, be very aware of
CSS techniques that use the child selector to hide rules from IE.

Changing the Background Position on Links
The second approach to CSS-based rollovers is one that focuses on swapping not just background color,
but images as well, and does so using the increasingly important method of background positioning.

If you’ve never heard of this idea, then don’t worry; it’s easy as pie, but it does require a little explanation.

147

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 147



Making Rollovers from Embedded Images
Let’s say we’ve been given the page layout shown in Figure 3-81 and we’ve been asked to jazz up the
photo a bit — add in a rollover, maybe a bit of a drop shadow, something a bit more interesting.

Figure 3-81: Can we replace this photo using CSS?

We can do that, right? Well, what if we were told that we have to make those changes without touching
the XHTML? Could we still do it?

<div id=”sidebar”>
<div class=”box”>
<h2>Lucas says...</h2>

<div id=”photo-lucas”>
<img src=”lucas.jpg” width=”150” height=”100” alt=”Portrait of small boy” />
</div>

<p>Hello there, my name is Lucas. I am 3-years old and the bi-lingual monkey-child
of an English man and an Italian woman.</p>

<p>I like cars and trucks and buses and trains and almost anything that moves. I’m
not so keen on sprouts or the Welsh.</p>

<p>My Grandma has a dog, called Poppy. She’s small and cute and she widdles when
she gets excited.</p>

<p>When I grow up I want to be like my Uncle... what a guy he is...</p>
</div>
</div>

148

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 148



Well, if you’re fortunate, and you’re working with well thought-out XHTML, then this sort of thing is a
breeze to do. It may sound daunting, but with a bit of Adobe Photoshop magic and some CSS, we can very
quickly have a layout that not only inserts a new image, and not only repositions that image, but also
makes that image function as a rollover whenever the user moves the mouse into the “Lucas says . . . “ box.

Figure 3-82 shows the finished result. It’s shown twice so you can see the page in its normal state (on the
left) and in its “rolled-over” state (on the right).

Figure 3-82: The finished layout and rollover in action. Mousing-over the text causes the
rollover to trigger and the color image to be revealed.

Let’s see how that was achieved.

The XHTML
This is pretty much the same XHTML as we used to create the “Users say . . . “ box beginning in the ear-
lier section “Creating Fixed-Width, Round-Cornered Boxes.” The new markup, and the bit worth paying
attention to, has been boldfaced for you:

<div id=”sidebar”>
<div class=”box”>
<h2>Lucas says...</h2>

<div id=”photo-lucas”>
<img src=”lucas.jpg” width=”150” height=”100” alt=”Portrait of small boy” />
</div>

<p>Hello there, my name is Lucas. I am 3-years old and the bi-lingual monkey-child
of an English man and an Italian woman.</p>

<p>I like cars and trucks and buses and trains and almost anything that moves. I’m
not so keen on sprouts or the Welsh.</p>

<p>My Grandma has a dog, called Poppy. She’s small and cute and she widdles when
she gets excited.</p>

<p>When I grow up I want to be like my Uncle... what a guy he is...</p>
</div>
</div>

149

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 149



The CSS
We’re not going to repeat the CSS used to style the box because we covered that earlier in this chapter.
Instead, let’s just look at the new, interesting pieces:

.box {
position: relative;

}

html > body div#photo-lucas img {
left: -5000px;
position: absolute;

}

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;
height: 124px;
left: 185px;
position: absolute;
width: 160px;

}

div.box:hover div#photo-lucas {
background-position: top right;

}

The Images
Figure 3-83 shows the original JPG image referenced in the XHTML.

Figure 3-83: The original image, referenced in the XHTML
(lucas.jpg at 150 × 100px)

Figure 3-84 shows a PNG file we’re going to use as the replacement image. We’re using a PNG file
because we want to have a realistic, semi-transparent drop shadow, and neither JPG files nor GIF files
can do that.

Figure 3-84: The image used for the rollover: Lucas-rollover.png 320 ×
124px (transparent sections are denoted by the checkered pattern)

150

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 150



What Does It All Mean?
The XHTML isn’t worth examining in any more detail, but let’s have a look at what the CSS does.

Figure 3-85 shows our starting point.

Figure 3-85: Starting point

First off, we must remove the original lucas.jpg image. There are a number of ways to do this using
CSS, but the best all-round method is to set its position to absolute and then fling it as far off the edge of
the screen as possible (see Figure 3-86).

html > body div#photo-lucas img {
left: -5000px;
position: absolute;

}

We use position: absolute and not position: relative because absolutely positioning an 
object removes it completely from the document flow. In this case, it causes its parent element
(div#photo-lucas) to collapse, and lets the text below it move up and reflow to fill the now-blank
space.

151

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 151



Figure 3-86: Removing the image

Having cleared out the old image, it’s time to insert the new one. We’re going to insert it as a back-
ground image to div#photo-lucas, the div that contained the original image (see Figure 3-87):

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;

}

Figure 3-87: Inserting the new image

Hmm, well, we’ve inserted it, so where is it?

152

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 152



Well, remember that this is a background image to div#photo-lucas, the element that contained the
original photo. But, because we threw the original photo off the edge of the screen, div#photo-lucas
has no content, and no content means no dimensions. So, yes, our new background image is there, but
we must give div#photo-lucas a width and a height in order to be able to see it, as shown in 
Figure 3-88.

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;
height: 124px;
width: 160px;

}

Figure 3-88: Revealing the hidden image

Ah! There it is, very nice. Notice that the height we set corresponds to the height of the new rollover
image (lucas-rollover.png), and the width is exactly half that image’s width. This way we see only
one-half of lucas-rollover.png at a time, which is just what we want.

With the new image on-screen, let’s reposition it off to the right. To do that, we once again use 
position: absolute (see Figure 3-89):

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;
height: 124px;
position: absolute;
width: 160px;

}

153

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 153



Figure 3-89: Repositioning the image

Now, don’t worry, it hasn’t gone wrong. All that’s happened is that div#photo-lucas has been
removed from the document flow, meaning that it no longer interacts with anything around it. Instead it
floats above everything else (or underneath if we want to start using z-index) and can be positioned
anywhere on-screen.

Because that’s the case let’s move it to its new position on the right of the box. The first thing to do is to
alter a bit of that original box CSS and insert the following rule:

.box {
position: relative;

}

This means that whatever XY coordinates we give to div#photo-lucas, we will be positioning it 
relative to its containing element, the box (.box). The top left will be the top-left corner of the box,
bottom right will be the bottom-right corner of the box, and so on.

Now that our reference point is established, let’s move our image. First of all, let’s set the left position, as
shown in Figure 3-90:

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;
height: 124px;
left: 185px;
position: absolute;
width: 160px;

}

154

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 154



Figure 3-90: Setting the left position

Perfect. And, in fact, we don’t need to set a top position because it’s already in the right place. Now, all
that’s left to do is activate the main point of this demonstration: the rollover, as shown in Figure 3-91. We
hope, by now, you’re starting to understand just how easy this final step always is.

div.box:hover div#photo-lucas {
background-position: top right;

}

Figure 3-91: Activating the rollover

155

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 155



Dealing with Internet Explorer
IE gets rather short shrift here. Not only does it not interpret :hover on divs, but it also doesn’t handle
semi-transparent PNGs. As a consequence, we’ve blocked it from implementing any of these changes by
using the child selector, as described earlier in this chapter.

There are certainly instances where you could use an IE-friendly version of this technique. You could use
a regular JPG, instead of a PNG. (You wouldn’t get the drop shadow, but that’s not always a bad thing.)
As long as your original image sat inside a link then the rollover would work as well (in a limited way).

You may be thinking, “Stop showing me demos that don’t work in IE!” However, what you should be
taking away from this is an idea of what’s possible with today’s best browsers. Once you realize what’s
possible, you can start to adjust these demos until you reach a happy balance — a balance between CSS
and cross-browser functionality; between lean, mean XHTML, and making the site work on your client’s
machine.

But okay, let’s make this demo work in IE. Changes to the code have been boldfaced in the following
example. All we are doing is inserting one image for IE (a JPG), and then replacing that image for
Firefox, Opera, and Safari. As always, we’re using the child-combinator selector to do this.

.box {
position: relative;

}

div#photo img {
left: -5000px;
position: absolute;

}

body div#photo-lucas {
background: transparent url(lucas-ie.png) no-repeat top left;
border: 2px solid #e1d4c0;
height: 113px;
left: 175px;
position: absolute;
width: 156px;

}

html > body div#photo-lucas {
background: transparent url(lucas-rollover.png) no-repeat top left;
border: none;
height: 124px;
left: 185px;
position: absolute;
width: 160px;

}

div.box:hover div#photo-lucas {
background-position: top right;

}

156

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 156



Figure 3-92 shows the new, IE-only image.

Figure 3-92: The lucas-ie.jpg file at 156 × 113px

And how does that all look in IE? Figure 3-93 shows how the complete package looks.

Figure 3-93: The finished product

Not bad.

157

Blogger: Rollovers and Design Improvements

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 157



Summary
This chapter began by discussing two methods of inserting rounded corners into boxes, complete with a
glimpse at the power behind the :before and :after pseudo-elements. We briefly examined a way to
further blur the rigid box structure that underlies all our sites, through the use of implied boxes. We also
looked at (and bent) an interesting rule and discussed the pitfalls of using the content of an element as
hooks to style the element itself.

We then highlighted the benefits of sensible and well thought-out design. We showed how, with the
manipulation of a simple CSS class, blogger.com’s site maintainers are able to select one of three layouts
for a page — hiding, showing, and repositioning content with no fuss, and not a hint of nonsense.

We looked at rollovers that manipulate text color and background color, and we looked at rollovers that
manipulate the position of background images. We’ve seen that Internet Explorer lets us down with its
incomplete support of :hover, and we’ve also seen that IE for the PC and IE for the Mac behave in dif-
ferent ways.

This chapter should provide you with an understanding of the underlying principles of the techniques
discussed, and not leave you blindly copying code examples. If you find that you can’t put these ideas to
work on your client’s site, at least you can play with them, and try to duplicate your work using these
techniques. You’ll be amazed at how simple it can be, and you’ll also be amazed at how easy it is to 
cut-and-paste one set of code to get it working.

In the next chapter, we’ll take a look at the inner workings of a successful event-driven site: The PGA
Championship.

158

Chapter 3

05_588338 ch03.qxd  6/22/05  11:22 AM  Page 158



The PGA Championship

The PGA Championship is one of the world’s premier sporting events. Presented in the late sum-
mer each year by the PGA of America, the tournament is the final major event of the golf season,
features the best players in professional golf, and is followed by millions of fans around the world.

Turner Sports Interactive, a division of Time Warner, was responsible for the site development and
editorial content during the event. The technological goal was to create a dynamic, rich, standards-
compliant site using CSS for all layout and presentation, easily digestible XHTML markup, and
Flash for special features. The creative goal was for a Web presence that was visually unique,
sophisticated, and most of all, without any of the typical golf design clichés. A palette of desatu-
rated, warm neutral tones was chosen, plus white and black to emphasize original photography
and place as much attention on the textual content as possible.

Soon after its launch in July 2004, the PGA Championship site received overwhelmingly positive
feedback from both golf fans and the Web-development community for its unique presentation,
adherence to Web standards, and overall design. Traffic exploded on the first day of competition,
as the PGA.com editorial team delivered a steady stream of news, scores, and multimedia content
to millions of users per hour. Thanks to the lightweight CSS/XHTML markup, there was plenty of
bandwidth to spread around.

This chapter provides detailed walkthroughs of some of the techniques used for a few of the site’s
original features. Included in this discussion are general CSS/XHTML tips and tricks, as well as
real-world caveats to watch out for in your own projects. The topics discussed in this chapter
include the following:

❑ How to create the layered, drop-shadow effect using CSS and Photoshop

❑ A powerful, ultra-light method for adding CSS-powered drop-down menus

❑ Embedding Flash content without breaking standards compliance

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 159



Drop-Shadow Effect
One of the more eye-catching features of the PGA Championship site was the nearly three-dimensional
(3D), layered separation of content. The effect was subtle, but if you look closely at the home page
(www.pga2004.com/) shown in Figure 4-1, the left column appears to hover above its surrounding con-
tent. This wasn’t just a cool visual trick, but served an editorial purpose. The left column contained the
most up-to-date Championship news and features. By giving the area a subtle (but noticeable) sense of
visual lift, end-users could quickly discern where the freshest Championship content was published.

The left column couldn’t simply be “higher” than its neighbors, but needed to partially obscure content
so that the space appeared to realistically float above the page. This was the idea behind the “Top Story”
header at the top of the left column. Because it appeared to be connected to the left column, and pro-
vided the right edge for the beginning of a drop shadow running down the page, it seemed to be part of
the XHTML and to be sitting on top of the Flash movie. But the illusion was just that.

Figure 4-1: The PGA Championship home page

160

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 160



The total effect may look complex and bandwidth-intensive, but it was actually very light in byte size
and code, and fairly straightforward to create with a little advance planning. This section examines the
effect by using Photoshop, Flash, CSS, and XHTML, and offers an extra tip for pushing the effect to an
even greater height.

Creating the Illusion
Before we begin with the nuts and bolts, let’s back up for a moment and revisit the goal — to visually
meld the Flash movie at the top of the page with the content below, and create the appearance that the
left column is on a higher layer than its surrounding content by running a drop shadow down the length
of the document. It’s tricky because if the shadow in either the Flash movie or the XHTML were 1 pixel
off, the effect would have been ruined. But, thanks to the preciseness of both CSS and XHTML, it was
possible.

Flash movies, like any embedded content, are always square. It’s impossible for a Flash object to have an
irregular shape. To “break the bounding box” and create the illusion of layers, part of the left column’s
design was placed inside the bottom of the Flash movie and positioned (to the pixel) so that, when the
Flash and XHTML content were placed next to each other, they snapped together to complete the illusion.

To start, a new document was created in Photoshop, and filled with the same hex color used by both the
Flash movie and the right column running down the right side of the page. A new layer (named “bar”)
was created, a space the same width as the left column was selected (using the Rectangular Marquee
tool), and then filled the area with the color of choice. A Drop Shadow layer effect was applied to “bar,”
and the shadow options were set to produce a look that wasn’t too pronounced or heavy, but enough so
that it provided a subtle sense of separation.

When completed, the document looked like Figure 4-2.

Figure 4-2: Original Photoshop document magnified 200 percent for a closer look 
at the shadow

Once the shadow looked about right, the visibility of the “background” layer was turned off and the
Rectangular Marquee Tool was used to select the shadow itself (see Figure 4-3). The shadow was copied
to the clipboard (Edit ➪ Copy Merged), a new Photoshop document with a transparent background was
created, and the shadow was pasted inside. The graphic was saved as a PNG file and placed in the Flash
movie (where a vector shape the same width and height of the “bar” from the Photoshop document
already existed).

161

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 161



Figure 4-3: Shadow area selected using the Rectangular Marquee tool

You may be wondering why the graphic was saved as a PNG instead of the more commonplace GIF or
JPEG file types. This is because PNG is the preferred format to use when importing bitmaps into Flash.
Why? Because the PNG file format offers alpha channels with 256 levels of transparency. This enables
you to export highly detailed images from your favorite bitmap editor (Photoshop, Fireworks, and so
on), import them into Flash, and publish movies that retain their transparent data while simultaneously
applying lossy JPEG compression. It’s literally the best of both worlds — the visual quality of the PNG
file format with the small file size of a JPEG.

With the Flash movie done, next up was replicating the shadow using CSS/XHTML. Because the
shadow would run all the way down the length of the page, and the browser had to automatically
repeat the shadow effect for as long as there was content, a “replicable” section of the graphic was
needed. This required a graphic that could be vertically tiled (one after another after another) without
gaps, seams, or anomalies. So, as shown in Figure 4-4, an area 1 pixel high was selected, making sure to
include some of the background color for a smooth blend.

Figure 4-4: Using the Rectangular Marquee tool, a repeatable area 1 
pixel high including the shadow and a little of the background was 
selected and copied to the clipboard.

Once copied, a new document was created (which Photoshop automatically set to the exact width and
height of the clipboard) and the selection was pasted inside, as shown in Figure 4-5.

162

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 162



Figure 4-5: The clipboard area 
pasted into a new document and 
magnified for detail

That took care of the shadow itself, but the lighter gray background that ran under the left column had
to be addressed. To do this, the canvas size of the graphic was increased to the pixel width required and
with the shadow aligned to the right. And as shown in Figure 4-6, the transparent area was filled with
the left column’s hex color, and the whole graphic was saved as a GIF file.

Figure 4-6: Final background image containing the left column’s background 
color and drop shadow

Let’s back up a moment and discuss image file formats again. Why was GIF used here, but not PNG as
discussed earlier? The culprit is Internet Explorer, and its infamously poor support of PNG. Nearly eight
years ago, Microsoft touted in a white paper that version 4.0 of their browser would “provide native
support” for PNG, unlike “other browser manufactures [who] include PNG support as a third-party
option.” Well, 4.0 didn’t fulfill their claim, and eight years later they’ve yet to fully support it in their
browser. Sadly, it’ll be years before Web developers will be able to tap into the incredible power of PNG
in their designs — if, of course, Microsoft ever follows through.

So, for now, GIF was the way to go for both cross-browser acceptance and the lossless compression the
non-photographic content required.

Now, let’s look at the CSS magic. In the style sheet, a “container” was created with a div— an invisible
block that would provide an outer framework for positioning groups of content (which, in this case,
were the left and right columns). As the content inside either column grew vertically, the outer container
would expand accordingly. This is precisely why the background image was applied to the container
and not to the columns — the image would be repeated regardless of the interior content’s length. To set
this up in CSS, the following was created in the style sheet:

#colwrap {
width:740px;
background:#96968C

url(http://i.pga.com/pga/images/pgachampionship/img/bg_home_content.gif) repeat-y;
}

163

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 163



A specific pixel width was set with div, followed by the background attribute (which is where all the
action took place. We use a hex value that is the same as the background of the Flash movie and the right
column, a url to the desired image, plus an instruction to the browser to repeat the image vertically
(repeat-y) for the complete length of the div.

Without repeat-y, the browser (by default) would have not only tiled the graphic vertically, but hori-
zontally as well. This would have caused the left edge of the graphic to appear again after the right edge
of the shadow. This obviously wouldn’t have worked with the design so repeat-y was used to tile the
image in only one direction (down). If your design required a horizontally tiled graphic, you could use
repeat-x.

Because CSS allows you to apply both a hex color and an image to a single element, you can (with a little
planning) shave a few bytes from your file size by using CSS to draw areas of consistent color (known as
“spot” colors in the print world). This is the reason why the container’s background image was cropped
at the edge of the drop shadow. The remainder of the background (the dark gray area the shadow bled
into) was drawn by the browser using the stipulated color value. While this method was not required
(all of it could have been included in the background GIF file), a few bytes were saved by doing so. As
we all know, every little bit helps.

When completed, the div appeared as shown in Figure 4-7.

Figure 4-7: The container div with background graphic applied and viewed in a 
Web browser. Extra notation has been added to illustrate which area is an 
image and which area is drawn by the browser.

With the div background completed, the Flash movie was placed above the container div, and the two
pieces snapped together perfectly, as shown in Figure 4-8.

Figure 4-8: Flash movie placed above container div from Figure 4-7

164

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 164



Before moving on, here’s a tip to consider. Ensure that your design is nailed down ahead of time, prefer-
ably on a grid with elements snapped to the pixel. An effect like this requires you to know the exact
placement of content beforehand. If you get ahead of yourself and try to apply effects such as these
while layout considerations are still taking place, you’ll have to retrace your steps more than once. Think
of effects such as these as a “sweetening” stage of your design workflow. A little patience and planning
will save you many headaches and a significant amount of time down the road.

Extra Realism
This is a good spot to include a bonus tip that can add extra visual definition and realism to the drop-
shadow effect built thus far.

In reality (yes, that place outside your monitor), the opacity of a shadow changes according to appear-
ance of the surface it falls across. If the surface were white, the drop shadow would appear in gradations
of light gray. If the surface were dark, the shadow would appear even darker. This all may be rather
obvious, but in the flat world of computer screens, it isn’t so straightforward.

So, with the PGA Championship site, the concept was pushed further by manipulating the drop shadow’s
appearance whenever it came in contact with areas of a different background color. Most of the content in
the right column had a transparent background and thus used the existing color underneath, but the news
links were a unique problem (refer to Figure 4-1). Without some sense of visual separation, it was hard for
users to tell them apart. So, the background of every other news item was darkened (like alternating row
colors in a table), followed by manipulating the drop shadow wherever applicable.

To do this, the original Photoshop document used to create the drop shadow was re-opened and the
background color was changed to a slightly darker value (#828279) that would harmonize well with the
overall layout. An area 1 pixel high in the middle of the shadow was selected (as was done earlier for the
main area shadow) and copied into a new document. And, as shown in Figure 4-9, the finished graphic
looked just like the first one, but a little darker.

Figure 4-9: Shadow sitting on top of a slightly darker 
background and selected with the Rectangular 
Marquee tool

For the XHTML, an unordered-list was created to mark up the content. Semantically, list elements are
perfect for wrapping grocery-list bits of data (and navigation, as we’ll see a little later in this chapter).
When paired with a style sheet, they provide all kinds of presentational opportunities.

165

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 165



So, in the right column of the XHTML template, an unordered list of news items was created, like so:

<ul class=”stories”>
<li>DiMarco and Riley play their way into Ryder Cup</li>
<li>’No question’ PGA will return to Whistling Straits</li>
<li>Sullivan lowest club professional at PGA since 1969</li>
<li>PGA of America adjusts Sunday yardages at Whistling Straits</li>

</ul>

The class assigned to the unordered list element, stories, was then added to the style sheet:

ul.stories {
margin:0;
padding:0;
color:#E9E9DF;

}

First, stories was assigned as a subclass of the unordered-list element. The default properties Web
browsers would automatically apply to the unordered-list elements were then reset. This was accom-
plished by setting both the margin and the padding to zero. A color property was then added, which
affected all text inside the list.

Technically, you could leave out the “ul” and create a standalone class named “stories.” But assigning
classes directly to HTML elements is not just good form, but makes your style sheets much easier to
read. Think of elements as inline comments that describe their function at a glance, so whether you’re
returning to a style sheet months later to make an edit, or your style sheet is shared among multiple
developers, it’s easy to see which classes belong to which elements. A little organization can pay off big
time down the road.

After taking care of the unordered-list object, it was time to tackle each of the list elements inside:

ul.stories li {
list-style:none;
margin-bottom:2px;
padding:4px 4px 4px 10px;

}

Let’s walk through this line by line. First, the list-style property was set to none, which killed the
browser’s default behavior of attaching a rounded bullet to the list item. From there, a smidgen of
margin was added to push the list items a little further apart vertically, plus padding (4 pixels to the
top, right, and bottom, as well as 10 pixels to the left).

By default, each list item generated inside the stories unordered list received these values. At this
stage, they all had the same background (using the color underneath), but here’s where the extra effect
came into play:

ul.stories li.odd {
background:#828279

url(http://i.pga.com/pga/images/pgachampionship/img/bg_stories_shadow.gif) repeat-
y;
}

166

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 166



Through the beauty of inheritance, this odd class came pre-loaded with all the attributes assigned
previously, leaving only what was necessary to produce the change — the background. The darker
background color’s hex value was applied, then the url for the shadow graphic, and the browser was
instructed to repeat the background vertically, but not horizontally.

The unordered-list code was added to the XHTML, and the odd class was applied (manually, although
this could also be done programmatically with JavaScript, PHP, and so on) to every other list item: 

<ul class=”stories”>
<li class=”odd”>DiMarco and Riley play their way into Ryder Cup</li>
<li>’No question’ PGA will return to Whistling Straits</li>
<li class=”odd”>Sullivan lowest club professional at PGA since 1969</li>
<li>PGA of America adjusts Sunday yardages at Whistling Straits</li>

</ul>

All together, the unordered-list appeared to be part of the right column and underneath the main content
area’s drop shadow, but actually sat above the background created earlier (see Figure 4-10). The trick was
to position the right column (which contained the unordered-list) directly up against the right edge of
the left column. This created the illusion that the list item’s darker background color was a part of the
existing drop shadow on the page, when actually it was layered on top of it.

Figure 4-10: List items with darker shadow background placed in the XHTML 
container div

Here’s the CSS for the left and right columns:

#lcol {
width:468px;
float:left;

}
#rcol {

width:271px;
float:right;

}

The basic XHTML necessary to create the effect is as follows:

167

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 167



<div id=”colwrap”>
<div id=”lcol”>

<!--Left column content -->
</div>
<div id=”rcol”>

<ul class=”stories”>
<li class=”odd”>DiMarco and Riley play their way into Ryder Cup</li>
<li>’No question’ PGA will return to Whistling Straits</li>
<li class=”odd”>Sullivan lowest club professional at PGA since 1969</li>
<li>PGA of America adjusts Sunday yardages at Whistling Straits</li>

</ul>
</div>

</div>

And with that, our extra drop-shadow effect was complete.

If you take one idea away from this exercise, remember this. By leveraging the Web browser’s ability to
automatically repeat background images and also apply color to the same element, there are countless
creative opportunities to add visual depth and richness to an otherwise flat, static layout with barely any
effect on overall document weight. All it takes is a little patience, planning, and experimentation.

CSS Drop-Down Menus
In the dot-com gold rush of the late 1990s, the hallmark of a sophisticated, cutting-edge site was often
signaled by the inclusion of fancy drop-down navigational menus. They may have been pleasing to the
eye, but behind their glitzy façade was often a hornet’s nest of JavaScript, bloated HTML, or even worse,
proprietary browser API methods. For all a site’s intent on making the user experience more fluid and
straightforward, early drop-down solutions more often than not added additional levels of frustration
(especially when they failed to operate) and unnecessary bloat.

Then along came CSS and the magical :hover attribute. Gurus like Eric Meyer published tutorials on
how to tap into the capabilities of an anchor tag’s :hover attribute, which when used with regular ol’
unordered lists, could create drop-down menus similar in appearance yet a fraction of the weight and
complexity of conventional methods.

But for all the promise of pure CSS menus, there was one huge problem: Internet Explorer for Windows.
By far the most popular browser accessing the Web, the browser had limited support for the :hover
attribute (and CSS in general, but that’s another story), and thus couldn’t render the drop-downs. As a
result, CSS menus were relegated to a hobbyist tool at best.

But that started to change in November 2003, when Patrick Griffiths and Dan Webb set the CSS community
on fire with Suckerfish Dropdowns (www.alistapart.com/articles/dropdowns), a lightweight, CSS-
powered, drop-down system that worked in nearly every browser available, including Internet Explorer
for Windows. Suckerfish was not just a revelation in file weight, but in cross-browser compatibility, com-
pliance to Web standards, semantic richness, and accessibility.

Suckerfish drop-down menus were also incredibly easy to build. If you knew how to create an unordered
list in XHTML, you were halfway home. All of the presentation and functionality was controlled with a
small set of style properties.

168

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 168



A few months after the initial release of Suckerfish, Griffiths and Webb upped the ante with Son of
Suckerfish Dropdowns, an even lighter version of the original with greater compatibility and multiple
drop-down menus to boot. It was the “Son” flavor of Suckerfish that the PGA Championship site used,
but this discussion won’t delve into the basic structure (which you can download examples of for free at
www.htmldog.com/articles/suckerfish/drop-downs/). We will discuss the customizations made,
potential caveats, and a few general usage tips.

Customization: Positioning the Drop-Down Menus
The first issue encountered when modifying Suckerfish for the PGA Championship site’s navigation
involved positioning of the drop-down menus. By default, the nested drop-down menus appeared
directly below their parent list item, depending on the height of the graphic or text contained therein. In
the case of the PGA Championship site, the parent graphics were cut shorter than the surrounding area
(to conserve file weight). So, instead of appearing below the white navigational bar (as they do in the
final form of the site), the drop-down menus were popping out below the graphical links.

The graphical links could have been edited with extra white space on the bottom to “push” the drop-down
menus where desired, but that would have increased the file size of each graphic and created a “hot” link
space where no content was present. The challenge, then, was to find a way to push the drop-down menus
below the white navigation bar without adversely affecting or changing the existing content.

The first step was simple. Each nested unordered list (the drop-down menus) was already using absolute
positioning, so a top property was added to push them down where they needed to be:

#nav li ul {
position:absolute;
left:-999em;
top:20px;

}

This successfully moved each drop-down menu 20 pixels below its parent list item and thus below the
white navigational bar. But a new problem emerged. The area between the main links and the drop-down
menus (the same blank area  that shouldn’t have been clickable) was now disengaging the rollover when
the pointer moved downward. So, the next step was to find a way to maintain the visibility of the drop-
down menus whenever the mouse pointer entered this vacant area.

By default, a list element is only as tall as the content it contains. But we can change that behavior
with CSS:

#nav li {
position:relative;
float:left;
margin:0 15px 0 0;
padding:0;
width:auto;
height:20px;

} 

The important part here was the height property. By specifying a custom height and thus overriding the
aforementioned default behavior, the invisible bounding box of each list element expanded downward to

169

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 169



fill the gap. The list items now behaved as if they contained graphics 20 pixels tall, but were actually
much shorter. But the browser couldn’t tell the difference, and thus, the drop-down menus operated
as expected.

To see how the list items and graphical elements were affected, take a look at Figure 4-11. Using Chris
Pederick’s free Web Developer extension (www.chrispederick.com/work/firefox/Webdeveloper/)
for Firefox, the invisible bounding boxes of the list elements and images were turned visible by adding a
temporary black stroke. This offered a visual confirmation of the style sheet modifications, and to see-
what-the-browser-was-seeing in real time. The extension came in handy many times during develop-
ment of the PGA Championship site, and it is recommended to anyone involved with Web development
and design.

Figure 4-11: The PGA Championship viewed in Firefox and with all list elements 
and images outlined using the Web Developer extension

Customization: Styling the Drop-Down Menus
Now that the drop-down menus were functioning properly and appearing in the proper place, it was
time to tweak the appearance of the menu options.

To start, nested unordered lists were given a background color of white, and assigned a uniform width
(based on the longest menu item title) to all the drop-down menus:

#nav li ul {
margin:0;
padding:0;
position:absolute;
left:-999em;
top:20px; 
background:#fff;
width:146px;

}

170

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 170



As shown in Figure 4-12, it was easy to see the problem. The left edge of each drop-down menu was
aligned with the left edge of its parent list item, and there wasn’t enough visual separation between
each option.

Figure 4-12: Misaligned drop-down shadow with visually bland options

So, some additional edits were made to the nested list items:

#nav li li {
height:auto;
margin:0;
padding:0;
width:100%;
font-size:9px;
border-bottom:1px solid #F5F5F0;

}

By setting the width of each nested list item to 100 percent, their boxes expanded to the width of their
parent element — which, in this case, was 146px. Had the default width of the list items not been modi-
fied, the browser would have drawn a bottom border for only as long as the text contained inside. By
setting the list item to a width of 100 percent, the menu options had a uniform appearance, regardless of
how much text was contained in each item.

Next, the textual content was addressed:

#nav li li span {
display:block;
margin:0;
padding:3px 4px 3px 7px;
position:relative;

}

To better control the positioning of each block of text within its respective list items, each option was
wrapped with a span tag because span avoided another subclass with a unique name and semantically
made more sense than a div, paragraph tag, or what-have-you. So, the display properties of span were
changed to a block element (which by default it was not). This allowed block attributes such as margin
and padding. After the padding was successfully tweaked, the menus appeared, as shown in Figure 4-13.

171

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 171



Figure 4-13: Drop-down options styled, but misaligned with left margin of the main
navigation links

The drop-down menus looked complete but with one remaining issue. The textual menu options were
no longer aligned with the left edge of their respective parent list items. Although they didn’t have to be
changed, it was decided they would look better with a slight adjustment to the left. Fortunately, this was
as easy as forcing each unordered list to the left, like so:

#nav li ul {
margin:0 0 0 -8px;
padding:0;
position:absolute;
left:-999em;
top:20px; 
background:#fff;
width:146px;

}

Thank goodness for negative values! By changing the left margin from zero to -8 (the order of margin
values was top, right, bottom, left), each nested unordered list shifted 8 pixels to the left (as opposed to
the right if the number were positive). This brought the left edge of each textual option perfectly in line
with its parent list item, as shown in Figure 4-14.

Caveats to Consider
Now that we’ve discussed ways to modify the original source, let’s consider some potential issues to
watch out for when using Suckerfish drop-down menus:

❑ Caveat #1: Suckerfish requires JavaScript in IE/Windows. Chalk this up as another example of
Internet Explorer’s lackluster support of CSS. Suckerfish is activated purely by CSS in Mozilla,
Firefox, and Safari, but in order for it to work in Internet Explorer for Windows (IE/Windows),
a little bit of JavaScript must be included in any document using the drop-down menus. The
“hack” is quite small, and simply oversteps IE’s lack of support for the :hover pseudo-link ele-
ment by attaching custom behaviors to the Document Object Model (DOM). But here’s the rub.
If your IE/Windows users have JavaScript turned off, your drop-down menus won’t appear.
Very few people actually turn this off, but it’s a reality you should be aware of.

172

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 172



Figure 4-14: The completed drop shadow with options fully styled and properly 
aligned

❑ Caveat #2: IE/Mac doesn’t like it one bit. Many people have tried to work around the lack of
Suckerfish support in Internet Explorer for the Macintosh (all versions, in OS X and older), but
as of this writing, it remained a lost cause. The failure is thankfully silent (the menus simply
don’t appear), and they shouldn’t interfere with your main navigation. Microsoft has ended
development of the Mac version of the browser, so don’t expect this situation to change. To look
on the bright side, thanks to Safari, Firefox, and other popular OS X browsers, you can expect to
see less and less traffic from Internet Explorer for the Macintosh.

❑ Caveat #3: Early builds of Safari don’t like it either. Safari, the Mac OS X Web browser based
on the KHTML layout engine from Konqueror and bundled into the operating system, has its
own share of Suckerfish issues. Builds of Safari earlier than 1.2 (which was released in February
2004) won’t display your drop-down menus either. Safari 1.2, on the other hand, does display
Suckerfish drop-downs just fine. That is, unless . . .

❑ Caveat #4: Safari, Suckerfish, and Flash don’t get along at all. If you embed Flash content in
your document below the Suckerfish drop-down menus, your menus will “flicker” on and off
when engaged in every build of Safari, with version 2.0 being the latest release as of this writing. 

Usage Tips
Now that we have the browser support issues out of the way, the following are some real-world usabil-
ity tips when implementing CSS drop-downs in your own work:

❑ Tip #1: Provide backup. Because of the cross-browser issues detailed earlier, it is imperative
that your site layout include a secondary level of navigation should your drop-down menus fail
to operate. Otherwise, your visitors won’t be able to navigate your site. This should be standard
procedure for any type of drop-down navigation — Suckerfish or otherwise.

❑ Tip #2: Be careful with Internet Explorer, Suckerfish, and Flash. When Internet Explorer for
Windows encounters Flash content (whether it’s an advertisement or a movie created by you),
the browser will push it to the very top of the z-index layer stack. What does that mean? It

173

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 173



means your menus could potentially appear underneath your Flash content; obscuring the
ability to click on any of the covered options. The solution is to include a wmode tag in Flash’s
object/embed code. (Details can be found at www.macromedia.com/support/flash/ts/
documents/flash_top_layer.htm.)

❑ Tip #3: Include a z-index property if your document has layers. If your layout has layered
objects using a z-index property, your Suckerfish navigation must have one as well, but on a
higher level than everything else. The z-index can be added to either your navigation’s parent
unordered list element, or (in the case of the PGA Championship site) you can wrap your navi-
gation with a container div, and apply the z-index to that element. Doing so will raise your
navigation above the rest of the fray, so the menus drop down and over anything they may come
in contact with.

The Bottom Line
So, after all that, you may be wondering why Suckerfish is recommended. The answer is simple. Despite
the issues noted here, Suckerfish remains the most accessible, cross-browser–friendly drop-down menu
solution out there. It’s also far, far lighter in bytes than anything else, and much easier to update and
maintain. If you implement the menus on a highly trafficked site (the PGA Championship site, for
example, was hit millions of times per hour), then having a light drop-down menu solution is optimal.

Web Standards–Compliant Flash Embedding
One of the common problems Web developers face when creating standards-compliant XHTML markup
is embedding Flash content. Most developers simply copy and paste the standard set of object/embed
tags Flash creates when publishing a movie. However, because they come loaded with all kinds of
invalid attributes and elements, they wreak havoc on a document’s conformance to Web standards.

Fortunately, there are workarounds. Here are the three most popular methods used today to embed
standards-compliant Flash content.

The Flash Satay Method
The Flash Satay method (www.alistapart.com/articles/flashsatay/) removes the embed tag (a
proprietary element not found in any W3C specification) and removes some “unnecessary” proprietary
attributes in the object tag. It works great, but with one huge caveat: Flash movies in Internet Explorer
for Windows won’t start until they are 100 percent loaded.

The Satay method does offer a workaround, which includes fooling Internet Explorer for Windows by
embedding an empty “container” movie set to the same parameters (width, height, and so on) as the
“real” movie, and using the container clip to load the actual content. Internet Explorer will then success-
fully stream the movie, and the markup will validate, but at a cost to any developer’s sanity — each and
every embedded movie requires an accompanying empty container movie, thus creating a lot of extra
directory trash and headaches.

174

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 174



Write the object/embed Tags Using JavaScript
In this scenario, the object/embed elements remain as they are, but are moved to an external JavaScript
file. Flash content is then written into the document using a series of document.write JavaScript methods.
Validators (the W3C has an excellent one at http://validator.w3.org/) see only the valid JavaScript
element — not Flash’s object/embed code contained inside — so the object/embed tags pass with
flying colors.

This was the workaround used for the PGA Championship site. The XHTML not only remained valid,
but because JavaScript was used, offered an opportunity to perform some light browser or plug-in
detection should alternate (non-Flash) content be required.

Once the external JavaScript file was created (too long to reproduce here — load www.pga.com/
pgachampionship/2004/js/flash_home.js in your Web browser to see the source), it was linked
in the XHTML document like so:

<script type=”text/javascript”
src=”http://www.pga.com/pgachampionship/2004/js/flash_home.js”></script>

This method is not without issues. First of all, Web standards purists will argue that the JavaScript file is
essentially a Trojan horse that slips invalid, unsupported markup into XHTML and past the eyes of val-
idators (which is exactly the point). Second, by relying on JavaScript to write our content, we are assum-
ing that users have it enabled in their browsers (most everyone does, but some disable it for extra speed
and avoidance of ads). Finally, each and every Flash movie requires its own external .JS file (not a big
deal with a handful of movies, but things could quickly get out of control).

FlashObject
Released a few months after the 2004 PGA Championship site, FlashObject is the most sophisticated and
robust embedding method currently available. Created by Geoff Stearns, the JavaScript package is a
direct response to the limitations of both of the aforementioned methods, while providing simpler
markup that validates as XHTML 1.0 Transitional and up.

FlashObject offers everything a Flash developer would need — player detection, ability to offer alternate
content to those without the plug-in, methods to pass additional parameters and variables through
FlashVars, div targeting for embedding an swf in a specific area, and even a variable to bypass player
detection and force the display of a Flash movie, whether the user has the plug-in or not.

FlashObject is also search engine–friendly, which you rarely see with Flash content. Users simply create
a div in their document and fill it with normal HTML textual content, which can then be indexed by
search engines and displayed for visitors without the Flash plug-in. If a visitor has the Flash plug-in, the
div’s content is replaced with the Flash movie. This enables both the haves and the have-nots to easily
receive rich content, without a lot of work for the Web developer.

For more information about FlashObject (which is free to download and use), see http://blog
.deconcept.com/2004/10/14/web-standards-compliant-javascript-flash-detect-
and-embed/.

175

The PGA Championship

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 175



Summary
We covered a lot in this chapter, from creating visual effects in Photoshop to positioning elements with
CSS to working around common Flash validation issues in XHTML. The techniques used here should
inspire further exploration and experimentation when using CSS in your own work.

Next up is a look at the redesign of The University of Florida’s Web site, including the history of the site,
the challenges in updating legacy content, and a walkthrough of the CSS markup used.

176

Chapter 4

06_588338 ch04.qxd  6/22/05  11:23 AM  Page 176



The University of Florida

The University of Florida (UF) is among the world’s most academically diverse public universities
with fields of study across 16 colleges. UF, which traces its roots to the East Florida Seminary in
1853, has a long history of established programs in international education, research, and service,
with extension offices in all 67 Florida counties.

UF’s student body, with just shy of 50,000 students, is one of the five largest among U.S. universi-
ties. UF has more than 4,000 distinguished faculty members with nearly 100 Fulbright scholars,
more than 50 eminent scholars, and numerous other faculty members who are nationally and
internationally recognized in their fields.

The University of Florida’s Web presence has somewhat mirrored the trends you would see
when looking at the Web as a whole. Shifts in the foci of Web developers (and the developers of
the browsers in which they are viewed) can be seen by microcosm through the UF Web site. In
this chapter, we’ll explore some of the decisions UF made with regard to its Web presence and
take a look at the techniques used to carry them out. Let’s get started.

University of Florida’s Web Site
UF posted a home page in 1995 that was typical of sites of the time. Well-built pages were
generally structural in nature and light on aesthetics. The 1995 page, in fact, was rather
utilitarian with links to much of the same information one would find on the current UF site
(see Figure 5-1).

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 177



Figure 5-1: The University of Florida home page launched in 1995

Here’s a bit of the markup from the first UF site:

<H2><IMG alt=** src=”images/placeholder.gif” align=bottom width=”32” height=”32”>
About the University of Florida</H2>
<UL><IMG alt=* src=”images/ball.gif” width=”14” height=”14”>
<B><A href=”#”>UF Facts</A></B> will help orient you to Gator Country<BR>
<IMG alt=* src=”images/ball.gif” width=”14” height=”14”>
<B><A href=”#”>Pictures of UF</A></B> will show you our beautiful campus<BR>
<IMG alt=* src=”images/ball.gif” width=”14” height=”14”>
<B><A href=”#”>Maps</A></B> will help you find your way around UF<BR>
</UL>
<HR>

As you might notice, a number of semantic elements are well identified. Headings were given the proper
weight and unordered lists were marked as such. Glaringly omitted are the list item elements. Instead of
the li element, the creators used images and br tags to start and end list items. This was done, presum-
ably, to style the lists.

Revisions
The subsequent revisions of the university’s site trended toward using a role-based navigational system
consisting primarily of five major groups (see Figure 5-2):

178

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 178



❑ Prospective Students

❑ Current Students

❑ Campus Visitors

❑ Faculty & Staff

❑ Alumni, Parents & Friends

Figure 5-2: A revision to the University of Florida home page launched in 
1999

Within each of these groups, the visitor would find all the information the university thought each of the
different types of visitor would need. Inside “Prospective Students” would be admissions information,
directions on taking a campus tour, facts about the university, and so on. Each group would have similar
role-targeted information. The tendency to shift to role-based navigation as a primary means of naviga-
tion was seen across both university Web sites and the Web at large.

This new graphics-heavy design did not come without a price. While UF received more positive than
negative feedback in response to the aesthetics of the 1999 design, there were a number of complaints
centered on the time needed to load the site. In this design, the visitor’s browser had to make more than
30 HTTP requests to the UF servers for various pieces of the page: HTML, images, JavaScript, and so on.
Each request lengthened the total time needed to load the site.

The more semantic markup found in the first design was lost in these revisions. The unordered lists and
header elements in the first design were scrapped for multiple image maps, JavaScript rollovers, and
tables.

179

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 179



The Current Site
With the expansion in usage of standards-compliant browsers, UF decided to attack these problems and
others with a new design (see Figure 5-3). To redesign the site, UF needed the following:

❑ An assessment of the university’s major audiences and development of user profiles (discussed
in Chapter 1) to include Web technology usage and accessibility needs

❑ Structuring of the information within the site

❑ In-depth user testing

❑ Reviews of peer Web sites

Figure 5-3: Revision of the site launched in 2004

The current site was launched in February 2004 and receives approximately 100,000 visits per day. The
remainder of this chapter provides you with a look into how this new site was developed.

Defining the Site
When identifying success for a university site, issues such as the financial bottom line and clicks-through
to a shopping cart take a backseat to broader issues such as visitor satisfaction and perception. This
makes identifying the goals of the site’s fairly simple: talk to the site’s visitors, watch them use it, and
give them what they want.

180

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 180



Building the Team
Many members of the UF community have multiple roles. With visitors looking for so many different
types of content coming through a single site, it was imperative to have the design driven by not only
the site’s visitors, but also the members of UF’s staff and faculty that deal directly with those visitors.
Early on, a team representing 20 of these areas from around campus developed a nested list of the types
of visitors to the UF site. For example, a main type of visitor would be “student.” Within “student”
would be “undergraduate,” “graduate,” “international,” and so on. Then further nesting: “prospective
graduate,” “transfer undergraduate,” and so on. The team then identified tasks that each type of visitor
would perform.

User Research
As with most organizations, people at UF often find themselves wearing many different hats. A staff
member might also take courses and attend athletic events, while a graduate student may teach courses
and be an undergraduate alumnus. This manifested itself in user research where visitors to the previous
UF site would have to guess which group they fell within to find the information they were looking for.

Visitors would also choose different groups based on their desired membership, not necessarily their
current role. For example, many potential UF students (namely, those in high school) would choose the
Current Students link from the UF home page instead of Prospective Students. When asked, the visitors
gave responses that fell into three general categories:

❑ I am currently a student at my high school.

❑ What does “prospective” mean?

❑ I wanted to see what real UF students are doing, not some brochure. (This type of response was
the most prevalent — and the one we found the most interesting — among those potential stu-
dents who chose something other than Prospective Students.)

It became clear quite quickly that the way the university classifies people, while valid and useful to the
university, is not necessarily the way visitors classify themselves. This also suggests that role-based navi-
gation should not be relied upon as the primary means of navigating the site.

UF needed to marry this look at its visitors with the current trends in university Web sites.

Peer Review
An important part of defining the site was looking at how sites throughout academia define themselves.
While many university sites primarily use a role-based navigational system, we knew through our user
research that this wouldn’t be ideal for UF. That being said, we could use other universities’ sites to
ensure we were staying within the lingua franca of academia. The phrases universities use to define dif-
ferent pieces of content, if agreed upon, can serve as the basis for a primary navigation.

We understood from the beginning that the final structure of the UF site would be unique. However,
looking at macroscopic trends like these pulled out the phrases that are common to most. To look into
this, UF surveyed more than a thousand university Web sites looking for commonly used terms. Idioms

181

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 181



such as “About (University/College X),” “Academics,” “Admissions,” and “Alumni” quickly rose to the
top. These matched up well with the user research (namely, card sorting) and were adopted as main
phrases within the navigation.

Card sorting is a fairly low-tech (but very useful) method of enlisting a site’s visitors when creating an
information architecture. Essentially, test participants are asked to group index cards that contain short
descriptions of pieces of content and tasks from the site, and then name these new stacks. More on this
methodology can be found in Mike Kuniavsky’s book Observing the User Experience: A Practitioner’s
Guide to User Research (Morgan Kaufmann, 2003).

Many sites fell prey to frequent use of acronyms and other proprietary phrases. While this is unpre-
ventable in some cases, it should be avoided and certainly done sparingly. We also noted that acronyms
were very rarely defined.

Technical Specs
The increased download times created by the myriad images of the previous design was something UF
wanted to tackle without returning to the vanilla site launched in 1995. Also, the university wanted a
return to (and improvement upon) the semantics found in the initial design. If by and large, the visitors’
environment supported a shift to a strictly standards-compliant design, this would be UF’s path.

Web Standards
Early on, the decision was made to strive for a site where content and aesthetics were separated. This
could be implemented only if UF knew the following:

❑ How many visitors would be adversely affected by taking a standards-based approach?

❑ How quickly are these visitors moving away from non-compliant browsers?

UF felt comfortable proceeding with standards-compliant markup and semantic use of XHTML elements
because of the following:

❑ The steady movement of Netscape users to Netscape 7 and, ultimately, Mozilla or Firefox. (We’ll
explore this in greater detail later.)

❑ Generally speaking, users of non-compliant browsers access the Web through a slower connec-
tion. The decrease in load time (from 50K and 30 HTTP requests to 30K and, more important,
only 3 HTTP requests for users of non-compliant browsers) heavily outweighs any simplifica-
tion of aesthetics. This is especially true for these visitors who are regularly subjected to pages
that react very poorly to ancient browsers.

❑ The addition of an enterprise resource management system that rejects ancient browsers to han-
dle the university’s financials forces users to move to modern browsers. (About 40 percent of UF
home page traffic comes internally from students, faculty, and staff using the university’s
statewide network.)

❑ By using style sheets, users of non-compliant browsers that do not support the @import rule
would receive a document with the browser’s very simple default styling.

182

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 182



Ancient Browsers
Of the ancient browsers, the most popular and the one causing the most concern was Netscape 4. In June
2003, Netscape 4 had a 2.6 percent share of site traffic (approximately 2,000 visitors using Netscape 4 per
day) and it would be difficult to explain a page being “broken” to that large of an audience. After tracking
Netscape 4’s usage over a number of months, it became apparent that its usage was steadily declining
at a rate of about 20 percent per month. This trend led to a much more acceptable level — 1 percent in
December 2003 (see Figure 5-4).

Figure 5-4: Netscape 4 usage per 
month in the second half of 2003

As you might guess, this movement has continued. Netscape 4 users comprised less than 0.15 percent of
UF’s site visitors at the end of 2004.

Accessibility
UF was very concerned with creating a site that was accessible to all members of the UF community
through whichever medium they choose to use. This includes those who must use alternative Web
browsing technologies due to hearing, visual, or mobility impairment. A standards-based approach
served as a way to advance accessibility as part of the entire development process, not simply an add-on
before launching a site — or even worse, realizing a site isn’t accessible and creating a “text only” version.

More information on assistive technologies such as screen readers, Braille displays, and talking browsers
can be found in the book Building Accessible Websites by Joe Clark (New Riders Press, 2002).

Creating a Main Navigational Structure
The University of Florida has more than a million pages on the Web covering topics from aerospace
engineering to zoology. Its site navigation must both (at a glance) convey the diversity of research and
teaching activity at the university and allow intuitive access to all its resources.

An inherent drawback to rollovers as navigational tools is the concealing of the underlying architecture.
The visitor can’t scan the page’s content in its entirety. The visitor must guess what items are hidden
beneath each branch of the structure, and then act on that guess to see if that section of navigation con-
tains what is sought.

183

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 183



Although rollovers allow a site’s visitor to see the site structure one branch at a time, an entire architec-
tural overview that requires no guessing on the part of the visitor can be much more useful when a site’s
navigation is not completely visceral. The six major sections that give an overview of the university are
much better served by openly displaying some of their contents near the section headers (see Figure 5-5).

Figure 5-5: The University of Florida’s 
primary navigation

The XHTML
On the UF home page, the primary navigation is not merely a means of getting from one page to
another. It is some of the most important content of the page and the markup used in the navigation
should reinforce that importance.

Unordered Lists
Grouping similar sets of information (as is done when lists are used) allows for the following:

❑ Styling through CSS

❑ Semantic grouping of similar objects

❑ Easier traversal through groups of content, especially in screen readers

Nested Unordered Lists
At first glance, the UF primary navigation might seem best handled as nested, unordered lists. There is
an unordered list of main topics, with each topic having a set of links that apply to them (see Figure 5-6).
This would look something like the following:

184

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 184



<ul id=”priNav”>
<li><a href=”/aboutUF/”>About UF</a>
<ul>

<li><a href=”/aboutUF/administration.html”>Administration</a>,</li>
<li><a href=”http://campusmap.ufl.edu/”>Maps</a>,</li>
<li><a href=”http://virtualtour.ufl.edu/”>Tours</a>,</li>
<li><a href=”/facts/”>Facts</a>,</li>

.

.

.
</ul>
</li>
<li><a href=”/academics/”>Academics</a>
<ul>

<li><a href=”/colleges/”>Colleges</a>,</li>
<li><a href=”http://www.reg.ufl.edu/soc/”>Courses</a>,</li>
<li><a href=”http://www.uflib.ufl.edu/”>Libraries</a>,</li>
<li><a href=”http://www.isis.ufl.edu/”>ISIS</a>,</li>

...
</ul>
</li>
...

</ul>

Figure 5-6: Unstyled, nested 
unordered lists

Although certainly valid, the list items inside the navigation acting as headers (“About UF,”
“Academics,” and so on) are not separately defined with heading elements, weakening the document’s
semantic strength. When treated as list items, major areas of the site are understated.

Weighting for Semantics
To give the main headings the proper meaning within the page and site as a whole, the navigation is
placed inside a div and represented as a series of headers followed by unordered lists (see Figure 5-7):

<div id=”priNav”> 
<h2><a href=”/aboutUF/”>About UF</a></h2>
<ul>

<li><a href=”/aboutUF/administration.html”>Administration</a>,</li>
<li><a href=”http://campusmap.ufl.edu/”>Maps</a>,</li>

185

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 185



<li><a href=”http://virtualtour.ufl.edu/”>Tours</a>,</li>
<li><a href=”/facts/”>Facts</a>,</li>

...
</ul>
<h2><a href=”/academics/”>Academics</a></h2>
<ul>

<li><a href=”/colleges/”>Colleges</a>,</li>
<li><a href=”http://www.reg.ufl.edu/soc/”>Courses</a>,</li>
<li><a href=”http://www.uflib.ufl.edu/”>Libraries</a>,</li>
<li><a href=”http://www.isis.ufl.edu/”><acronym title=”Integrated Student

Information System”>ISIS</acronym></a>,</li>
...

</ul>
...

</div>

Figure 5-7: Unstyled, unordered lists 
with topical headers

The headers here assign meaning to both the current page and the entire site. This benefits users of
screen readers such as Jaws and IBM’s Home Page Reader, allowing rudimentary navigation from
header to header. As an added bonus, many search engines give more weight to text inside headings.

Because the initial letters of Integrated Student Information System (UF’s Web-based system to register
for classes and pay tuition, which is seen inside the list item for Academics) form a pronounceable word,
ISIS is considered an acronym. (ISIS is pronounced “eye-sis.”) If the initial letters formed a word called an
initialism where each letter is pronounced (as in HTML), the word would be considered an abbreviation
and the abbr tag used. The acronym and abbr elements allow contextual expansion of the text presented
to the visitor. This should be done to describe the first occurrence of any acronyms or abbreviations in a
document. This assists screen reader users by reading out the meaning of the abbreviations and
acronyms. It also explains what would be esoteric phrases to search engines such as Google.

Every instance of an acronym can be annotated, but such annotation is not really needed and can
quickly become cumbersome.

The CSS
Following is the CSS:

186

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 186



* {
padding: 0;
margin: 0;

}

ul { list-style: none; }
li {
font-size: 11px;
color: #444;

}
h2 {

font-weight: normal;
font-size: 21px;

}

a { text-decoration: none; }
a:link, a:visited { color: #0021a5; }
a:hover, a:active { color: #ff4a00; }

acronym {
border: 0;
font-style: normal;

}

#priNav {
width: 248px;
float: left;
padding: 6px 2px 0 0;
margin: 0 2px;

}

#priNav h2 {
padding: 7px 0 0 20px;
letter-spacing: 1px;
line-height: 22px;
background: url(images/pointer.gif) no-repeat 9px 14px;

}

#priNav ul {
padding: 0 0 7px 20px;
height: 26px;
border-bottom: 1px solid #eee;

}

#priNav li {
display: inline;
line-height: 13px;
padding-right: 4px;
float: left;

}

The Images
UF uses two images to display its primary navigation: navDropShadow.jpg (see Figure 5-8) and
pointer.gif (see Figure 5-9). The first is borrowed from the main container.

187

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 187



Figure 5-8: navDropShadow.jpg

Figure 5-9: pointer.gif

The background.gif image in the body element can be seen on the sides of Figure 5-3.

Brick by Brick
To start, we’ll use the universal selector to set the default margin and padding to zero (0) for all elements:

* {
padding: 0;
margin: 0;

}

Next, remove the default bullets from all unordered lists and shine up the h2 and li elements:

ul { list-style: none; }
li { font-size: 11px; }
h2 {

font-weight: normal;
font-size: 21px;

}

UF’s official colors are orange and blue, so we’ll turn all links UF blue and set the hover and active states
to UF orange:

a:link, a:visited { color: #0021a5; }
a:hover, a:active { color: #ff4a00; }

The UF home page is very link-heavy (ufl.edu has more than a million pages) and having every word
on the page underlined could be a bit messy so we’ll lose the underline on all links:

a { text-decoration: none; }
a:link, a:visited { color: #0021a5; }
a:hover, a:active { color: #ff4a00; }

188

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 188



Several acronym elements are used on the site. Keeping the default border-bottom that some user agents
apply would be distracting and draw the eye to the links that have acronyms. We don’t want that so let’s
remove the underlining effect from acronym, too:

acronym { border: 0; }

Building the Box
The primary navigation has a fixed width, so we’ll set that first:

#priNav {
width: 248px;

}

We used a left float to ensure that the navigation would appear on the left, and the rest of the content to
the right: 

#priNav {
width: 248px;
float: left;

}

The content container uses a padding of 2 pixels on the left and right that should be matched here by
adding a similar margin to the right side of the primary navigation. We’ll use margin instead of
padding to keep the writable area of the box 2 pixels from the edge of the main container and 2 pixels
from the main content area:

#priNav {
width: 248px;
float: left;
margin-right: 2px;

}

To give the header’s drop-shadow gradient some room and keep the text from running to the right edge
of the section dividers, we’ll add padding to the top and right of the navigation:

#priNav {
width: 248px;
float: left;
padding: 6px 2px 0 0;
margin-right: 2px;

}

That’ll do it for the primary navigation’s container. Let’s move on to style the section elements.

Styling the Section Headers
Each h2 in the primary navigation covers one of the six major areas of UF’s site. We’ve already set the
font properties for the h2 element globally, but here, we’ll let it breathe a little by adding positive
letter-spacing:

#priNav h2 {
letter-spacing: 1px;

}

189

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 189



The bounds are well set for the width of the section header by the primary navigation container so we
don’t need to set it explicitly here. That being said, the h2 element must be given some padding from
the top and left edge of the section dividers:

#priNav h2 {
padding: 7px 0 0 20px;
letter-spacing: 1px;
}

The background-image, background-repeat, and background-position properties can be combined
in the background property. We do it, in this case, to put a bullet (pointer.gif) in front of each h2. The
upper-left corner of the bullet is placed 9 pixels to the right of and 14 pixels below the upper-left corner
of the padding area we just set. The background-color and background-attachment properties can
also be combined in the background property, but they are not needed here.

#priNav h2 {
padding: 7px 0 0 20px;
letter-spacing: 1px;
background: url(images/pointer.gif) no-repeat 9px 14px;

}

To ensure that descenders (the portion of a letterform that drops below the baseline in letters such as p
and y) don’t affect the lines below them, we’ll define the line-height:

#priNav h2 {
padding: 7px 0 0 20px;
letter-spacing: 1px;
line-height: 22px;
background: url(images/pointer.gif) no-repeat 9px 14px;

}

Styling the Lists
To style the unordered lists below each heading, we’ll start by adding the vertical complement of the
padding set for the h2 elements to the ul. (The h2 element is a block element by default.)

#priNav ul {
padding: 0 0 7px 20px;

}

Next, to place the li elements one after the next inside the ul block, we’ll override the li elements’
default block state to display it inline:

#priNav li {
display: inline;

}

To set the height of the list, we’ll add the height property to the ul elements and line-height to the
li elements:

#priNav ul {
padding: 0 0 7px 20px;

190

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 190



height: 26px;
}

#priNav li {
display: inline;
line-height: 13px;

}

Now, we’ll add the border that separates each section:

#priNav ul {
padding: 0 0 7px 20px;
height: 26px;
border-bottom: 1px solid #eee;

}

#priNav li {
display: inline;
line-height: 13px;

}

That was fairly straightforward, wasn’t it? We kept the semantics of the primary navigation intact and
styled the headers and subsequent lists to match the desired design.

Now that we’ve tackled the primary navigation, let’s look at another type of unordered list: the supple-
mentary navigation.

Making the Supplementary Navigation
A supplementary navigation does exactly what it sounds like it would do. It supplements the primary
navigation. The supplementary navigation we will discuss here consists of two parts: the utility naviga-
tion and the role-based navigation (see Figure 5-10).

Figure 5-10: UF’s supplementary 
navigation

The XHTML
Because the supplementary navigation is made of two distinct parts, we’ll define each separately. The
structures that house both of them are quite similar. Let’s look at the utility navigation first.

191

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 191



Utility Navigation
Utility navigation is simply a set of links to frequently used tools. At UF, this includes a map of the cam-
pus, calendar of events, campus directory, ufl.edu e-mail access, and so on. In the past, groups of dis-
parate utilities have often been handled using pipes or images to separate items. This neither adds
meaning to the items used for separation nor allows for the function afforded by the browser.

The best method of applying a sensible grouping to these types of utilities is through (you guessed it) an
unordered list. The list we’ll create looks like this:

<ul id=”utilNav”>
<li><a href=”http://calendar.ufl.edu/”>Calendar</a></li>
<li><a href=”/websites/”>Web Site Listing</a></li>
<li><a href=”http://phonebook.ufl.edu/”>Directory</a></li>
<li><a href=”http://campusmap.ufl.edu/”>Campus Map</a></li>

...
</ul>

Each utility gets its own list item inside a containing ul with the id of utilNav. That’s the first part of
the supplementary navigation; let’s handle the second part.

Role-Based Navigation
Previously in this chapter, we discussed the movement away from role-based navigation as a primary
means of navigation in the design. That being said, UF did not want to completely remove that as a
means of grouping information.

We’ll keep the role-based navigation, but downplay its importance by moving it down the page in the
XHTML and placing it in a box in the bottom-right corner of the design:

<ul id=”roleNav”>
<li><a href=”/students/”>Students</a></li>
<li><a href=”/facstaff/”>Faculty &amp; Staff</a></li>
<li><a href=”/friends/”>Alumni, Donors &amp; Friends</a></li>
<li><a href=”/visitors/”>Parents, Patients &amp; Visitors</a></li>

</ul>

Similar to the utility navigation, each role is a list item inside an unordered list called roleNav.

Wrapping the Two Together
Now that we’ve created the utility and role-based navigation, we can group them together as supple-
mentary navigation. We’ll simply wrap it all in a div called suppNav.

<div id=”suppNav”> 
<ul id=”utilNav”>

<li><a href=”http://calendar.ufl.edu/”>Calendar</a></li>
<li><a href=”/websites/”>Web Site Listing</a></li>
<li><a href=”http://phonebook.ufl.edu/”>Directory</a></li>

<li><a href=”http://campusmap.ufl.edu/”>Campus Map</a></li>
...

</ul>
<ul id=”roleNav”>

192

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 192



<li><a href=”/students/”>Students</a></li>
<li><a href=”/facstaff/”>Faculty &amp; Staff</a></li>
<li><a href=”/friends/”>Alumni, Donors &amp; Friends</a></li>
<li><a href=”/visitors/”>Parents, Patients &amp; Visitors</a></li>

</ul>
</div>

This works, but the two navigational groups lack definition. We must give headers that describe what is
inside each list to both the utility and role-based navigation.

<div id=”suppNav”> 
<h2>Frequently Used Sites</h2>

<ul id=”utilNav”>
<li><a href=”http://calendar.ufl.edu/”>Calendar</a></li>
<li><a href=”/websites/”>Web Site Listing</a></li>
<li><a href=”http://phonebook.ufl.edu/”>Directory</a></li>

<li><a href=”http://campusmap.ufl.edu/”>Campus Map</a></li>
...

</ul>
<h2>Information For:</h2>

<ul id=”roleNav”>
<li><a href=”/students/”>Students</a></li>
<li><a href=”/facstaff/”>Faculty &amp; Staff</a></li>
<li><a href=”/friends/”>Alumni, Donors &amp; Friends</a></li>
<li><a href=”/visitors/”>Parents, Patients &amp; Visitors</a></li>

</ul>
</div>

Now that we have a well-structured pair of lists to work with, let’s polish them up.

The CSS
We have three distinct items with which to work: the utility navigation, role-based navigation, and the
supplementary navigation container. The container should be dealt with first.

Styling the Supplementary Navigation
The first thing we’ll want to do is place a limit on the width of the supplementary navigation container,
suppNav:

#suppNav {
width: 200px;

}

The entire supplementary navigation must be moved outside the normal flow, and off to the right side of
the page. To do that, we’ll place the container absolutely:

#suppNav {
width: 200px;
position: absolute;
top: 195px;
right: 2px;

}

193

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 193



For more on positioning and document flow, read the section “CSS Positioning: The Fundamentals” in
Chapter 7.

We added headers to each of the two navigational groups, but we’re about to start styling each of those
groups. This styling should be enough to separate the lists from the information around them, so let’s
hide the headers inside the supplementary navigation:

#suppNav h2 { display: none; }

Because this style is inside the style sheet brought in through @import, the headers will still be dis-
played in their proper formatting not only in search engines, but in ancient browsers as well.

This styled supplementary navigation div gives us a good container in which to place our utility and
role-based navigation.

Styling the Utilities
Here we want the list of utilities to flow and fill up the width of the container. We’ll start by setting the
li element to display inline as we did with the lists inside the primary navigation:

#utilNav li {
display: inline;

}

Next, we must build the box inside of which each of the utilities will reside. Because we have an exact
width and height we would like to specify for each box, we’ll set both. To take advantage of the default
center vertical alignment inside the box, let’s use the line-height attribute to set the height.

#utilNav li {
width: 99px;
line-height: 21px;
display: inline;

}

The container is 200 pixels wide and allows us to give the list items some space. The 1-pixel margin
added to the left should be matched by a 1-pixel margin on the bottom:

#utilNav li {
width: 99px;
line-height: 21px;
margin: 0 0 1px 1px;
display: inline;

}

Now that we have list items sized and spaced, we should handle the links inside them. To have the a ele-
ment handle the rollover properly, the default display type must be overridden by rendering it as a
block. The size of the box that holds the link should match the size of the box created by the list item, so
we’ll size the a element accordingly:

194

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 194



#utilNav li a {
width: 99px;
height: 21px;
display: block;

}

We want to give the text inside a little padding to the left, but also want to avoid the hassles caused by
differences in box model interpretations. We can do this by indenting the text in lieu of padding it:

#utilNav li a {
text-indent: 3px;
width: 99px;
height: 21px;
display: block;

}

An introduction to the box model is given in Chapter 2.

To shine up the links, we’ll add some color and an image. Placing the image in the lower right of each
link bevels the corner at 45 degrees:

#utilNav li a {
text-indent: 3px;
width: 99px;
height: 21px;
color: #fff;
display: block;
background: #94a2d9 url(images/chamfer.gif) no-repeat right bottom;

}

Adding a splash of feedback to the links is as simple as setting the hover state. Here we’ll make them
change color slightly by changing the background-color but leaving the chamfer image intact.

#utilNav li a:hover { background-color: #566cc3; }

That Tricky Box Model
Using list items in this way can cause problems in Internet Explorer 5 for Mac and Windows. We were
able to avoid most of the problems by indenting the text inside the links instead of padding them. That
fixes the rendering in all of the browsers except IE5. When text is indented inside list items, IE5 creates a
de facto margin outside the box equal to the size of the indentation, thus making the effective size of the
box wider and throwing off the proper wrapping inside the container.

A quirk in these browsers can fix the problem as easily as it was created. To trick IE5 for Mac and
Windows into gobbling up this extra girth it creates, simply float everything left:

#utilNav li {
width: 99px;
line-height: 21px;
margin: 0 0 1px 1px;
display: inline;
float: left;

}

195

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 195



#utilNav li a {
text-indent: 3px;
width: 99px;
height: 21px;
color: #fff;
display: block;
background: #94a2d9 url(images/chamfer.gif) no-repeat right bottom;
float: left;

}
#utilNav li a:hover { background-color: #566cc3; }

By the way, notice that we didn’t need to style the #utilNav ul element at all in making our design work.
To style our next navigational item, we will make use of the ul element.

Styling the Roles
The role-based navigation has a few similarities to the utility navigation we just styled, but quite a few
differences. Here, we want to give the effect of text inside a containing box, not individual buttons for
each list item. In this case, we’ll handle some of the manipulation inside the unordered list element.

The method we used in the utility navigation to get around the extra width caused by text indentation in
Internet Explorer 5 for Mac and Windows has its repercussions here. Because the utility list items were
floated left, the point at which the browser renders the current element never moved. We’ll get around
this by clearing any elements that are floated to the left:

ul#roleNav {
clear: left;

}

The ul element should stretch to fit the width of its container, so there is no need to set a width. The
height will be handled naturally, as well. To make the left-hand side of the role-based navigation line up
with the left-hand side of the individual list item boxes we created earlier, we’ll add a 1-pixel left margin:

ul#roleNav {
clear: left;
margin-left: 1px;

}

The chamfer.gif image we used to bevel the corner of the utility list items can be reused here to bevel
the corner of the role list container:

ul#roleNav {
background : #dbe0f2 url(images/chamfer.gif) no-repeat right bottom;
clear: left;
margin-left: 1px;

}

The list box needs some room to stretch top and bottom, so let’s add 6 pixels:

ul#roleNav {
padding: 6px 0;
background : #dbe0f2 url(images/chamfer.gif) no-repeat right bottom;

196

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 196



clear: left;
margin-left: 1px;

}

We want to create some spacing between the list items and vertically center each of the items. To do so,
we’ll set the line-height:

ul#roleNav li {
line-height: 22px;

}

To remove extra spacing created by IE5 below each of the list items, we’ll fool it into gobbling the space
up by setting display to inline:

ul#roleNav li {
line-height: 22px;
display: inline;

}

As with the links inside the utility list, we should set the height of the links inside the list items. The
display property should also be overridden here to block. Like the list items and the unordered list
they are in, this will stretch to fit the width of the container.

ul#roleNav li a {
height: 22px;
display: block;

}

To move the text off the left side of the box, add a padding-left large enough to give the bullets we
will add some breathing room:

ul#roleNav li a {
padding-left: 16px;
height: 22px;
display: block;

}

As we did in the primary navigation, we’ll place a bullet inside the left padding using a background image
8 pixels from the left edge and centered vertically. (When the second parameter of the background-
position property is omitted, it defaults to center.) Let’s set the color and size of the font, too:

ul#roleNav li a {
padding-left: 16px;
font-size: 12px;
height: 22px;
display: block;
color: #596ec4;
background: #dbe0f2 url(images/pointer_small.gif) no-repeat 8px;

}
ul#roleNav li a:hover { color: #0021a5; }

197

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 197



The Final Outcome
So, here you have it: a complete look at the style behind the supplementary navigation.

#suppNav {
width: 200px;
position: absolute;
top: 195px;
right: 2px;

}
#suppNav h2 { display: none; }
#utilNav li {

width: 99px;
line-height: 21px;
margin: 0 0 1px 1px;
display: inline;
float: left;

}
#utilNav li a {

text-indent: 3px;
width: 99px;
height: 21px;
color: #fff;
display: block;
float: left; /* For IE5 */
background: #94a2d9 url(images/whiteCornerNik.gif) no-repeat right bottom;

}
#utilNav li a:hover { background-color: #566cc3; }
ul#roleNav {

padding: 6px 0;
background : #dbe0f2 url(images/whiteCornerNik.gif) no-repeat right bottom;
clear: left;
margin-left: 1px;

}
ul#roleNav li {

line-height: 22px;
display: inline;

}
ul#roleNav li a {

padding-left: 16px;
font-size: 12px;
height: 22px;
display: block;
color: #596ec4;
background: #dbe0f2 url(images/pointer_small.gif) no-repeat 8px;

}
ul#roleNav li a:hover { color: #0021a5; }

That’s it. That’s the list.

198

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 198



Flash Embedding Revisited
UF wanted to display a rotating series of three spotlights on faculty and decided Flash (instead of Java
or JavaScript image rotators) was the way to do it, as shown in Figure 5-11.

Using Flash also meant that it couldn’t be a deal-breaker. In other words, if the visitor doesn’t have Flash
installed, the site still must function properly. To be appropriate for this site’s audience, Flash must be an
augmentation of the site’s content — not a barrier to those without Flash.

The previous chapter discussed methods of properly including Flash into your designs. Let’s look at one
of these in some more detail: Flash Satay (www.alistapart.com/articles/flashsatay/).

Flash Satay
As discussed in Chapter 4, the Flash Satay method of including Flash in Web sites addresses the embed
element used by older browsers and the proprietary attributes commonly used inside the object element.

Figure 5-11: Examples of the Flash spotlights used on the UF site

199

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 199



To better understand what we’re trying to do here, let’s take a look at what a typical piece of markup
would look like to include Flash on a page:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash
/swflash.cab#version=6,0,0,0” width=”516” height=”194” id=”movie”>

<param name=”movie” value=”spotlights.swf”>
<embed src=”spotlights.swf” width=”516” height=”194”

name=”movie” type=”application/x-shockwave-flash”
plug inspage=”http://www.macromedia.com/go/getflashplayer”>

</object>

The Flash Satay method takes a big chunk out of this and leaves off with some rather clean markup:

<object type=”application/x-shockwave-flash” data=”loader.swf” width=”516”
height=”194”>
<param name=”movie” value=”loader.swf” />
</object>

This new loader movie (a small file of around 4K) simply loads the larger movie with all the content (see
Figure 5-12). This gets around an issue in IE for Windows where the movie loaded in the object parame-
ter won’t stream, causing the visitor to have to wait until the entire Flash movie has loaded before it
starts.

Figure 5-12: Flash Satay uses a loader movie in addition to the 
main Flash content.

If the visitor does not have Flash installed, we want to put alternate content in its place. The object
module has a very useful method of allowing us to do that by simply adding the alternate content after
the first parameter. In this case, we’ll place an image of a campus landmark, as shown in Figure 5-13.

<object type=”application/x-shockwave-flash” data=”loader.swf” width=”516”
height=”194”>
<param name=”movie” value=”loader.swf” />
<img src=”images/tower.jpg” alt=”Century Tower Photo” width=”516” height=”194” />
</object>

200

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 200



Figure 5-13: Elements passed after the movie 
parameter are used as alternate content.

Elsewhere on the page in the primary navigation, there is a link to the same XHTML-based spotlights
that the Flash-based spotlight movie links to. So, if a visitor does not have Flash installed or enabled, the
same content is still accessible.

This works well for all modern browsers, or so it would seem. An unfortunately widespread glitch
caused by a corrupt Flash Player Active X control when users of IE 5.5 upgraded from IE 5.01 causes a
text area to be rendered instead of the requested object (in this case, our Flash spotlights loader) in the
absence of the classid attribute. For IE to play nicely with our new, sleek, standards-compliant
markup, we will need to resort to a little trickery.

Flash Satay with Server-Side Detection
Flash Satay suggests using the object element without an embed attribute to allow standards-compliant
addition of Flash content to XHTML. UF took the Flash Satay method of Flash inclusion described earlier
and circumvented problems in IE 5.5 by making a minor revision: server-side browser detection.

Apache and the BrowserMatch Directive
To handle the classid attribute properly, we must pass it only to visitors using Internet Explorer for
Microsoft. We can discern what browser a visitor is using (for the most part) through the request it
makes to the server for a Web page. The server normally records some basic information about the
request: the name of the file, the time, whether the request was successful, the size of the file (and most
important for our needs here) the type of browser.

The method we will use here assumes the site is hosted on an Apache Web server. Approximately two-
thirds of all Web sites (including the UF site) are hosted using the Open Source Web server software
Apache. This method can be modified for usage by sites hosted on Microsoft’s IIS or other Web servers.

To begin, create or locate the .htaccess file in either the root directory of the site or in the directories
where the documents are that use Flash. The .htaccess file is a simple text file containing directives that
configure how a server handles documents and directories. If not done already, tell the server to parse

201

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 201



the type of document used. We are using (X)HTML documents, so we will do this by adding an
AddHandler directive for the suffix of our content to the site’s .htaccess file:

AddHandler server-parsed .html

If the content is already in a server parsed format, the AddHandler directive is not needed.

Now, we want to set an environment variable that will allow us to identify the content in our documents
(namely, the classid) we want to pass to Internet Explorer for Windows. Inside the .htaccess file,
add the following line:

BrowserMatch MSIE msie

This directs the server to set an environment variable called msie to true if the User-Agent is MSIE
(Internet Explorer for Windows).

Let’s take another look at the markup as it is now:

<object type=”application/x-shockwave-flash” data=”loader.swf” width=”516”
height=”194 classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”>
<param name=”movie” value=”loader.swf” />
<img src=”images/tower.jpg” alt=”Century Tower” width=”516” height=”194” />
</object>

Because we now have a variable that lets us know when the visitor is using IE for Windows, we can
selectively add the classid back in by checking for the msie variable. The code to tell the server to do
so looks like this:

<object type=”application/x-shockwave-flash” data=”loader.swf” width=”516”
height=”194” <!--#if expr=”${msie}”-->
classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
<!--#endif --> >
<param name=”movie” value=”loader.swf” />
<img src=”images/tower.jpg” alt=”Century Tower” width=”516” height=”194” />
</object>

For more information on how to use the BrowserMatch directive, it is explained in more detail in the
Apache documentation describing the mod_setenvif module at http://httpd.apache.org/
docs/mod/mod_setenvif.html.

Drawbacks and Barriers to Flash Satay with Server-Side Detection
As is mentioned in Chapter 4, if a site has a sizeable number of Flash movies, then the creation of con-
tainer movies for each one can become cumbersome. The UF site uses a small number of Flash movies
(well, just one), so we’re okay here.

For the method described here, the site’s server must be configured to allow directives and the content
creator must have access to create those permissions. This is the case at UF.

The directive must parse through each page served, placing an additional (though nominal) load on
the server. This wasn’t an issue for UF because it already parses every page to allow for server-side
includes (SSIs).

202

Chapter 5

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 202



Missteps
After going through a 7-month process to redesign its site, UF found some things it would do differently.

Leading Only by Example
When UF released the new site, colleges and departments around campus were clamoring to incorporate
the techniques and manner of design used on the home page. To stay on schedule, the site was launched
without the completion of a definitive style guide and set of templates to be distributed across campus.

A set of templates has since been developed, but the delay stymied campus Web development. The time
to manage a shift in how UF develops Web sites was when its most visible section was going through
that change.

“Force of Habit” or “Who Moved My Input Field?”
With any redesign, especially on a site with a large number of repeat visitors, managing change becomes
critical to acceptance. There are often users (especially staff members) whose site usage is something
like this:

“I go to the home page and click ‘Link X’, scroll down and click ‘Link Y’, type what I need into ‘Box Z,’
and click ‘Go’.”

While a well-tested redesign should certainly create a more usable site for any new visitor, repetitive
users of the site (like the one quoted here) will likely react violently to an interrupt in their Pavlovian
conditioning.

Mismanagement and lack of attention to the transition of these repeat visitors can lead to a great deal of
angst and wasted resources.

While the site was shared with the test audiences, a protracted public beta might have alleviated some of
the growing pains that came along with the redesign.

Summary
The evolution of the University of Florida Web site has provided a look into some of the challenges that
await changing Web sites, the decisions UF made to combat them, and the techniques that did the job.
We’ve looked at styling headers and unordered lists in different types of navigation and why they should
be used. We’ve also made some modifications to widely used Flash inclusion markup to allow for both
standards compliance and across-the-board application. We hope this will help you tackle your next big
project.

Now let’s take a look at the move to CSS in one of world’s most popular sports sites, ESPN.com.

203

The University of Florida

07_588338 ch05.qxd  6/22/05  11:24 AM  Page 203



07_588338 ch05.qxd  6/22/05  11:24 AM  Page 204



ESPN.com: Powerful
Layout Changes

If you’re an American, or a fan of American sports, then ESPN probably needs no introduction. If
you’re not familiar with ESPN then you need to know only five simple facts about the company to
understand how large it is:

❑ Its Web site, ESPN.com, serves between 1 and 1.3 billion pages a month (a figure roughly
equivalent to that of the BBC’s mass of Web sites).

❑ The site has approximately 15.3 million unique visitors a month.

❑ These visitors spend an average of 9 minutes a day on ESPN.com.

❑ ESPN.com is the largest and most popular sports Web site in the world.

❑ Disney owns 80 percent of ESPN.

That’s impressive stuff.

So, now that we’ve established that it’s not a Mickey Mouse outfit (well, only 80 percent Mickey
Mouse), you may be wondering why its site, ESPN.com, has made it into a book on CSS. Surely
sites that large don’t make the transition from controlled, table-based layouts to the more fluid,
and less predictable (so to speak) world of CSS, do they?

Do they?

ESPN and CSS Sitting in a Tree
Not only has ESPN.com made the leap from Tag Soup and Table Layouts to CSS, but it was one of
the first major commercial organizations to do so, flicking the switch back in May 2003. How did
they dare to do it? Well, the numbers just made sense. Careful analysis of traffic logs showed that

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 205



the month prior to launching its new design, around 97 percent of visitors arrived using some form of
compliant browser (IE 5+, Netscape 6+, Mozilla, Opera 6+, Safari, Chimera, and Konqueror), the remain-
ing 3 percent being either undetectable or noncompliant.

Combined with projected bandwidth savings of 730 terabytes (TB) a year, promises of lowered mainte-
nance costs, faster story turnarounds, and more adaptable page layouts, the team had enough evidence
to convince the suits at the top that their plan was a good one.

The new site would be cost-effective, attractive, maintainable, forward-thinking, and the first step in
embracing a Web standards–based future.

Interviewing the Designer
Mike Davidson is Senior Associate Art Director and Manager of Media Product Development at the Walt
Disney Internet Group, in Seattle. In 2003, as Associate Art Director of ESPN, he was a driving force
behind the ESPN.com redesign.

Q: First off, Mike, are you pleased with how things have turned out?

A: Absolutely. Running a site as big as ESPN is not a question of getting a redesign done and then
throwing it on autopilot. I would say that the majority of Web sites out there need very little
“rejigging” on a daily basis because usually only text and other simple data is changing. But
with ESPN, entire sections change on a weekly basis. And formats change several times a year.
New sponsorships can completely change the way a certain page grid is laid out. The list goes
on and on.

We work in an environment that must act swiftly to adapt to changes in our industry and every
“redesign” is just a big fresh start every two to three years. We measure how pleased we are
with any given redesign by how far forward it propels us past our competitors and past where
we were before. The 2003 redesign, now almost two years old, propelled us into the world of
Web standards awareness and browser agnosticism.

Everyone who works on the site now thinks in those terms. It’s no longer “make sure it works
in IE,” but rather “make sure it’s coded correctly.” With well over 100 people on staff contribut-
ing to the site, we knew we couldn’t get everything perfect, and likely never will, but as these
last couple of years have gone by, we’re getting it more and more right every day.

Q: Which bit of the design is the internal team most pleased with? And which part are the site’s visitors most
pleased with?

A: The most important achievement to us was simply changing the way we think about code. It’s
no longer acceptable for a newbie to come in, hack together a table, and throw it onto the site for
the sake of speed. We indeed do things sometimes for the sake of speed, but there is a certain
level of pride now in doing things right first, and fast second. That said, a news site will always
be driven by business objectives first (which include timeliness), but to the extent that technical
teams can produce great work without sacrificing that timeliness, we are well ahead of the game.

As far as visitor benefits go, the originality of layouts we provide has always been tops in the
industry, in my opinion. We have three major publishing modes for our front page, depending
on how big a certain news event is, and users appreciate the importance-based design we give
them. Why show users an 18-point plain black headline for a regular-season NBA game report
and the same treatment for when the Red Sox win their first World Series in a million years?

206

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 206



Importance-based design has been evident in newspapers for centuries, and through the magic
of CSS-P, it’s available on ESPN.com as well.

Q: How long had the idea for using standards-based design been in your mind before it got the green light?

A: About a year. We tend to plan our redesigns about a year out, so we got to thinking about this
around the middle of 2002. One major complicating factor was that ESPN.com had been run out of
Seattle (where I live) for its entire life, but the decision was made to relocate it to the ESPN head-
quarters in Bristol, Connecticut, in the middle of 2003. So we pretty much started the redesign in
Seattle and then ended it all the way across the country in Bristol. This included moving servers,
employees, code, production facilities, and just about everything else. I’m a West Coast guy, so I
elected to stay in Seattle and continue employment with ESPN’s parent company, Disney, but a
good bit of the staff ended up relocating. We still help out on a lot of ESPN-related projects from
the Seattle office, but it’s not a 100 percent time commitment anymore.

Q: How much internal marketing did you have to do to convince, first, your own team, and, second, your
bosses of the soundness of your plan?

A: There was no internal marketing within the team as everyone agreed that it was the right thing
to do, and honestly, there was very little convincing of the higher-ups necessary either. The tech-
nology teams are paid to know what’s best for the site from a technology standpoint. So, as long
as a move to standards-based design did not represent any extra costs or sacrifices in site features,
then ESPN brass had no reason not to fully support it.

In fact, this move actually reduced our costs by quite a bit and let us do more with the site, so it
really wasn’t a tough argument to make. Executives might not care what a div or a spacer gif
is, but they certainly do care about bandwidth bills and ad inventory.

Q: Did you start by converting a small, sub-site of ESPN.com? Or did you leap straight in at the deep end and
swap the high-profile front page over? And, regardless of your answer, can you explain your reasoning?

A: ESPN.com is so enormous that you could never redesign the whole thing in one fell swoop and
then just flip a switch when you were ready. Sure, everyone wants to do that, but it’s just not
possible, given the tens of thousands of templates involved.

We generally start with the front page, move on to the section index pages, and then do the
story pages. I suppose it doesn’t matter too much which order this is done in, but the speed at
which all pages can eventually be converted is important. We wanted to set an example with
our most trafficked page that all other pages could be molded after.

Q: Would you have done anything differently, looking back?

A: Well, I don’t have veto power over every bit of the design/production process, so, obviously,
not every decision made was mine, but I think we got most of the major things right. The one
thing I guess that disappoints me a bit is how crufty things can get with time. Every time a
major site redesigns (not just ours), code quality tends go down gradually until the next
redesign. This occurs for many reasons:

❑ New people working on the site.

❑ Changing business needs require modified layouts.

❑ Advertising and sponsorship deals require less rigidity in layouts and more flexibility
to put stuff wherever.

❑ Third-party tracking, survey, and ad code finds its way into the system.

❑ Documentation doesn’t stay current.

❑ New features need to be shoehorned in.
207

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 207



It’s an inescapable aspect of running a revenue-driven media site like ESPN, and we are just
thankful for the opportunity every two to three years to assess what has changed, what’s
needed for the future, and wipe the slate clean. With each wipe, things get exponentially better.

Q: Has this success given you the appetite and the political power to convert more of ESPN’s on-line proper-
ties to standards-based designs?

A: Absolutely. Our group has been intimately involved in the standards-based redesigns of
ABCNews.com, Disneyworld.com, Disneymeetings.com, Wideworldofsports.com, and other
Disney properties as well. ESPN is a technology leader within our company and where they
lead, other vertical markets tend to follow.

Q: And finally, do you envision your competitors’ sites making similar changes in the near future, or do you
think your site will remain unique within your industry for some time to come?

A: You know what? When Eric Meyer interviewed me right after the ESPN redesign almost two
years ago, I told him that I fully expected our competitors to be right behind us in the push
toward Web standards. Unfortunately, that hasn’t happened. I won’t name names, but if you
look at ESPN’s major competitors in the sports media space and ABCNews’s competitors in the
mainstream media space, not a single one that I know of has dropped table-based design yet.
Some of these companies have gone through two redesigns in the last two years, including as
recently as January 2005, and still the same coding standards exist. I am not placing blame on
any particular group since there are so many moving parts in most of these organizations, but it
certainly would be nice to see some more progress. Oh well. Web sites are the sole property of
their owners so those owners have the right to do with them as they please. Eventually, every-
one will come around. And in the meantime, we’ll just keep moving ahead.

Importance-Based Design
One of the nicest things about EPSN.com’s new design is that there exists a mechanism for its editors to
reformat the site in reaction to the importance of the news being presented. Mike Davidson refers to this
per-article formatting as “importance-based design.” To clarify the need for this, consider one of his
responses in the previous interview:

We have three major publishing modes for our front page, depending on how big a certain
news event is, and users appreciate the importance-based design we give them. Why show
users an 18-point plain black headline for a regular season NBA game report and the same
treatment for when the Red Sox win their first World Series in a million years? Importance-
based design has been evident in newspapers for centuries, and through the magic of CSS-P,
it’s available on ESPN.com as well.

As Davidson says, this sort of thing has been around in newspapers for a very long time. Following are
two examples from the sports section of The Daily Telegraph (Britain’s best-selling quality daily paper),
showing the difference in layout that a “Holy Cow!” story can elicit. Figure 6-1 shows a normal day in
the sports world, with no big story dominating the news. Figure 6-2 shows a cover from a special day,
when Ellen MacCarthur broke the circumnavigation world record. The difference in layout, and, there-
fore, the difference implied in the importance of the stories, is obvious.

Now, let’s compare the newspaper’s implementation of importance-based design to ESPN.com’s own
layout changes. The following section describes the three major publishing modes ESPN can call into
play at any time: Regular, Skirmish, and War.

208

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 208



Figure 6-1: An example of a newspaper cover in Regular mode

209

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 209



Figure 6-2: An example of a newspaper in War mode (Main photo copyright DPPI/
Offshore Challenges)

210

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 210



Regular
According to Davidson, “Regular mode gets published over 90 percent of the time and is for the most
part completely automated. The editors select a photo, write a headline for it, and hit publish. It’s a very
streamlined workflow. The Flash headline at the top automatically scales depending on how long of a
headline we write.”

Figure 6-3 shows an example.

Skirmish
“Skirmish mode occurs when there is a news item of great significance in the sports world,” Davidson
said. “In this case, we generally know what’s going to happen ahead of time (for example, Ichiro [a base-
ball player] breaking the all-time single-season hits record), so the photo-editing department spends a
bit of time putting a composition together in Photoshop. Once the event occurs, we publish the site in
Skirmish mode and through the magic of well-placed divs we take over the entire top story area with
the hand-produced piece. Generally, all text in a Skirmish layout is set in Photoshop.”

Figure 6-4 shows an example.

Figure 6-3: The front page of ESPN.com in Regular mode

211

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 211



Figure 6-4: The front page of ESPN.com in Skirmish mode

War
According to Davidson, “The last publishing mode is what’s known as War mode and it is reserved for
only the most important news events. The Red Sox winning the World Series, Dale Earnhardt dying, and
the Super Bowl preview are all examples of when we’d publish in War mode. In this mode, a hand-com-
posited Photoshop piece takes up almost the entire above-the-fold area of the screen, and browser text is
laid on top of the right side of the photo.”

Figure 6-5 shows an example.

“People seem to like both War and Skirmish modes quite a bit but we use them sparingly to preserve
their dramatic effect. Were ESPN designed with tables, features like War and Skirmish would not be pos-
sible without negatively affecting other parts of the layout, but since the entire layout is CSS-P, every-
thing slides around rather gracefully,” Davidson said.

Putting It All Together
So, we’ve learned that importance-based design has firm roots in traditional media, and we can see for
ourselves that ESPN has used CSS to port this approach to the Web, but how exactly are they doing it?

❑ Their method must be simple and quick to apply, for it must be understood and easily imple-
mented by non-technical staff.

212

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 212



❑ It must be future-proof and easily adaptable, for the site’s contents and structure may vary.

❑ It must be powerful, to transform a complex page so completely.

Figure 6-5: The front page of ESPN.com in War mode

213

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 213



That sounds like quite a challenge, but as you’ll see in the next section there’s actually a very simple
solution, and it’s a solution that you can start incorporating into your own sites right away.

Love Your <body>
You may have guessed from the clever title of this section that the key to ESPN’s secret is the body ele-
ment. By assigning a unique id to the body element, the staff at ESPN is able to use it as a starting point
to make sweeping style changes to a page. For example, to provide different headline sizes on Regular,
Skirmish, and War pages, they might use these rules:

body#regular h1 {font-size: 2em;}
body#skirmish h1 {font-size: 4em;}
body#war h1 {font-size: 8em;}

Once these rules were in place, it would be up to the editorial staff to decide which publishing mode
was applicable for that day’s headline. For example, let’s say someone new to the team decides to pub-
lish an article in Regular mode; here’s what the (simplified) HTML might look like:

<html>
<body id=”regular”>

<h1>No.1 Hit Wonder</h1>

<p>Ichiro records his 258th hit of the season, breaking George Sisler’s 84-year-old
record.</p>

</body>
</html>

Figure 6-6 shows what that might look like in the browser.

However, when the Editor-in-Chief reads the story he decides that someone breaking the all-time single-
season hits record is deserved of being published in Skirmish mode. So, what does he do? Simple: He
slaps the new guy upside the head and swaps the value of the body’s id attribute to skirmish. The out-
come? The new guy learned a thing or two about his boss, and the CSS rules shown earlier transform the
story’s headline, making it larger and visually more important:

<html>
<body id=”skirmish”>

<h1>No.1 Hit Wonder</h1>

<p>Ichiro records his 258th hit of the season, breaking George Sisler’s 84-year-old
record.</p>

</body>
</html>

Figure 6-7 shows what that might look like in the browser.

Easy as pie.

214

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 214



Figure 6-6: The story in Regular mode

Figure 6-7: The story in Skirmish mode

Now, as we’ve seen from the screen shots in Figures 6-3, 6-4, and 6-5, swapping between Regular,
Skirmish, and War modes on ESPN.com does much more than just change the size of the headline. It
restructures the whole top section of the site, moving navigation, submenus, and advertising panels to
less-prominent positions and focusing attention on the main story. Figure 6-8 shows a side-by-side com-
parison between Regular and War modes.

215

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 215



Figure 6-8: Comparing the various sections of ESPN.com in Regular and War modes

Given the amount of information ESPN.com has to cram into its pages, you might find it a little hard to
see exactly what’s going on, so let’s clear away all the clutter and try to emulate the layout changes by
creating a simple HTML page.

The HTML
Following is the section of HTML we’ll be using for our demonstration. The value for the body’s id has
been left blank, but we’ll be filling it in with regular, then skirmish, then war, for our three examples.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body id=””>

<div id=”container”>
<div id=”content”>

216

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 216



<h1>No.1 Hit Wonder</h1>

<p>Ichiro records his 258th hit of the season, breaking George Sisler’s
84-year-old record.</p>

</div>

<div id=”sidebar”>
<h2>Other News</h2>

<ul>
<li>Man hits ball.</li>
<li>Dog swims channel.</li>
<li>Woman climbs hill.</li>
</ul>

</div>

<div id=”footer”>
<p>Footer info</p>

</div>
</div>

</body>
</html>

The CSS
The CSS is split into four main sections. The first section sets the default values for the container div,
the content div, the sidebar div, and the footer div. The second section specifies rules that will be
applied only to a page whose body id equals regular. The third section specifies rules that will be
applied only to a page whose body id equals skirmish. And finally, the fourth section specifies rules
that will be applied only to a page whose body id equals war.

/*** defaults
**********************/
div#container {

border: 1px solid black;
width: 500px;

}

div#content {
background-color: green;

}

div#sidebar {
background-color: pink;

}

div#footer {
background-color: orange;
clear: both;
text-align: center;

}

217

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 217



/*** regular
**********************/
body#regular div#content {

float: left;
width: 250px;

}

body#regular div#sidebar {
float: right;
width: 200px;

}

body#regular h1 {
font-size: 2em;

}

/*** skirmish
**********************/
body#skirmish div#content {

float: left;
width: 300px;

}

body#skirmish div#sidebar {
float: right;
width: 150px;

}

body#skirmish h1 {
font-size: 4em;

}

/*** war
**********************/
body#war div#content {

float: left;
width: 480px;

}

body#war h1 {
font-size: 8em;

}

Now then, let’s see what happens when we alter the id of the body element in our demo page. First off,
Figure 6-9 shows the Regular layout (<body id=”regular”>).

There is nothing too dramatic there. The story and the “Other News” section are laid out side-by-side,
and the story, while drawing the eye, doesn’t really dominate the page. Now, what happens if we swap
over to the Skirmish layout (<body id=”skirmish”>), as shown in Figure 6-10?

218

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 218



Figure 6-9: The story in Regular mode

Okay, we see a subtle (but significant) change. The story, which our editors have decided is fairly impor-
tant, has grown in visual stature. It now takes up more width on the page, and the headline font size has
increased.

So, let’s see what happens when we swap to War layout (<body id=”war”>), as shown in Figure 6-11.

This is a big change. The headline, now deemed to be very important, has taken over the entire top sec-
tion of the layout. Its font size has increased yet again, and it now dominates the whole page, which is
exactly what the War layout is all about — pushing the big story into people’s faces, giving it some
oomph, letting the public know “This is an important story!”

The excellent thing about this demo is how amazingly easy it was to do. All we did was write a few
additional styles and switch the id of the body element around; it really couldn’t be simpler. But as basic
as it was, it’s essentially what ESPN is doing to alter its homepage so dramatically — providing a huge
return on a very small amount of work.

219

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 219



Figure 6-10: The story in Skirmish mode

Where Else Is This Applicable?
The short answer to the question “Where else is this technique applicable” is “Virtually everywhere!”
Every time you insert a class or id, you should be asking yourself, “Is this the most efficient place for
this, or can I move it higher up the document tree? Can I apply it to this element’s parent? How do I get
the maximum benefit from this?”

If another real-life example will help to clarify this idea, take a look at the following markup. (Figure
6-12 shows the result.) It’s a simple set of navigation links, presented as an unordered list. The class of
nav has been applied to each of the four links, and a CSS rule written to style them. The markup is valid,
and the CSS works just fine, but is it the best way to approach the problem?

220

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 220



Figure 6-11: The story in War mode

a.nav {background-color: yellow;}

<ul>
<li><a class=”nav” href=”/”>Home</a></li>
<li><a class=”nav” href=”/archive/”>Archive</a></li>
<li><a class=”nav” href=”/about/”>About</a></li>
<li><a class=”nav” href=”/contact/”>Contact</a></li>
</ul>

Figure 6-12: Links styled yellow

221

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 221



We hope you’ve spotted that adding class=”nav” to all four anchors is not the most efficient thing to
do. A much better approach would be to move the class application point up the document tree to the
enclosing ul, and then alter the CSS rule to reflect the change (see Figure 6-13):

ul.nav li a {background-color: yellow;}

<ul class=”nav”>
<li><a href=”/”>Home</a></li>
<li><a href=”/archive/”>Archive</a></li>
<li><a href=”/about/”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>
</ul>

Figure 6-13: Links still styled yellow

The end result is still the same, but the second method has several advantages over the first. First, our
HTML file will be smaller, and will download faster. Second, our markup is less cluttered and is easier to
understand and edit. Third, by applying the class to the ul, we are able to style not only the anchors
(a) but also the list-items (li) and ul itself (see Figure 6-14):

ul.nav {background-color: blue;}
ul.nav li {background-color: pink;}
ul.nav li a {background-color: yellow;}

<ul class=”nav”>
<li><a href=”/”>Home</a></li>
<li><a href=”/archive/”>Archive</a></li>
<li><a href=”/about/”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>
</ul>

Figure 6-14: Links, list-items,
and the unordered-list itself,
all styled

Once again, we see a (relatively) large return for a small initial amount of work.

Now, you might scoff at this little demo and say that the difference between the two sets of code is mini-
mal. But if you extrapolate these ideas out to a site that contains more than 100,000 pages (as ESPN.com
does), you’ll have some idea of the savings to be made.

222

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 222



Up a Bit . . . a Bit More . . . Stop!
It’s important to realize that the ideas laid out here aren’t demanding that you never assign a class or id
to anchors or list-items. They’re simply trying to get across the idea that moving the point of class/id
application further up the document tree can have some major benefits for you.

That said, in all instances you’ll reach a point where moving the application point higher just doesn’t
make any sense and will actually make your job more difficult. It’s up to you to work out where that
point is, and stop before you reach it.

For example, using our little list of navigation links from before, let’s say we wanted to style the About
link in such a way that it stands out from the other three. Where do we put our class?

A poor approach would be to do this:

ul.nav li a {background-color: green;}
ul.nav li a.selected {background-color: purple;}

<ul class=”nav”>
<li><a href=”/”>Home</a></li>
<li><a href=”/archive/”>Archive</a></li>
<li><a href=”/about/” class=”selected”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>
</ul>

A better method would be to move the application point up the document tree to the list-item:

ul.nav li a {background-color: green;}
ul.nav li.selected a {background-color: purple;}

<ul class=”nav”>
<li><a href=”/”>Home</a></li>
<li><a href=”/archive/”>Archive</a></li>
<li class=”selected”><a href=”/about/”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>
</ul>

This would let us style not only the About anchor, but also the list-item that contains it:

ul.nav li {background-color: yellow;}
ul.nav li a {background-color: green;}
ul.nav li.selected {background-color: red;}
ul.nav li.selected a {background-color: purple;}

<ul class=”nav”>
<li><a href=”/”>Home</a></li>
<li><a href=”/archive/”>Archive</a></li>
<li class=”selected”><a href=”/about/”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>
</ul>

223

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 223



Now we have to ask ourselves a question: Can we move the application point even further up the docu-
ment tree? Can we apply it to the ul, for example? The answer, in this case, is “No.” Not only do we
already have a class on the ul, but applying class=”selected” to the ul wouldn’t help us specifically
target the About anchor, would it? So, we’ll just stay where we are, and apply the class to the list-item.
It gives us maximum benefits for the minimum amount of work.

We hope you can now see that in each case this process has a logical starting point and a logical stopping
point; it just requires a bit of mental trial-and-error to work out where those points are and where to
apply your class or id.

Lesson Learned
The lesson to learn from this exercise is that you will see untold benefits from aiming high in the placement
of your ids and classes. By placing an id in the body element, we are quickly able to make enormous
changes to a page’s layout, with very little extra effort or markup. The further down the document tree
that we aim, the more markup we will end up writing, and the messier and more convoluted our pages
will become.

So, each time you decide to add in a class or id to your HTML, ask yourself if it’s really necessary to
target that one specific element. Could you aim higher? Is there a containing element to which you
could apply the class/id and still target the initial element, or have you reached the logical ceiling?

At some point you are going to reach that ceiling, and it’s important that you realize ahead of time that it
may be lower than you’d like. This desire to minimize the number of classes and ids in our documents
has to be balanced against the abilities of today’s Web browsers in understanding advanced CSS selectors.
Sometimes we have no choice but to place classes on specific elements. It’s not a failure on your part,
it’s just a side effect of having to live and work in the real world.

However, it’s important that you retain some form of idealism. This kind of forward thinking will
become increasingly useful as our Web browsers become more adept at understanding advanced CSS
selectors. In the coming years, we’ll be able to raise the application points for our CSS rules higher and
higher until our HTML becomes almost devoid of the mass of classes and ids we rely on today.

A Glimpse into a Classless Future 
(Not a Socialist Manifesto)

At the end of the previous section, we touched briefly on the notion of “forward thinking” — the idea
that as browsers become better at understanding advanced CSS selectors, the classes and ids so preva-
lent in today’s markup will soon become a scarce commodity. This section explores that concept in a lit-
tle more detail, and, in doing so, provides a glimpse of what the future might bring.

The Selectors of Tomorrow
If you mosey on over to the W3C’s page on Selectors (www.w3.org/TR/2001/CR-css3-selectors-
20011113/), you’ll find a whole bunch of CSS that has rarely seen the light of day in a production envi-
ronment. That document covers selectors not only from CSS Level 1 and 2, but also from Level 3, the

224

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 224



CSS of tomorrow. Some of today’s browsers (Firefox, Opera, Safari) already support bits of CSS Level 3
(:first-child and :last-child being two examples), but on the whole, that page tends only to dis-
appoint the adventurous coder. That said, it’s still an important document. It gives us a glimpse of the
world we’ll all be working in tomorrow, and if we use our brains a little, adds practical weight behind
the idea of separating structure and style.

Let’s take a look at some of the goodies CSS has in store for us . . .

A Big List of Exciting Selectors
The following table shows the syntax of selectors, the result, and the selector type.

Selector Syntax Result Selector Type

E[foo] Matches an E element with a foo attribute. Attribute selector

E[foo=”bar”] Matches an E element whose foo attribute Attribute selector
value is exactly equal to “bar”.

E[foo~=”bar”] Matches an E element whose foo attribute Attribute selector
value is a list of space-separated values, one of 
which is exactly equal to “bar”.

E[foo^=”bar”] Matches an E element whose foo attribute Attribute selector
value begins exactly with the string “bar”.

E[foo$=”bar”] Matches an E element whose “foo” attribute Attribute selector
value ends exactly with the string “bar”.

E[foo*=”bar”] Matches an E element whose foo attribute value Attribute selector
contains the substring “bar”.

E[foo|=”bar”] Matches an E element whose foo attribute has Attribute selector
a hyphen-separated list of values beginning 
(from the left) with “bar”.

E:nth-child(n) Matches an E element, the nth child of its parent. Structural pseudo-class

E:nth-last-child(n) Matches an E element, the nth child of its parent, Structural pseudo-class
counting from the last one.

E:nth-of-type(n) Matches an E element, the nth sibling of its type. Structural pseudo-class

E:nth-last-of-type(n) Matches an E element, the n-th sibling of its type, Structural pseudo-class
counting from the last one.

E:first-child Matches an E element, first child of its parent. Structural pseudo-class

E:last-child Matches an E element, last child of its parent. Structural pseudo-class

E:first-of-type Matches an E element, first sibling of its type. Structural pseudo-class

E:last-of-type Matches an E element, last sibling of its type. Structural pseudo-class

E:only-child Matches an E element, only child of its parent. Structural pseudo-class

Table continued on following page

225

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 225



Selector Syntax Result Selector Type

E:only-of-type Matches an E element, only sibling of its type. Structural pseudo-class

E:target Matches an E element that is the target of the User action 
referring URL. pseudo-class

E:lang(foo) Matches an E element in language foo. :lang() pseudo-class

E:enabled or Matches a user interface E element that is UI element state 
E:disabled enabled or disabled. pseudo-class

E:checked or Matches a user interface element that is checked UI element state 
E:intermediate or in an intermediate state (like a checkbox or pseudo-class

radio button).

E:contains(“foo”) Matches an E element containing the substring Content pseudo-class
foo in its textual contents.

E::first-line Matches the first formatted line of an E element. :first-line pseudo-class

E::first-letter Matches the first formatted letter of an E element. :first-letter pseudo-class

E::selection Matches the portion of an E element that is UI element fragments 
currently highlighted/selected by the user. pseudo-elements

E::before Matches generated content before an E element. :before pseudo-element

E::after Matches generated content after an E element. :after pseudo-element

E:not(s) Matches an E element that does not match Negation pseudo-class
simple selector s.

E + F Matches an F element immediately preceded by Direct adjacent 
an E element. combinator

E ~ F Matches an F element preceded by an E element. Indirect adjacent 
combinator

Seem a bit confusing? Well, the next section shows a few concrete examples of those selectors in action
along with a description and demonstration of the elements they would select.

Examples of Exciting Selectors in Action
The examples in this section show how these advanced CSS selectors might be put to use on real HTML
markup. The examples aren’t exhaustive, but for each instance, consider how you would achieve the
same effect using today’s techniques. Most of the time the answer will be the liberal addition of classes
and IDs to the HTML, but in many cases the answer is that it’s impossible to re-create this functionality
today.

Once you’ve done that, run through the selectors again and consider how you would duplicate the
effects if you didn’t have access to the HTML and so couldn’t insert classes and IDs all over the place.
In each and every case, short of using JavaScript, the answer will be that you can’t. That’s how big a
change tomorrow brings.

226

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 226



The following selects all images that have a title attribute:

img[title]

Following is an example of what it selects (shown in bold):

<img src=”pants.png” />
<img src=”socks.png” title=”These are my socks!” />
<img src=”shoes.png” />

The following selects all input elements whose type attribute has a value of text:

input[type=”text”]

Following is an example of what it selects:

<form>
<input type=”text” name=”name” />
<input type=”text” name=”email” />

<input type=”submit” value=”submit form” />
</form>

The following selects all links whose rel attribute value is a list of space-separated values, one of which
is exactly equal to met:

a[rel~=”met”]

Following is an example of what it selects:

<ul>
<li><a href=”http://sidesh0w.com/” rel=”colleague friend met”>Sidesh0w</a></li>
<li><a href=”http://mezzoblue.com/” rel=”colleague”>Mezzoblue</a></li>
<li><a href=”http://photomatt.net/” rel=”friend met colleague”>Matt</a></li>
</ul>

The following selects all links whose rel attribute value begins exactly with colleague:

a[rel^=”colleague”]

Following is an example of what it selects:

<ul>
<li><a href=”http://sidesh0w.com/” rel=”colleague friend met”>Sidesh0w</a></li>
<li><a href=”http://mezzoblue.com/” rel=”colleague”>Mezzoblue</a></li>
<li><a href=”http://photomatt.net/” rel=”friend met colleague”>Matt</a></li>
</ul>

The following selects all links whose rel attribute value ends exactly with colleague:

a[rel$=”colleague”]

227

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 227



Following is an example of what it selects:

<ul>
<li><a href=”http://sidesh0w.com/” rel=”colleague friend met”>Sidesh0w</a></li>
<li><a href=”http://mezzoblue.com/” rel=”colleague”>Mezzoblue</a></li>
<li><a href=”http://photomatt.net/” rel=”friend met colleague”>Matt</a></li>
</ul>

The following selects all links whose href attributes contain the substring .com:

a[href*=”.com”]

Following is an example of what it selects:

<ul>
<li><a href=”http://sidesh0w.com/” rel=”colleague friend met”>Sidesh0w</a></li>
<li><a href=”http://mezzoblue.com/” rel=”colleague”>Mezzoblue</a></li>
<li><a href=”http://photomatt.net/” rel=”friend met colleague”>Matt</a></li>
</ul>

The following selects all links whose hreflang attribute has a hyphen-separated list of values beginning
with it:

a[hreflang|=”it”]

Following is an example of what it selects:

<p>You can view our <a href=”/fr/” hreflang=”fr”>French translation</a>, our <a
href=”/it/” hreflang=”it”>Italian translation</a>, or our <a href=”/nl/”
hreflang=”nl”>Dutch translation</a>.</p>

The following selects all odd-numbered list-item elements:

li:nth-child(odd)

The following breaks the list-items up into groups of two and then selects the first list-item from each
group:

li:nth-chid(2n+1)

Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

228

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 228



The following selects all even-numbered list-item elements:

li:nth-child(even)

The following break the list-items up into groups of two and then select the second list-item from each
group:

li:nth-child(2n+2)

or

li:nth-child(2n+0)

or

li:nth-child(2n)

Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following breaks the list-items up into groups of three and then selects the second list-item from
each of those groups:

li:nth-child(3n+2)

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following select the fourth list-item:

li:nth-child(0n+4)

or

li:nth-child(4)

229

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 229



Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects the first three list-items:

li:nth-child(-n+3)

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

Counting from the last list-item, the following selects all odd-numbered list-item elements:

li:nth-last-child(odd)

Counting from the last list-item, the following breaks the list-items up into groups of two and then
selects the first list-item from each group:

li:nth-last-child(2n+1)

Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

Counting from the last list-item, the following selects all even-numbered list-item elements:

li:nth-last-child(even)

Counting from the last list-item, the following breaks the list-items up into groups of two and then
selects the second list-item from each group:

li:nth-last-child(2n+2)

230

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 230



or

li:nth-last-child(2n+0)

or

li:nth-last-child(2n)

Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

Counting from the last list-item, the following breaks the list-items up into groups of three, and then
selects the first list-item from each of those groups:

li:nth-last-child(3n+1)

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

Counting from the last list-item, the following select the fourth list-item:

li:nth-last-child(0n+4)

or

li:nth-last-child(4)

Following is an example of what these select:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

231

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 231



Counting from the last list-item, the following selects the last three list-items:

li:nth-last-child(-n+3)

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects all odd-numbered images:

img:nth-of-type(odd)

The following breaks the images up into groups of two and then selects the first image from each group:

img:nth-of-type(2n+1)

Following is an example of what these select:

<img src=”one.png” />
<img src=”two.png” />
<img src=”three.png” />
<img src=”four.png” />
<img src=”five.png” />
<img src=”six.png” />
<img src=”seven.png” />
<img src=”eight.png” />

The following selects all even-numbered images:

img:nth-of-type(even)

The following break the images up into groups of two and then select the second image from each
group:

img:nth-of-type(2n+2)

or

img:nth-of-type(2n+0)

or

img:nth-of-type(2n)

232

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 232



Following is an example of what these select:

<img src=”one.png” />
<img src=”two.png” />
<img src=”three.png” />
<img src=”four.png” />
<img src=”five.png” />
<img src=”six.png” />
<img src=”seven.png” />
<img src=”eight.png” />

Counting from the last image, the following selects the last four images:

img:nth-last-of-type(-n+4)

Following is an example of what it selects:

<img src=”one.png” />
<img src=”two.png” />
<img src=”three.png” />
<img src=”four.png” />
<img src=”five.png” />
<img src=”six.png” />
<img src=”seven.png” />
<img src=”eight.png” />

The following selects the first list-item. (Actually, this is the same as li:nth-child(1).)

li:first-child

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects the last list-item. (Actually, this is the same as li:nth-last-child(1).)

li:last-child

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>

233

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 233



<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects the first instance of the definition title element in each list of child elements. In
this case, it selects Orchard, Alastair, and Mariella definition-titles, but not Dunstan, Pelosi, or
Fabrizzio (because those are not the first siblings of their type in the lists of children of their parent
elements).

dt:first-of-type

Following is an example of what it selects:

<dl>
<dt>Orchard</dt>
›

<dl>
<dt>Alastair</dt>
<dd>The oldest son</dd>
<dt>Dunstan</dt>
<dd>The youngest son<dd>
</dl>

</dd>
<dt>Pelosi</dt>
›

<dl>
<dt>Mariella</dt>
<dd>Only daughter</dd>
<dt>Fabrizzio</dt>
<dd>The youngest son</dd>
</dl>

</dd>
</dl>

The following selects the last instance of the definition title element in each list of child elements. In
this case, it selects Dunstan, Pelosi, and Fabrizzio definition-titles, but not Orchard, Alastair, or
Mariella (because those are not the last siblings of their type in the lists of children of their parent
elements).

dt:last-of-type

Following is an example of what it selects:

<dl>
<dt>Orchard</dt>
›

<dl>
<dt>Alastair</dt>
<dd>The oldest son</dd>
<dt>Dunstan</dt>
<dd>The youngest son<dd>
</dl>

</dd>
<dt>Pelosi</dt>

234

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 234



›
<dl>
<dt>Mariella</dt>
<dd>Only daughter</dd>
<dt>Fabrizzio</dt>
<dd>The youngest son</dd>
</dl>

</dd>
</dl>

The following selects list items whose textual contents contain the substring “otty”:

li:contains(“otty”)

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects all elements except paragraph elements:

*:not(p)

Following is an example of what it selects:

<h1>My Shoes</h1>

<p>I have four pairs of shoes:</p>

<ol>
<li>Some brown ones;</li>
<li>Some green ones;</li>
<li>Some dirty ones;</li>
<li>Some smelly ones.</li>
</ol>

<p>If you’re nice to me I’ll let you see my shoes.</p>

The following selects all paragraph elements which do not have a class value of hide:

p:not(.hide)

Following is an example of what it selects:

<p>Poppy is my dog.</p>
<p>Poppy had five puppies.</p>
<p class=”hide”>I like to eat puppies.</p>
<p>There are three girl puppies and two boys.</p>

235

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 235



The following selects all list-items whose textual content does not contain the substring “otty”:

li:not(:contains(“otty”))

Following is an example of what it selects:

<ul>
<li>Dotty</li>
<li>Lotty</li>
<li>Squeak</li>
<li>Patch</li>
<li>Scrap</li>
<li>Poppy</li>
</ul>

The following selects the first line of a paragraph’s textual content, as rendered by the browser:

p::first-line

Following is an example of what it selects:

<p>Oh, my old man’s a
dustman, he wears a
dustman’s hat, he wears
cor blimey trousers,
and he lives in a council
flat.</p>

The following selects the first letter of a paragraph’s textual content:

p::first-letter

Following is an example of what it selects:

<p>Oh, my old man’s a dustman, he wears a dustman’s hat, he wears cor blimey
trousers, and he lives in a council flat.</p>

The following selects any paragraph that comes immediately after an h2, but only when they share the
same parent in the document tree:

h2 + p

Following is an example of what it selects:

<div>
<h2>Soup, the untold story</h2>

<p>This document will tell you everything you ever wanted to know about soup.</p>

<p>And some things you didn’t want to know.</p>
</div>

236

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 236



<div>
<h2>Soup in the middle ages</h2>
</div>

<p>Sir Galahad loved soup. Oh yes, he couldn’t get enough of it, I tell you.</p>

The following selects any paragraph that comes after (not necessarily immediately after) an h2, but only
when they share the same parent in the document tree:

h2 ~ p

Following is an example of what it selects:

<div>
<h2>Soup, the untold story</h2>

<p>This document will tell you everything you ever wanted to know about soup.</p>

<p>And some things you didn’t want to know.</p>
</div>

<div>
<h2>Soup in the middle ages</h2>
</div>

<p>Sir Galahad loved soup. Oh yes, he couldn’t get enough of it, I tell you.</p>

Love Your <body> Even More Tomorrow
Now then, given that the CSS selectors of tomorrow will let us target every single element on the page
(based on their position in the document tree, on the presence and contents of their attributes, or simply
based on their textual contents), what do you think the future holds for the humble class and id
attributes? 

Well, it would seem that the CSS of tomorrow provides the granularity needed to do away with such
things. Why fill your markup with classes that (let’s be honest) are almost always placed specifically to
suit your current design, when you could use powerful structural pseudo-classes and attribute selectors
to target the same elements?

There is, however, one vital use for classes and ids that will remain, and it’s one we looked at in the
first section of this chapter. By applying a class or id to the body element in each page we will be able
to specify which rules should be applied to which pages. Sure, some of our CSS will be generic, but
some will require this rule-page pairing that only a class or id on the body element can bring.

So, the future holds a powerful new set of CSS selectors for us to use, enabling us to remove almost all
instances of classes and ids from our markup. Our HTML will be neater, our CSS will be more creative,
and our sites will be truly skinnable.

237

ESPN.com: Powerful Layout Changes

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 237



Summary
In this chapter, we’ve seen the benefits that can come from applying class or ids high up in the docu-
ment tree and how ESPN.com uses this simple technique to induce drastic layout changes in their site.
We’ve also looked at CSS 3, the CSS of tomorrow, and glimpsed the power that its advanced selectors
will bring to our work. By obtaining an awareness of the high-end of CSS selectors, we’re not only
preparing ourselves for tomorrow, but we’re also raising our expectations of the capabilities of CSS.
This, in turn, leads to a more inventive and adventurous approach to solving CSS issues.

In the next chapter, we’ll take a look at creating three-column layouts with a case study of
Fastcompany.com.

238

Chapter 6

08_588338 ch06.qxd  6/22/05  11:25 AM  Page 238



FastCompany.com: 
Building a Flexible 

Three-Column Layout

By the time 2003 began in earnest, a rather sizeable snowball was rolling. In October of 2002,
Wired News abandoned traditional table-driven layout methods for a CSS-driven design. At that
time, Wired wasn’t the first redesign of its kind, but it was certainly the most highly trafficked. The
site’s chief designer, Douglas Bowman (see Chapter 3 for a discussion of his work on the
Blogger.com redesign), took a highly visible and well-established brand, and delivered a com-
pelling new design — all with standard technologies such as CSS and XHTML that would, as
Bowman put it, help “lift the Web out of the dark ages” (Wired News, “A Site for Your Eyes”:
www.wired.com/news/culture/0,1284,55675,00.html).

For the next few months, you could almost hear the crickets chirping. Wired News had lifted style
sheets out of the realm of academics and saber-waving standards advocates, and placed it squarely
and confidently in the realm of mainstream media. Until the Wired redesign, most companies had
never heard of cascading style sheets, much less considered them a viable alternative to the tried-
and-true methods of designing with tables. The industry (and those of us in the saber-waving sec-
tion of the audience) waited to see who, if anyone, would follow suit.

As it turns out, we didn’t have to wait long.

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 239



Fast Company: Picking Up the Gauntlet
In April 2003, Fast Company (http://fastcompany.com/) was the next high-profile site to drop old,
bloated page-building techniques for sleeker, standards-compliant methods, and it did so in style. The
site serves two purposes:

❑ It is an archive of features from the popular magazine of the same name.

❑ It publishes various Web-only features, such as the popular FC Weblog (http://blog
.fastcompany.com/).

Balancing both of these needs, the new Fast Company (FC) design was at once stylish and easy to navi-
gate. Users could quickly sift through content-rich pages that could have easily become bogged down
beneath the abundance of advertising and article content, as shown in Figure 7-1.

Figure 7-1: The FastCompany.com home page

Furthermore, Fast Company’s nuanced design is eminently flexible. Rather than succumbing to the
temptation of building a fixed-width design, FC built its site to accommodate the user’s preferred win-
dow size (see Figure 7-2). However, notice how the width of the content area expands and contracts as
the browser window increases or decreases — but only up to a point. At larger window widths, the page’s
layout stops expanding, thus ensuring that line lengths never reach unfriendly (and illegible) lengths.

240

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 240



Figure 7-2: The Fast Company home page, viewed at three different popular window sizes

800x600

1024x600

1280x600

241

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 241



The visual aspect of the site’s design aside, however, the new site was a technical win as well. With
pages that were half the weight as their table-heavy predecessors, the site was not only easier for Fast
Company’s production staff to maintain, it was also extremely kind to users’ occasionally limited band-
width. When the designers separated presentational information out of the site’s markup and into exter-
nal style sheets, FastCompany.com became accessible to a wider range of browsing devices that would
be otherwise hindered by the site’s design. These devices included not only ancient browsers and such
alternative technology as assistive and handheld equipment, but also search engines.

So, all in all, the redesign was a success — for the company, for its users, and for the burgeoning CSS
design community. Who, then, was responsible for it all?

Meet the Designer : Dan Cederholm
The architect behind Fast Company’s high-profile redesign was Dan Cederholm, a multitalented
designer, developer, and author. A vocal proponent of founding high-powered design upon CSS and
XHTML, Cederholm is also the founder and author of SimpleBits (http://simplebits.com/), a site
that serves as a home to his Boston-area Web design consultancy (http://simplebits.com/work/) as
well as a personal journal of sorts (http://simplebits.com/notebook/).

While Cederholm first came into the spotlight with his one-two all-CSS redesigns of Fast Company and
its sister site, Inc.com (http://inc.com/), he’s remained prolific with such clients as Google, ESPN,
and Staples. The reason is that much of Cederholm’s philosophy can be summed up in one word: detail.
A noted aficionado of pixel art, Cederholm’s attention to even the finest points of a page’s design is
inspiring. Whether it’s a project as expansive as Fast Company or as small as a single search results
page, he creates designs that are simultaneously beautiful, meticulous, and painfully well-coded.

In the following question-and-answer session, Cederholm discusses some of his influences, his career on
the Web, the impact of video games on a designer’s development — all while giving us a glimpse into
his creative process.

Q: Mr. Cederholm, welcome — kindly pull up a chair.

A: Why, thank you. Don’t mind if I do.

Q: From reading SimpleBits, one will come to know you as a man of many interests: you’re a prolific writer,
one-time rock musician, and an aficionado of fine black pepper. So, how is it, exactly, that you got into
Web design?

A: For me, getting into Web design was an evolutionary process. One could trace the birth back to
an obsession with early video games — the ability to control colored pixels on a screen. But there
are a few milestones that helped more than others, and I imagine other Web designers have sim-
ilar stories.

My first Mac was the all-in-one Classic II, and it was used heavily around the time that AOL
first surged in popularity just before the Web took off. I was immediately fascinated by this
“online world” of chat rooms, e-mail, instant information, and so on. Soon after that, I was sit-
ting in a desk job at a record label here in the Boston area (Rounder Records) and for the first
time had the following: a constant Internet connection, access to the burgeoning World Wide Web,
and a disinterest in what my actual job entailed. I was captivated by the Web — its convergence

242

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 242



of design and information — the artistic and the functional. I loved being able to instantly cap-
ture information about my favorite bands, or the latest advancements in pepper mill technology.
It was all out there.

From there, I bought a computer again for home, and studied HTML by viewing source on any-
thing and everything — learning by trial-and-error mostly. You could say it was (and is?) an
obsession to figure out how things work.

Over the years, the studying has never stopped, but it’s constantly kept me interested. I think
it’s the combination of being able to do something creative and structured at the same time.

Q: I understand you had something to do with the standards-based redesigns of Fast Company and its sister
site, Inc.com. What was your role, exactly?

A: I came to work at Fast Company magazine in 2000 as Web Production Guru (my, how I miss the
job titles of the pre–dotcom boom). My position sort of evolved over the following three years
into design. This was a fantastic atmosphere to tinker with and hone Web design skills — sur-
rounded by creative and talented people that were putting out a killer magazine. It was impos-
sible not to soak up the knowledge shared by the entire team.

In early 2003, we began the long process of redesigning both the Fast Company and Inc. sites
using Web standards.

Q: Well, tell us a bit about the redesign. As one of the earliest high-profile sites to adopt an all-CSS design,
FC set the bar pretty high for the rest of us. What prompted the switch to style sheets?

A: Around the same time that I had been experimenting with CSS-based layouts on my personal
sites for a while, we had been planning the redesigns of FC and Inc. to also coincide with a new,
homegrown CMS. I had the desire to move the sites to Web standards, but it wasn’t until Wired
News relaunched using a 100 percent CSS-based layout that we started thinking of that as a
reality. Wired paved the way for other commercial sites to follow.

The reasoning for the switch was fast becoming obvious. The decreased code would speed up
our sites, increase accessibility, make it easier to accommodate different advertising units, and
make it easier to integrate into our new CMS. The CSS-based layout would also make it easier to
integrate partner sites, change the look-and-feel at the flip of a switch, and so on.

Q: How did you approach the move within the company? There must have been a fair amount of selling to do.

For more information about the Wired News redesign, see http://stopdesign.com/portfolio/
web_interface/wired_news.html.

A: I have to admit, I had it rather easy. The convincing was a matter of walking over to Rob
Roesler’s (the site’s director) desk, showing him the Wired News redesign and saying “I’ve been
experimenting with this stuff — we need to do this.” And his response of, “Yes. We definitely
need to do this,” sealed the deal. We have Wired to thank for blazing the trail for other commer-
cial publications.

Not every team is going to have that kind of support. The rest of the Web team at the time also
got behind the switch to standards. For instance, when our developers David Searson and Bob
Joyal saw how simple the template structure could be by using CSS for the site’s design, they
immediately recognized the advantage this would have from an application and development
point of view.

243

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 243



Sometimes it takes showing, rather than explaining. But I think as more and more sites are uti-
lizing CSS, it’s only getting easier to sell the technology to clients and internal Web teams. It will
soon, we hope, become commonplace and assumed.

Q: In a time when most sites were adopting rather straightforward fixed-width layouts as they bootstrapped
themselves with CSS skills, Fast Company chose to go with a flexible approach. What drove that decision?

A: The decision to go flexible hinged on a few different things. Probably the main reason was the
large advertisement that was required to “float” inside the article body text. At a resolution of
800 × 600, this particular unit would scrunch up the article’s text to an almost unreadable line
length. But this advertisement also paid the bills — it was a requirement that we had to work
around. So, going with a flexible-width layout meant that users with a higher screen resolution
could adjust the window to a more readable size. We at least wanted the option to be there for a
portion of our audience.

But going flexible also meant a certain level of design constraint. We had to account for the fact
the window could be any size at any time — and that can be challenging when designing.

Q: Are there any aspects of the site’s design that you’re most proud of?

A: I’m proud of the image-based tab navigation that I built for the site after the redesign was com-
plete. I really just combined a few CSS techniques that were being invented at the time — but
the result was a navigation system that used semantic markup [an unordered list], yet was
image-based in order to fit a large number of options in a fixed horizontal space.

I’m also proud of the lengths we took to make things easy to change and update later on. For
instance, the little icons that sit next to the site’s headings are transparent, and the color filled in
with CSS. Changing the color palette of the entire site was as easy as changing a few lines of code.

Related to that, I guess I’m most proud that the site has stood the test of time. It certainly was
never perfect, and there are many things I would do differently if redesigned today — but the
fact that the core design has been used so long [as of this writing] is a testament that it was a
success.

Q: What about second thoughts? After a few years, are there any things you wish you’d done differently?

A: Oh, I’m sure there are many things I wish I had done differently. I was still learning CSS during
the redesign of Fast Company, and while there were others generously sharing their knowledge
and experience at the time, far more knowledge is out there now. For instance, the accessibility
concerns regarding image replacement techniques weren’t documented at the time. New ways
to combat IE bugs weren’t invented yet. I’m sure many, many things could’ve been simplified
from a CSS and markup angle.

But it’s a constant learning experience. Even the sites I build today, I’m sure I’ll want to change
down the road. The ebb and flow of the Web is what makes it interesting and fun.

Q: Speaking more generally, so what is it that keeps you interested in Web design? What keeps you fired up
after all these years?

A: Well, I think that constant ebb and flow I just mentioned is part of it. I love how there’s always
something new happening — a new technique to learn, a new technology to explore. It seems to
never settle. The flip side is that it can be frustratingly unstable. It’s the balance in between
that’s the sweet spot.

I also love Web design because of its marriage of art and technology. I have a certain need to
create things — anything. Music, food, photography, and so on, and Web design seems like a

244

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 244



natural way to combine all of these creative impulses together. It’s a creative outlet as well as a
technical one.

The work of colleagues also keeps me fired up — being motivated by what others are doing,
learning from their experiences, the sharing of knowledge — it’s always been a wonderful give-
and-take community.

Q: You must have some design influences; care to drop a few names?

A: I think design-wise, my influences are less people, than what I see and experience every day.
Early on, I was influenced by the music packaging of indie bands, and later by the stellar design
of Fast Company magazine and its designers. But I feel that even walking through the supermar-
ket has an influence on design. Even if it just makes me think of what I like and what I don’t
like. Traveling also is a big influence — I love seeing architecture, signage, and packaging from
different parts of the U.S. and abroad. Just looking at anything visual has an impact on me.

Having no formal design training, I can confess that at times I feel like I just get lucky if some-
thing comes out right. I tend to design from the gut, based on the experiences and environments
I’ve soaked in. 

As far as inspiration, however, there are plenty of Web designers whose work I admire. This
tends to motivate me, get me excited about design. People like Douglas Bowman, Todd
Dominey, Dave Shea, and Jeffrey Zeldman, whose work speaks for itself.

Q: So, what about your own design process? How do you usually work?

A: I usually start with a blank Photoshop canvas. I use Photoshop like a sketchpad, working out
color palettes and dimensions. From there, I usually code certain page components, screen grab
them, and bring them back into the Photoshop file. So, a combination of code and graphics edit-
ing takes me to the “mock-up” phase. When the client is happy, I begin pulling it apart.

It’s worked for me thus far — but it’s the only way I know. I’ve been thinking lately about ways
in which I can streamline the process. For instance, I’m usually left with 100 Photoshop layers —
unlabeled — to wade through. Making changes after the fact is a large problem.

There are times when I’ve tried coding first, and then designing something completely with
CSS. I haven’t had as much luck going this route. I believe that if you’re aware of what you can
do with CSS and what you can’t, then sketching in Photoshop (or on paper) is perfectly fine.
One must keep in mind how all the pieces will eventually fit together on top of an optimal
markup structure.

Q: We’ve all faced it: You’re under a tight deadline, the client wants a quick status update, and you’ve a
blank Photoshop canvas that’s not being very cooperative. Ever been stuck with designer’s block? How do
you get out of it?

A: Oh yeah. This is a tough one — and one that every designer has probably run into. I’m a little
hesitant to recommend the consumption of alcoholic beverages, but lately, a glass of red wine
has been my savior. Especially when designing into the evening hours. It clears my mind, helps
me to concentrate more. I can’t explain it, but it works.

Also, I go for a walk. This helps immensely. Coming back, even after a half hour, can help you
gain a new perspective on what you need to accomplish.

Another idea I’ve tried, if the visuals just aren’t working, is to start working on the markup
structure instead. Start applying some base CSS, and it can start to take shape, in a very basic,
but functional, way.

245

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 245



CSS Positioning: The Fundamentals
Before we can begin replicating Fast Company’s layout, we should first step back and examine some of
the mechanics behind CSS positioning. As we’ve seen in previous chapters, every element in your
markup occupies a position within the document’s flow. Block-level elements — such as headings, divs,
lists, and paragraphs — are stacked like boxes atop each other, each expanding horizontally to occupy
the full width of their containing element. On the other hand, inline elements are laid out horizontally
within a containing block-level element, one after another. Some examples of inline elements include
links, images, and phrase elements such as em and strong.

Initially, each element in your unstyled document is considered to have a “static” position — in other
words, its position has not been modified from its default. That’s why that paragraph is placed directly
beneath that h2, and why that image appears within that div.

The official term for this default positioning scheme is the “normal flow” of the document. If we look at
an unstyled HTML document, we see that boxes elements (such as p, h1, or div) “flow” vertically
within their containing block, each stacked immediately below the preceding one. However, inline boxes
(such as span, a, or img) will simply flow horizontally within their container. And without any addi-
tional style rules from us, this default flow will remain intact.

But, of course, we’re about to change all that. We’re nothing if not predictable.

What makes CSS such a compelling layout tool is its ability to override these default positioning rules,
and create incredibly complex layouts without opening a single td. An element can be removed from its
normal, static position by writing a simple CSS selector that sets a new value for — you guessed it — the
element’s position property, like so:

p {
position: absolute;

}

Besides static, there are three valid values for this position property:

❑ fixed

❑ relative

❑ absolute

Setting the property to any of the three non-static values will give us different means of removing the
element from its place in the normal document flow, and positioning it in a different section of the docu-
ment. The mechanism at the heart of Fast Company’s three-column layout uses a combination of the lat-
ter two — relative and absolute positioning. Let’s examine these two property values and the
relationship between them, and how we can better apply them to our own sites’ designs.

246

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 246



Absolutely Fabulous Positioning
When absolutely positioned, an element’s position is specified through some combination of top,
right, bottom, and left properties, as we see here:

div#content {
position: absolute;
left: 10px;
top: 100px;

}

Here, the left and top properties specify offsets for the div with an id attribute of “content.” Rather
than appearing sandwiched between the block-level elements immediately before and after it in the
markup, the content div is instead removed from the document flow. But where is it placed, you ask?

To find an answer, let’s look at the following markup structure which, for the sake of brevity, we’ll
assume is placed within the body of a valid XHTML document:

<div id=”outer”>
<p>This is a paragraph in the <cite>outer</cite> block.</p>

<div id=”inner”>
<p>This is a paragraph in the <cite>inner</cite> block.</p>

</div>
</div>

These are two rather unassuming divs, one (with an id of “inner”) nested inside the other (named, clev-
erly enough, “outer”). Each div contains one child paragraph — nothing award-winning here, we’re
sure. Just to move this beyond the realm of angle brackets and into a screenshot or two, let’s apply some
basic style to this markup:

#outer {
background: #DDF;
border: 4px solid #006;
height: 300px;
margin: 120px 20px 0;

}

#inner {
background: #FDC;
border: 4px solid #930;

}

Again, these two selectors aren’t designed to floor our clients. The first rule applies to the div with an id
of “outer.” We’re setting an oh-so-comely blue border and background to the div, setting its height to
300 pixels, and then increasing its margins to offset it from its normal position (120 pixels down, and 20
pixels on either horizontal side). The second rule simply applies a light red background color and match-
ing border to the inner div.

247

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 247



Yes, that’s right: red on blue. We never said we were discriminating when tossing together code 
examples.

But before you slam this book shut in a fit of palette-driven indignation, let’s examine how these two ele-
ments appear on the page. As you can see in Figure 7-3, we’ve taken the liberty of applying some basic
type information to our document as well (Times New Roman is so 1995). But with our (somewhat garish,
we’ll admit) colors and borders activated, we can see that the two divs are placed in the normal docu-
ment flow — the inner block is a child of the outer block, and the page’s current display reflects that.

Figure 7-3: Our bland-looking elements in the normal document flow

However, by using CSS to change the value of the inner element’s position property, our design does-
n’t have to be reflect this parent-child relationship. We can add three brief lines to our #inner selector:

#inner {
background: #FDC;
border: 4px solid #930;
position: absolute;
right: 20px;
top: 20px;

}

248

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 248



The difference is rather marked, as Figure 7-4 shows. We’ve visually broken the parent-child relationship
between the two divs. While the inner block is still a child of the outer one in the markup, we’ve used
CSS to override the former’s position in the normal document flow. Instead, we’ve positioned it abso-
lutely, offsetting it 20 pixels from the topmost and rightmost edges of the body of our document.

Figure 7-4: In the markup, the topmost block is a child of the bottom one. However,
using position: absolute; removes the block from the document flow and positions 
it relative to the viewport.

The inner block typically appears in the normal flow of the document, in the context established by the
other block-level elements that surround it in the markup. Our rule has redefined that context, and placed
it in one that is relative to the boundaries of the browser window. This is why the body root of our docu-
ment — the html element — is also known as the initial containing block, as it typically provides the posi-
tioning context for all elements contained within it.

Furthermore, this new positioning context for #inner has redefined that of its child elements — namely,
the paragraph contained therein. In other words, we’ve not only repositioned the div, but any and all
elements contained therein. This becomes a bit more apparent if we add a few more paragraphs to our
absolutely positioned block, as we see in Figure 7-5.

When two new paragraphs are added to #inner (our absolutely positioned block), they inherit their
parent’s positioning context — which is all a fancy way of saying that since their parent block is abso-
lutely positioned, it will expand to contain its new children.

249

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 249



Figure 7-5: Adding more content to our absolutely positioned block demonstrates 
just how far we’ve come.

Another important thing to note in Figure 7-5 is that after increasing the height of our absolutely posi-
tioned block, the outer block is partially obscured. Remember that by applying position to the block,
we’ve removed it from the normal flow — and in the case of absolutely positioned elements, the browser
doesn’t reserve any space for it within the document. Because of this, absolutely positioned elements are
designed to overlap other elements on the page, be they positioned or not. This is a very important issue
to consider when building a layout with absolute positioning, and one we’ll return to later in greater
detail.

Positioning That’s Absolutely Relative
But what if we want to exercise a bit more control over the position of that inner block? What if we don’t
want to position it relative to the browser window, but to the outer div? As it turns out, the absolute
positioning we’ve seen so far is only the default behavior. If an absolutely positioned element isn’t placed
within another positioned element — that is, if all of its ancestor elements are in their default, static posi-
tion — then it will be placed as our example is in Figure 7-4: relative to the boundaries established by the
initial containing block, the body element.

If you noticed that the last sentence contained quite a few “if”s,” we’re happy we haven’t put everyone
to sleep. So, if our absolutely positioned element is contained within another positioned element, what
happens then? Let’s see what happens when we apply this bit of logic to the outer div, which, as we
determined previously, is the parent to our absolutely positioned element:

250

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 250



Done--em.#outer {
background: #DDF;
border: 4px solid #006;
height: 300px;
margin: 120px 20px 0;
position: relative;

}

As shown in Figure 7-6, the changes to our inner div are quite striking. Because the outermost div is
now a positioned element, it establishes a new positioning context for all absolutely positioned descen-
dant elements — in this case, the #inner block. So, the offset of right: 20px; and top: 20px; no
longer position the inner div in relation to the root of our markup, but to the container div to which
we applied the position: relative; rule. Just to hammer the point home, let’s change the top:
20px; in our #inner selector to bottom: 20px;, like so (see Figure 7-7):

#inner {
background: #FDC;
border: 4px solid #930;
position: absolute;
right: 20px;
bottom: 20px;

}

Figure 7-6: By setting the outer block to position: relative; the inner block is now 
positioned in relation to its parent.

251

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 251



Figure 7-7: Courtesy of CSS: bulletproof bottom-edge positioning. Ain’t technology 
grand?

Rather than creating a vertical offset between the inner box’s top edge and that of its parent, we’ve
instead positioned it 20 pixels from the bottom — all by changing one line in our selector. As we continue
through this chapter, we’ll discuss the benefits of this approach in more detail. For now, this relationship
between absolutely positioned elements within relatively positioned containers will serve as the basis
for our work creating a flexible, three-column layout in the style of FastCompany.com.

Building Three Columns: 
Laying the Foundation

Just as when we converted the Harvard University home page to an all-CSS/XHTML layout (see
Chapter 2), our three-column layout must be founded upon lightweight, well-meaning markup. To do
so, we begin by taking a quick inventory of the content areas on the page (see Figure 7-8).

252

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 252



Figure 7-8: Identifying the areas of content we’ll need to incorporate into our 
markup. (The footer’s not shown because of the length of the page.)

For the purposes of this chapter, we’ll focus on the primary areas of the home page’s layout:

❑ The horizontal header that spans the top of the page

❑ The primary center column, which contains high-priority content and other features of interest

❑ The left- and right-hand columns, which house such auxiliary content as subnavigation, adver-
tising banners, and the like

Think of each of these top-level blocks as a container for other content — which is, in fact, exactly how
FastCompany.com uses them. Within each block, we can store other discrete chunks of content, and
apply CSS rules to precisely control the presentation of each.

Establishing this flexible, three-column layout is the primary goal of this chapter. Once that has been estab-
lished, we can style the finer points of the design to our heart’s delight. Therefore, we’ll focus on establish-
ing this layout framework — of header, content, left- and right-hand columns — to prepare our page for a
truly professional-looking design.

253

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 253



Writing the XHTML: From Mockup to Markup
With this in mind, let’s create a basic markup document to reflect this framework, as shown in
Listing 7-1.

Listing 7-1: The Markup Foundation for Our Three-Column Layout

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>My 3-column layout</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
</head>
<body>
<div id=”header”>

<p>How do you like them apples?</p>
<hr />

</div>
<div id=”left”>

<h2>This is the left column.</h2>
<p>Some basic information goes here.</p>
<!-- More content here -->

</div>
<div id=”right”>

<h2>This is the right column.</h2>
<ul>

<li>Did you know that lists rock?</li>
<li>They do.</li>
<li>Quite a bit.</li>

</ul>
<!-- More content here -->

</div>
<div id=”content”>

<h1>Welcome to my page layout.</h1>
<p>Certe, inquam, pertinax non ero tibique, si mihi probabis ea...</p>
<!-- More content here -->

</div>
<div id=”footer”>

<hr />
<p>Them apples were <em>tasty</em>.</p>

</div>
</body>
</html>

Reflecting the three areas of our content inventory in Figure 7-8, we’ve simply marked up the four divi-
sions in our page as such — that is to say, by using the div element. Each of those divs has been given a
unique id, which in turn corresponds to the section of the document it represents: the first div is
“header,” the next “left,” and so on. We’ve also taken the liberty of including a “footer” block at the
bottom of the page.

254

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 254



The ids used in our sample markup here (and throughout the rest of the chapter) are from the markup
used on the Fast Company site. While their pages were built nearly two years ago, recent thinking sug-
gests it’s best to avoid “presentational names” such as these. By naming our elements according to how
they might look, or where they might be positioned on-screen, we’re effectively wedding our markup to
one particular presentation. Should we ever redesign our site, what happens when our #left div sud-
denly is displayed on the right of the page? Or on the top?

Instead, we should consider the meaning of the content contained in our elements, and name those 
elements accordingly. Perhaps #right would be better described as #advertising, or #left as
#subnav. There are no right answers here; instead, we should make our names as descriptive as possi-
ble, ensuring an even cleaner separation of structure from style.

Within each section of the page, we’ve settled on some simple (and admittedly, pretty arbitrary) content
to serve as placeholders. However, even when coding gibberish, we try to keep our code well-meaning:
the most important header on the page has been tagged with an h1, the titles of the left and right
columns have been accorded a place next in line with h2, and the remainder of the page’s text has been
marked up with proper list and paragraph elements. Without any style rules, our markup looks pretty
unimpressive indeed (see Figure 7-9).

Figure 7-9: Our unstyled HTML document, replete with meaningful markup . . . and, well, meaningless text

255

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 255



It’s at this stage that the need for well-meaning, semantically rich markup becomes a bit more evident.
When using style sheets to control your site’s presentation, it’s important to consider exactly how users
will access your content if they don’t have a CSS-aware browser. When presented with a page that looks
like the one in Figure 7-9, users might not be presented with your meticulously planned design.
However, they will still be able to access your site’s content; hence our use of horizontal rules (hr elements)
in the header and footer divs. While we’ll use CSS later to hide these elements in our design, these ele-
ments can provide a nice break in the content for users on legacy, CSS-blind browsers.

For a bit more detail, take the two levels of heading elements we’ve used in our markup. Sighted users
surfing sans CSS will be able to quickly tell that “Welcome to my page layout” is weighted with more
importance than the titles of our side columns. Screen readers will announce at what level the header
has been marked up, which will enable non-sighted users to quickly orient themselves in the page’s
hierarchy. And, as accessibility advocates are quick to point out, the biggest blind user on the Web is
Google — which is a trite way of saying that search engines don’t care about presentation, but content.
Applying this kind of intelligent markup to your content not only helps human users navigate your
pages, but helps search engines better understand how they should weight and index them.

A Layer of Style
With that little digression out of the way, let’s apply some basic presentational rules to our content, as
shown in Listing 7-2.

Listing 7-2: Applying Basic CSS Rules to Our Document

body {
color: #000;
font: 76%/1.5em “Lucida Grande”, Verdana, Geneva, Helvetica, sans-serif;
margin: 0;
padding: 0;

}

h1, h2 {
font-family: “Trebuchet MS”, Verdana, Geneva, Helvetica, sans-serif;
font-weight: normal;
line-height: 1em;
margin-top: 0;

}

#header {
background-color: #DFD;
border: 2px solid #060;

}

#footer {
background-color: #FDD;
border: 1px solid #C00;

}

#left, #right {
background-color: #DDF;
border: 2px solid #00C;

}

256

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 256



#header hr, #footer hr {
display: none;

}

The first rule applies some basic color and type information to the body element, information that is
inherited from each of its descendant elements in the document tree — that is, until we override it in the
second rule. By applying a different font-family value to the header elements in our document (h1
and h2), we can override the inheritance and apply a different style than the default. This should, we
hope, give them a bit more visual prominence in our rough-cut design.

The next three rules apply borders and background colors to the main sections of our document: a bright
green for our header, an eye-catching red for the footer block, and a striking blue for the left- and right-
hand columns. We’re going for contrast here, not panache — and as you can see from Figure 7-10, that’s
exactly what we have.

Figure 7-10: We’ve used CSS to apply some basic type and color information to our bare bones HTML
document.

257

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 257



Get Our Offset On: Introducing Our Positioning Rules
With a clearer understanding of where the boundaries of our different content elements lie, let’s now
begin to flesh out the layout (see Figure 7-11):

#left {
position: absolute;
left: 0;
top: 0;
width: 175px;

}

#right {
position: absolute;
right: 0;
top: 0;
width: 175px;

}

Figure 7-11: Absolute positioning allows us to place the left- and right-hand columns —
however, we’re not out of the woods yet.

These two selectors move the left and right blocks out of the normal document flow, and position them
absolutely. Each div has been given an explicit width of 175 pixels, and is then catapulted to the top of
the window (top: 0;). The horizontal offsets we’ve specified (left: 0; for #left, and right: 0; for

258

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 258



— you guessed it —#right) further complete the effect, and create the beginning of our three-column
layout. The “left” and “right” blocks begin to live up to their names, and columns begin to take shape.

But, as you can see, the layout is far from complete. The left- and right-hand columns overlap the
header, footer, and content divs. By applying absolute positioning to these two blocks, we’ve completely
removed them from the normal document flow. This means that, while we’ve been able to place them
with pixel-perfect precision, the other elements in the document flow no longer need to reserve space for
them. To get our layout up and running, we’ll need to take a few extra steps.

Remembering to Keep It Absolutely Relative
As we begin to puzzle through this issue, it’s helpful to remember that the only reason the two blocks
are positioned relative to the html element is that they aren’t descendants of a positioned element. What hap-
pens if we change that?

In Listing 7-3, let’s wrap the three non-header blocks in a div titled “container.”

Listing 7-3: Applying a container to Our Markup

<div id=”header”>
<p>How do you like them apples?</p>
<hr />

</div>
<div id=”container”>

<div id=”left”>
<h2>This is the left column.</h2>
<!-- More content here -->

</div>
<div id=”right”>

<h2>This is the right column.</h2>
<!-- More content here -->

</div>
<div id=”content”>

<h1>Welcome to my page layout.</h1>
<!-- More content here -->

</div>
</div>
<div id=”footer”>

<hr />
<p>Them apples were <em>tasty</em>.</p>

</div>

Granted, this container doesn’t add much to the document’s overall semantic worth — it’s what markup
purists might term a presentational hack, an element added for the sole and simple reason of achieving
some goal in our design. But with this container div in place, we can apply a three-line CSS selector
upon it that will restore some measure of sanity to our site’s layout (see Figure 7-12):

#container {
position: relative;

}

259

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 259



Figure 7-12: With position: relative; applied to our new container block, the left- and 
right-hand columns’ top edges are now contained within their parent. But what about 
our page’s content?

Because the container div can now be considered a positioned element, it establishes a new context for
all of the positioned elements that descend from it — you guessed it, the left and right column blocks.
The left, top, and right offsets are no longer relative to the dimensions of the html element, but of the
container div. This means that as the container element expands and grows horizontally, the left and
right blocks will reposition themselves to suit. If, say, the vertical size of the header block increases (see
Figure 7-13), then the new horizontal position of the container div will be reflected in its absolutely posi-
tioned children.

But, while we’ve made the header visible once again, the bulk of our page is still unreadable. The con-
tent and footer still must be “saved” from their absolutely positioned brethren. Given that the content
area needs to be flexible, how exactly do we do that?

260

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 260



Figure 7-13: We can edit the content before the container without breaking our 
nascent layout.

Thankfully, we don’t need to resort to any more fancy positioning footwork. Since we know the width
of each of the side columns is a fixed 175 pixels, we can use the box model to escape our content block,
like so:

#content {
margin: 0 190px;

}

Here, we’ve settled upon 190 pixels for the two horizontal margin values: 175 pixels for the width of a
side column, plus a healthy 15 pixels of white space. By applying these margins to the left- and right-
hand sides of the inner block, the calculated width of the block is compressed and fits nicely within the
visible space between the two sidebar columns (see Figure 7-14).

261

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 261



Figure 7-14: By adding padding to the content div that corresponds to the width of 
the flanking side columns, we can create the illusion of a middle column distinct 
from those on either side.

If we temporarily remove the columns from our markup (or hide them with CSS), we can better see
what’s at play here (see Figure 7-15). While the dimensions of the content block aren’t affected by the
two side divs (and vice versa), we’ve used CSS to create the illusion that it does. Any changes to the
width of the window will cause the entire page’s contents to reposition themselves.

262

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 262



Figure 7-15: Let’s temporarily delete the left- and right-hand columns from our 
markup to see how the margins affect the content div.

Sadly, we’re not nearly as done as Figure 7-14 might lead us to believe. While we’ve gained quite a bit of
mastery over the top-edge and horizontal positioning of our page’s layout, the footer we’ve created is in
a bit of a precarious spot. While our sidebar elements are positioned relative to the container div, they
aren’t sized relative to it. If their height exceeds that of their container, bad things can easily happen to
elements that appear beneath them in the design. Figure 7-16 shows this in action. By adding a few addi-
tional paragraphs to the right-hand block, the footer quickly becomes obscured again.

263

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 263



Figure 7-16: Adding a few additional paragraphs causes an overlap between the 
absolutely positioned column and the static element that succeeds it.

As we’ve seen before, elements in the regular document flow (such as the header, content, and footer
blocks) obey a different positioning context than absolutely positioned elements, and vice versa. This is
what causes the overlap we first saw in the header and content blocks, and that we’re faced with again
on the footer. Thankfully, we can apply the same logic used on the content block. With our understanding
of the box model, we can define margins around the footer div, once again creating the illusion that the
middle “column” exists independently of those on either side of it.

So, in some fashion, we must apply the same 190-pixel-wide margins to both horizontal sides of the
footer div. With the rest of our layout in place, we have two options:

❑ Write a new CSS selector that applies margins to the footer element.

❑ In the markup, move the footer div into the content block. This will then effectively contain the
footer within its own calculated width.

Either solution will have the same effect — whether the margins are applied to the footer div itself or a
container, the effect will be the same (see Figure 7-17). The footer will always appear between the two
sidebars, if not always below them. This is a problem that even Fast Company is forced to reckon with,
as we can see from Figure 7-18.

264

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 264



Figure 7-17: By applying the same margins to the footer div, we create the illusion
of “escaping” it from the absolutely positioned elements that overlap it.

To prevent any overlap from the absolutely positioned sidebars, Fast Company opted to place the footer
div within the main content block. However, when the height of the sidebar columns exceeds the height
of the central column, the footer will appear significantly higher than the bottom of the page.

This is a serious shortcoming of the absolute positioning model. An absolutely positioned element can
be removed from the document flow and placed with uncanny position on the page, true — but what
severely limits absolute positioning as a design tool is its blindness to the context of elements surround-
ing each positioned element. Absolutely positioned elements can overlap not only non-positioned ele-
ments, but other position: absolute;–enabled blocks as well. This is why many CSS designers rely
more heavily on the float model to control their layouts.

There are, in fact, non-CSS solutions to the “bottom blindness” of the absolute positioning model.
Shaun Inman, a well-known Web designer and developer, wrote some rather elegant JavaScript
(www.shauninman.com/mentary/past/absolutely_positive.php) to automatically clean
up any overlap that resulted from absolute positioning.

Of course, any workarounds (CSS, markup, or otherwise) should be thoroughly tested before they’re
applied to our sites. While they may address the issue at hand, they add an additional layer of support
and maintenance to which we should be prepared to commit.

265

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 265



Figure 7-18: On this page, the height of the two sidebar columns is greater than that 
of the central content area. As a result, the “footer” no longer appears at the bottom 
of the page.

Battling Browser Bugs
Where are we now? Well, our layout’s looking sharp in our browser of choice, the markup is valid, and
our style sheet is selecting with ninja-like precision. So, naturally, our design is looking perfect in all
browsers known to humanity, right? Right?

If we honestly believed that, we’d be riding the slow boat to Depressionville more than we care to think
about. While contemporary browsers do enjoy rich support for cascading style sheets, the level of sup-
port between them varies quite drastically — as we like to say, all browsers are created unequal.
Unfortunately, valid code does not equal a perfect display across today’s browser landscape. Because of
the small army of bugs each browser brings to the table, we must thoroughly test our code across the
board. And, more often than not, we must introduce browser-specific hacks to ensure that our design
displays as intended for all members of our audience.

Let’s take a look at two bugs in our layout and investigate some workarounds.

266

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 266



Macintosh Internet Explorer 5
Upon opening our three-column layout in Internet Explorer 5 for the Macintosh, all seems to be display-
ing just fine — that is, until you notice the very bottom of the browser window (see Figure 7-19). To fix
this little hiccup, let’s see if we can’t isolate the bug. Because we’ve validated our style sheet and our
markup, we can eliminate invalid code as the issue. From there, we’ll triage our troubleshooting
approach: first, we’ll try editing parts of the markup to see if we can restrict the issue to one particular
section. From there, we’ll see if editing style rules applied to that section of the document resolves the
bug. Once we’ve established what is causing the bug, we can better create and apply a patch to fix it.

Figure 7-19: How’d that horizontal scroll bar get there?

Appendix D has some other great tips for working through browser-related issues.

With this process firmly in mind, let’s see if we can’t isolate the bug in the markup. Since the issue is
occurring on the right-hand side of the page, perhaps that’s a good place to start. If we temporarily
remove the entire “right” div from the markup and reload the page, then our suspicions are confirmed:
the horizontal scroll bar is gone! Removing the rightmost column establishes that it was at the heart of
our scroll bar bug (see Figure 7-20). But now that we know the where of the bug, how do we determine
exactly what is causing it? And more important, how do we fix it?

267

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 267



Figure 7-20: When in doubt, delete.

What follows is an occasionally frustrating goulash of coding, deleting, Web searching, and testing.
Because each browser has its own set of idiosyncrasies, it can be frustrating to encounter each for the
first time. Once you gain more experience with these bugs and how to work around them, the debug-
ging process becomes much less time-intensive — and less frustrating as well. Until browsers have more
uniform support for Web standards, however, such testing phases are going to be a fixture in any design
project for some time to come. We’re compelled to guess we’ll be waiting for that until a certain place
freezes over, but the eternal optimist must press on.

After a bit of experimentation, we hit on a small breakthrough. Changing the value of the right prop-
erty can make the scroll bar disappear. Specifically, anything greater than or equal to 15 pixels will fix
the bug; anything less, and we’re scrolling until the cows come home. But applying this fix isn’t an ideal
one, as our layout doesn’t exactly look perfect (see Figure 7-21).

So, while we’ve removed the scroll bar, the right-hand column is no longer flush against the edge of the
window. If possible, we should fix this. Let’s take a look at what we’ve established so far:

1. Even though we have no margin set on the right div, IE5/Mac seems compelled to supply a
“hidden” margin of 15 pixels.

2. Therefore, IE5/Mac sees margin-right: 0; as margin-right: 15px;.

268

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 268



Figure 7-21: Changing the right property of our #right selector to 15 pixels removes 
the scroll bar, but the positioning is a bit off.

From this, wouldn’t margin-right: 15px; translate to margin-right: 0; in IE5/Mac-speak? Let’s try
editing our #right selector:

#right {
position: absolute;
right: 0;
top: 0;
width: 175px;

}

Now, let’s see if we can’t apply some IE-friendly fuzzy math:

#right {
position: absolute;
margin-right: =15px;
right: 15px;
top: 0;
width: 175px;

}

Let’s reload and see what happens (see Figure 7-22).

269

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 269



Figure 7-22: With our hack applied, the horizontal scroll bar has been removed in IE5/Mac.

Voilà! With our workaround in place, things are looking sexy once again. By catering to IE5/Mac’s ren-
dering quirk, we’ve restored order to that browser.

Furthermore, initial tests seem to indicate that these two new lines don’t have any adverse effects on
more well-behaved browsers. However, just to be safe, we can easily isolate the “hack” from the real
rule:

#right {
position: absolute;
top: 0;
right: 0;
width: 175px;

}

/*\*//*/
#right {

margin-right: =15px;
right: 15px;

}
/**/

270

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 270



The first rule is our original #right selector that we’ve been using throughout the chapter; the second
rule contains the one-two property values that iron out the display issue in IE5/Mac. Surrounding that
second rule, however, is the IE5/Mac Band Pass Filter (see Chapter 2 for more information). This odd-
looking sequence of characters makes the second rule invisible to all user agents but IE5/Mac, ensuring
that all of the browsers that get the math right won’t be affected by a browser-specific hack.

One bug down, one to go — let’s move on.

As mentioned in Chapter 2, you can create separate browser-specific style sheets, each containing a host
of hacks for that browser’s idiosyncrasies. The benefit to (and details of) this approach is discussed in
detail in that chapter, but suffice it to say that it leaves your core CSS files free of hacks — and as a
result, easier to maintain.

Windows Internet Explorer 5.x+
As Figure 7-23 shows, opening our test page in any of the Windows versions of Internet Explorer —
5.0, 5.5, or 6.0 — left much to be desired.

Having just fixed a bug with the #right block, we’re now faced with the exact opposite problem! Well,
almost. Rather than being flush to the leftmost edge of the window, the left-hand column seems to be
stuck inside the content block. After going through some of the steps outlined in our IE5/Mac debug-
ging session — delete/revise the markup, tweak the CSS — nothing seems to work.

Figure 7-23: Now that ain’t right — or more specifically, that ain’t left.

271

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 271



Thankfully, a quick search online yields some information about a known IE/Win bug. When dealing
with a box without stated dimension (as we are with the container div), IE/Win has some trouble ini-
tially drawing the box in such a way to sufficiently contain its descendant elements. To work around the
issue, we must tell IE/Win that, “Yes, the box does indeed have a stated dimension — and if it isn’t too
much trouble, we’d like it to draw it properly.”

To that end, an IE-specific workaround known as The Holly Hack (http:// positioniseverything
.net/articles/hollyhack.html) comes to the rescue:

/* hide from Mac IE5 \*/
* html #container {

height: 1%;
}
/* END hide from Mac IE5 */

Named after its creator, Holly Bergevin, the Holly Hack is in fact two hacks in one. The backslash at the
end of the first comment is a hack that causes IE5/Mac to ignore everything up to the second closing
comment line. The selector in the second begins with a universal selector (*), followed by html, which is
in turn followed by a selector for the problematic element — here, the container div. As it turns out, IE
browsers on both the Windows and Macintosh operating systems recognize an invisible element
wrapped around the <html> element. Known as the Star HTML Hack, the use of the universal selector
before the html selector will work only in IE browsers. Therefore, because IE5/Mac isn’t affected by this
particular layout bug, we’ve used the comment hack in the first line to hide the rule from that browser.

With a height of 1 percent applied, let’s see how our layout looks now (see Figure 7-24).

Figure 7-24: One quick hack later, and we’re cooking with gas once more.

272

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 272



Our 1 percent height rule managed to kickstart IE’s buggy rendering engine. By supplying it with an ini-
tial (if microscopic) height for the container block, IE knows to expand that block to surround its descen-
dants (which, honestly, it should anyway — but let’s not wait for that browser to make our lives easier).

After this bout of debugging, we’ve determined that our three-column framework is holding up
admirably in all the browsers we’ve tested. However, what we’ve built so far is missing one crucial com-
ponent. Let’s turn to the last component needed to round out our imitation of the FastCompany.com lay-
out, and put this three-column layout to bed.

Setting Some Boundaries: 
The max-width Property

The final piece of the Fast Company puzzle is the flexible nature of the design. Currently, our layout
expands to fill the entire width of the browser window, no matter how small (or wide) it may be. At
larger window sizes, the lines of text in our fluid design can become almost unmanageably long, making
it difficult to read. To mitigate this issue, Dan Cederholm and the Fast Company Web team decided to
apply the max-width property to the container block on each page.

max-width is a handy CSS property that does exactly what it says: It establishes the maximum width for a
given element. Let’s apply this property to our own design and see what comes of it. As the Fast
Company site settled upon a max-width of 1,000 pixels, we’ll follow suit:

#header, #container {
max-width: 1000px;

}

After refreshing, the difference might not be evident. However, once we begin to increase the width of
our browser window, the property’s effects are readily apparent (see Figure 7-25).

As the browser window expands or contracts, our design remains flexible enough to follow suit.
However, once the width of the window exceeds 1,000 pixels (the value set in our max-width property),
our page’s layout stops scaling. With the max-width property, we’ve placed an implicit cap on the hori-
zontal width of our page, ensuring a level of flexibility in our design that doesn’t impede the ability of
users to easily scan our content.

Unfortunately, max-width is a part of the style sheet specification that doesn’t enjoy widespread
browser support. Or, to be more specific, it enjoys incredibly robust support in your browser — unless, of
course, your browser happens to be Internet Explorer. As of the writing of this book, the most prevalent
browser on the planet turns a blind eye to this handy property, as well as other related properties such as
min-width, min-height, and max-height. Given IE’s inability to interpret them, each of these proper-
ties is relegated to the realm of the theoretical, of the best ideas we can’t currently rely upon.

273

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 273



Figure 7-25: The max-width property places a cap on the width of the content area — do not
pass “Go,” do not collect $200.

800x600

1024x600

1280x600

274

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 274



Thankfully, this lack of support doesn’t prevent us from using these techniques. Instead, our design will
fill the entire horizontal space of browsers that don’t support the max-width property (see Figure 7-26).
In this respect, Dan’s application of max-width to the Fast Company design was a bold move in support
of progressive enhancement. By serving increasingly advanced layers of design functionality to more mod-
ern browsers while keeping their site accessible to all, Fast Company enables the widest audience possi-
ble to access its content — a move sure to keep users and business stakeholders alike very happy.

Figure 7-26: In browsers that don’t respect the max-width CSS property (such as Internet Explorer on
the Mac, shown here), the page layout will simply expand to the width of the window.

A number of workarounds are available online to force Internet Explorer to support useful CSS proper-
ties such as max-width (one example is http://svendtofte.com/code/max_width_in_ie/).
However, many of these solutions involve introducing IE-only properties into your CSS — be wary of
this, as proprietary code will invalidate your style sheet and could adversely affect other, more-compli-
ant browsers.

Additionally, Dean Edwards has written “IE7” (http://dean.edwards.name/IE7/), a library of
JavaScript modules that improve Internet Explorer 5+’s support for the CSS specification. As a
JavaScript-only solution, Edwards’ work has no chance of invalidating your style sheets. However, be
sure to test and evaluate it fully before using it in a production environment.

275

FastCompany.com: Building a Flexible Three-Column Layout

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 275



Summary
Our whirlwind tour of the Fast Company layout began with a blank slate: the default, normal flow of an
unstyled document. From there, we examined how CSS positioning could be used to override this
default scheme, and allow us to remove elements from their normal place in the document flow. This
understanding of absolute and relative positioning provided us with the building blocks for reconstruct-
ing the Fast Company layout. By using a combination of absolutely positioned blocks contained within a
relatively positioned parent, we could create a flexible, three-column layout in the style of Fast
Company. And with a minimal amount of CSS hacking, we’ve established a style foundation that’s look-
ing quite smart across all modern browsers, one that we can flesh out with additional content and infor-
mation.

With this bulletproof framework in place, let’s look ahead to the next chapter. In it, we’ll discuss how we
might allow our users to further customize our site’s design, meeting their needs while simultaneously
furthering the needs of our own site.

276

Chapter 7

09_588338 ch07.qxd  6/22/05  11:26 AM  Page 276



Stuff and Nonsense:
Strategies for CSS

Switching

We wish we had some kung fu–esque robes handy. This is the chapter where we tell our dear readers
to forget all that we have taught them about CSS so far, to look beyond the surface of the pool and
discover the truth within the truth . . . or something like that.

Honestly, we’re more fun at parties than we might seem.

After seven chapters, it’s worth remembering that as convenient as it is to site designers, cascading
style sheets can also drastically improve the online experience for the users of our sites. In Chapter
2, you saw briefly how the cascade was written with our users’ needs in mind, that user style
sheets are ultimately given precedence over the author style sheets we write. The authors of the
specification didn’t do this to spite those that design for the Web, but rather to empower those
who read it.

After all, the true wonder of the Web is its promise of universal access: an avenue through which a
user can gain instant and complete entry to any topic, from anywhere in the world. In fact, much
of the mantle we don as Web designers is to realize that promise — to make sites that are at once
visually compelling and with an interface that presents no barrier to entry.

However, we’ve slowly come to realize that our understanding of our audience has been incom-
plete at best. While we focused on setting the type on our pages 9 pixels high in the early days of
the Web, our development was focused on having sites “look right” on contemporary desktop
browsers. But in recent years, our understanding of our users’ needs has matured. People with
physical, hearing, visual, or cognitive disabilities have always been using our sites; it’s just taken
us some time to realize it. So, it’s only in recent years that our definition of “accessibility” has
flowered, and our site-building techniques have followed suit.

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 277



While some designers may tell you that building an accessible site means building a boring site, we’d
fling their pooh-pooh right back at them. Accessibility isn’t about larger fonts and creating high-contrast
guidelines. Some users of the Web can read only smaller texts, while others can see only yellow text on a
black background. Rather, many of the design techniques explored throughout this book — semantic,
well-structured markup, a separation between content and presentation — can and will afford us incred-
ible leverage in building professional, inspiring designs and simultaneously improve the accessibility of
our sites for all of our users, not just a select few. In short, we can better realize the Web’s potential for
universal access, and make some ultra-sexy sites to boot.

Ultimately, this chapter is not a manifesto on accessibility, space allotments and our meager skills being
the largest impediments. Instead, we will explore different techniques for democratizing our design
through the use of style sheet switching. By applying a different CSS file to a markup document, we can
drastically change any or all aspects of its design — the layout, typography, or color palette. This tech-
nique may hold incredible appeal to designers because it exponentially decreases the amount of over-
head required to redesign a site. But, as you’ll see, this technique can wield incredible benefits to our
site’s users, allowing them fine-grained control over a page’s presentation and, in turn, better access to
the content therein. After all, it’s about throwing the gates as wide open as possible.

Let’s dive right in.

Laying the Foundation
As with other chapters, let’s begin with a valid XHTML document. For the purposes of our style sheet
switching experiments, the document in Listing 8-1 will do nicely.

Listing 8-1: The Markup Foundation for Our Style Switcher Experiments

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Always offer an alternative.</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

</head>

<body>

<div id=”container”>
<div id=”content”>

<h1>Always offer an alternative.</h1>

<p><span class=”lead”>Lorem ipsum dolor sit amet,</span> consectetuer
adipiscing elit. Nullam tortor. Integer eros...</p>

278

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 278



<p id=”blurb”>This is, as they say, a &#8220;pull quote.&#8221;</p>

<p>Donec id nisl...</p>

<h2>Additionally, you might consider...</h2>

<p><img src=”portrait.png” alt=”An author’s handsome (if pixellated) mug”
class=”portrait” />  Quisque sit amet justo. Cum sociis...</p>

</div>
</div>

</body>
</html>

By now, this sort of markup should, we hope, feel rather old hat to you. The markup is simple, yet well
meaning, with proper heading elements (h1 and h2) applied to suit their position in our (admittedly
nonsensical) document’s outline. Paragraphs have been marked up as such via the <p> element, with
one earmarked with an id of “blurb” so that we might later style it differently than its siblings. And just
to spice up the layout a bit, we’ve included a pixel illustration of one of our authors. Sorry, no door
prizes are available for guessing which one it is.

Figure 8-1 shows you just how humble our beginnings are.

Figure 8-1: Our unstyled XHTML document, partying like it’s 1994

279

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 279



And again, as always, we can apply a rough style sheet to this document, and slap a bit of mascara on
that otherwise unimpressive wall of serifs. To begin, let’s create a new style sheet called core.css, and
include the rules in Listing 8-2.

Listing 8-2: The core.css Style Sheet

/* default font and color information */
body {

background: #FFF;
color: #444;
font: 62.5%/1.6em “Lucida Grande”, Verdana, Geneva, Helvetica, Arial, sans-serif;

}
/* END default font and color information */

/* default link rules */
a {

color: #C60;
}

a:hover {
color: #F60;
text-decoration: none;

}
/* END default link rules */

/* headings */
h1, h2 {

color: #B61;
line-height: 1em;
font-weight: normal;
font-family: Helvetica, Arial, Geneva, Verdana, sans-serif;
margin: 1em 0;
padding: 0;

}

h1 {
font-size: 2.2em;

}
/* END headings */

/* container */
#container {

margin: 0 auto;
max-width: 60em;

}
/* END container */

/* content */
#content h2 {

font-size: 1.2em;
text-transform: uppercase;

}

280

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 280



#content p {
font-size: 1.1em;
line-height: 1.6em;

}

#content img.portrait {
float: right;
margin: 0 0 1em 1em;

}

#content span.lead {
text-transform: uppercase;

}

#content #blurb {
background: #FFC;
border: 1px dotted #FC6;
color: #000;
font-size: 1.5em;
line-height: 1.4em;
padding: .5em;
text-align: center;

}
/* END content */

Pardon us while we pause for breath — that was a bit of a rush, wasn’t it? Rather than adding a few
selectors at a time and discussing the visual result, we’re taking a less Socratic approach in this chapter.
The focus here is less upon the techniques the style sheet contains than upon the end result gained by
switching them. After all, this CSS is merely a placeholder, one that could easily be replaced by your
own efforts. With that, we won’t bother to preen over this one. However, following are a few techniques
worth briefly describing.

❑ #container { margin: 0 auto; }. While some in the audience might be tut-tuting our use of a
div with no real semantic worth, our #container establishes a handy means of controlling the
width of the content within it. Setting left- and right-hand “auto” margins (0 auto;) allows us
to horizontally center the div within its parent element — namely, the body of our markup.

The only issue with this approach is a slight one. Versions 5.x of Internet Explorer on Windows
doesn’t properly implement auto-margins, and will, therefore, not understand this rule. As a
result, we need to apply text-align: center; to the body element. Granted, this is an incor-
rect interpretation of the text-align property (designed to control the inline content of a
block, and not the block itself), but it nonetheless puts IE5/Windows back in its place. But, by
applying body { text-align: center; }, IE5/Windows also centers all of the text on the page.
Thankfully, once we set #container { text-align: left; }, our work is finally finished.

❑ #container { max-width: 60em; }. Setting the max-width property completes the effect,
ensuring that the #container element never gets larger than 60ems. If the user reduces the size
of his or her window below the width of #container, then the div will shrink accordingly. In
short, it’s a no-hassle way to gain a truly flexible layout.

281

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 281



The largest drawback to the max-width property is Internet Explorer’s complete lack of support
for it. Neither the Macintosh nor the Windows version of that browser will understand max-
width. As a result, we have to serve up a defined width to IE. We’ve decided upon width:
60em;, but you might also opt to choose a more flexible percentage width. Serving this alternate
value to IE and IE alone can be done through the judicious use of a CSS hack, or (our favorite
method) by placing the “incorrect” value in a separate style sheet with browser-specific hacks.
Chapter 2 discusses both of these concepts in more detail.

❑ body { font: 62.5%/1.6em “Lucida Grande”, Verdana, Geneva, Helvetica, Arial, sans-
serif; }. The font property we’ve set on the body element is actually a shorthand property. Here,
we’ve declared the font-size (62.5%), line-height (1.6em) and font-family (Lucida Grande,
Verdana, Geneva, Helvetica, Arial, sans-serif;) in one handy-dandy property/value pair.
And furthermore, because these values are inherited by the body’s descendant elements, we’ve
immediately applied a basic type profile to the entire document with this one rule.

The 62.5 percent value for font-size is a technique first publicized by Web designer Richard
Rutter (“How to Size Text Using ems,” http://clagnut.com/blog/348/). Because the default
text size for all modern browsers is 16 pixels, setting font-size: 62.5%; on the body nets us a
default type height of 10 pixels (16 × 0.625 = 10). From there, sizing descendant elements with
ems (a relative unit of measurement) becomes much more logical: 1em is 10px, 1.6em is 16px,
.9em is 9px, and so forth. Rather than using pixels throughout our document (which IE users
cannot resize), this method gives us a near-pixel-perfect replacement for our typesetting, and
one that allows users to resize text to a size that suits their needs.

❑ #content img.portrait { float: right; }. The oh-so-handsome pixel portrait is aligned
flush with the rightmost edge of its containing paragraph. But rather than resorting to depre-
cated markup techniques such as <img src=”blah.gif” align=”right” />, we’re using the
powerful CSS float model to achieve the same effect. We recommend that you read CSS guru
Eric Meyer’s excellent article on “Containing Floats” (http://complexspiral.com/
publications/containing-floats/).

With a better grip on some of the more clever points in our style sheet (as if that says much), we could
easily paste this entire chunk of code into a <style type=”text/css”>...</style> block in the head
of our document. Of course, that would muddy our markup with presentational information — and hon-
estly, who wants to hunt down style information across a few hundred XHTML documents? That’s right,
some call it “adhering to a strict separation between structure and style.” We call it “lazy.”

In either event, let’s create a second style sheet, and name it main.css; at the top of that new file, we’ll
use the @import command to invoke our core.css file, like so:

@import url(“core.css”);

We’ve effectively created a “wrapper” style sheet — a CSS file that acts as a gateway to other style sheets.
With this main.css file in hand, we can now include it — and with it, core.css— in our XHTML with
one simple link element, placed in the head of our document:

<link rel=”stylesheet” href=”main.css” type=”text/css” />

And voilà! Our rather plain-looking document suddenly gets a bit of personality in Figure 8-2.

282

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 282



Figure 8-2: Applying some basic styles to our XHTML makes it a bit more readable.

After creating this seemingly superfluous main.css file, there might be some head-scratching in the
audience. But rest assured, there are some very good reasons for putting this file in place. Although it
wasn’t designed as such, the @import rule is a kind of litmus test for a browser’s support of advanced
CSS techniques. Legacy browsers that have broken CSS implementations don’t understand the @import
rule, and will simply disregard it. This allows us to serve up high-octane style sheet rules to modern
browsers, while such antiquated browsers as versions 4 and below of Netscape and Internet Explorer
will simply ignore the style sheets that they wouldn’t otherwise understand.

An added benefit to this intermediary style sheet is that we can place multiple @import rules therein.
This could come in handy if we needed to break our site’s presentation into multiple files (for example,
one for layout, another for color, yet another for typography). Or even better, we can use this technique
to manage our various CSS hacks, as we saw in Chapter 2. As you test the CSS in Listing 8-3, you may
find that the different versions of Internet Explorer (both on the Macintosh and Windows platforms)
break different aspects of the layout. While we could use a battery of style sheet hacks within our
core.css file to serve up alternate property values to these browsers’ broken CSS implementations,
Listing 8-3 shows how we might use our wrapper style sheet to include browser-specific CSS hack files,
which allow us to keep our main.css file clean and hack-free.

283

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 283



Listing 8-3: A Revised core.css File, with Intelligent Hack Management

@import url(“core.css”);

/* Import WinIEx-only bugs - hide from Mac IE5 \*/
@import url(“hacks.win.iex.css”);
/* END hide from Mac IE5 */

/* Import Win IE5x hacks */
@media tty {

i{content:”\”;/*” “*/}} @import ‘hacks.win.ie5.css’; /*”;}
}/* */

/* Import Mac IE5 hacks */
/*\*//*/
@import url(“hacks.mac.ie5.css”);
/**/

We’ve already discussed the CSS hacks needed to get our page looking good in less-than–CSS-savvy
browsers, and triaging the different hacks into browser-specific files is an excellent way to keep our
core.css file clean and hack-free. If we ever decide to drop support for a certain browser, we now need
to remove only a few lines from main.css— definitely a more appealing thought than scouring our pri-
mary style sheet rules line by line, looking for CSS hacks. Again, it’s equal parts “strategic” and “lazy”
here at CSS Best Practices Headquarters.

Now that we’ve put our CSS and XHTML firmly in place, we can delve into the mechanics of style sheet
switching.

CSS Switching
One fault of our page’s current design is that legibility wasn’t one of our guiding design goals. The con-
trast is a bit light, as we opted to use a near-black color for the text against the body’s white background.
And the default font size of 62.5 percent of the browser’s default (or roughly 10 pixels) might be difficult
to read for users suffering from visual impairments. (Even a reader with slight myopia might have to
work at reading our content.) How can we improve the design to make it more legible, without sacrificing
our original vision?

To begin, let’s create a separate style sheet that addresses some of these possible pitfalls. In Listing 8-4,
we’ve created a new CSS file named contrast.css.

Listing 8-4: The contrast.css Style Sheet

body {
background: #000;
color: #DDD;

}

284

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 284



h1, h2 {
color: #FFF;
font-weight: bold;

}

#content {
font-size: 1.1em;

}

#content h2 {
font-size: 1.6em;
text-transform: none;

}

#content #blurb {
background: #222;
border-color: #444;
color: #FF9;

}

span.lead {
font-weight: bold;

}

Now let’s simply add a link to our new contrast.css file in the head of our markup, like so:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”stylesheet” href=”contrast.css” type=”text/css” />

When we reload the document in our browser, Figure 8-3 shows us that the landscape has changed
pretty drastically.

First and foremost, it’s worth mentioning that because the two CSS files are being included in tandem,
we don’t need to use contrast.css (Listing 8-4) to re-declare any of the layout or type rules estab-
lished in main.css. Rather, we can simply selectively override individual rules and/or property values,
and let the rules of specificity handle which rules cascade to the user.

From a purely aesthetic point, we’ve instantaneously changed the presentation of our markup — and all
by including the new contrast.css file. The off-black text has been replaced with pure white, the text
size has been increased very slightly (from 1em to 1.1em), and the colors on our pull quote have been
changed to reflect the new palette. The completed effect feels much more nocturnal — but more impor-
tant, we’ve created a style sheet that allows users to enjoy a higher level of contrast, as well as a slightly
more legible type size.

But we’ve still not settled our original problem. How do we switch between the two style sheets? We
grew pretty attached to that white, open design — it would be a real shame to lose it, wouldn’t it?

Oh, at least pretend it’s pretty. Please?

285

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 285



Figure 8-3: Now we’re on our way, as we’ve added a supplementary style sheet that 
provides heightened contrast and an increased font size.

The Mechanics: How It’s Supposed to Work
Thus far, we’ve associated two separate CSS files with one document. Currently, they’re both being read
and applied to the document with equal weight, with the rules of specificity resolving any conflicts that
may arise between the two. However, to accommodate more complex scenarios than the one we cur-
rently have, the HTML and CSS specifications outline structured guidelines for how multiple style
sheets interact. Web page authors are given a number of ways to prioritize the style sheets we include
via the link element. Let’s examine the three different classes of style sheets (no pun intended), and see
how they might apply to our switching scenario.

Persistent Style Sheets
Persistent style sheets are always enabled. Think of them as CSS that is “turned on” by default. The per-
sistent CSS file will be applied in addition to any other style sheets that are currently active, and acts as a
set of shared style rules that every other style sheet in the document can draw upon.

286

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 286



Each link element with a rel attribute set to “stylesheet” is a persistent style sheet — and, in fact,
we’ve created two already:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”stylesheet” href=”contrast.css” type=”text/css” />

As we add additional kinds of style sheets, any links that we designate as persistent will act as the
baseline, sharing their rules with all other included CSS files.

Preferred Style Sheets
By adding a title to a persistent style sheet, we can designate a style sheet as preferred, like so:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”stylesheet” title=”Higher Contrast” href=”contrast.css” type=”text/css”
/>

Additionally, we can specify multiple “groups” of preferred style sheets by giving them the same title
attribute. This allows the user to activate (or deactivate) these groups of CSS files together. Should more
than one group be present, the first group will take precedence.

Much as with persistent style sheets, preferred CSS files are enabled by default. So, in the previous
example, our contrast.css file (refer to Listing 8-4) would be enabled when the user first visits our
page (borrowing, as it did before, from our persistent main.css file). However, preferred style sheets
are disabled if the user selects an alternate style sheet.

Alternate Style Sheets
An alternate style sheet can be selected by the user as, well, alternatives to a CSS file marked as preferred
by the site’s author. To designate a link as an alternate style sheet, it must be named with a title
attribute, and its rel attribute set to “alternate stylesheet”. As with preferred style sheets, we can
group links together by giving them identical title attributes. So, in short, this is what we’ve been
looking for — a means through which we can allow users to select the design that best suits their needs.
If we do, in fact, want main.css to be the default and contrast.css to be an optional, alternate CSS
file, then we should update our two link elements to match:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”alternate stylesheet” title=”Higher Contrast” href=”contrast.css”
type=”text/css” />

Now, viewing the page in a browser that supports style sheet switching, the user can finally control the
display of the page. Browsers such as Firefox or Opera include an option to select our new alternate style
sheet, as shown in Figure 8-4.

287

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 287



Figure 8-4: By changing the rel attribute of the second link element to “alternate 
stylesheet” and supplying a title, we’ve implemented some basic style switching.

Once the user selects Higher Contrast from the menu, the alternate style sheet with that title — namely,
contrast.css— becomes active. So, we’ve finally settled on the solution we were looking for. Our
original design is the active default, but we’ve created the means through which users can select another
design altogether. Using this method, we can add even more alternate CSS options. Let’s create a file
named hot.css and use the rules in Listing 8-5.

Listing 8-5: The hot.css Style Sheet

body {
background: #000 url(“bg-stylish.jpg”) no-repeat 50% 0;
color: #DDD;

}

h1, h2 {
color: #FFF;
font-weight: normal;
text-align: center;
text-transform: none;

}

288

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 288



#content {
font-size: 1.1em;

}

#content h1 {
font: 2.6em Zapfino, “Gill Sans”, Gill, Palatino, “Times New Roman”, Times,

serif;
margin: 200px 0 70px;

}

#content h2 {
font: 1.6em “Gill Sans”, Gill, Palatino, “Times New Roman”, Times, serif;
margin: 1.4em 0;
text-transform: uppercase;

}

#content #blurb {
background: #222;
border-color: #444;
color: #FF9;

}

span.lead {
font-weight: bold;

}

And now, by applying what we’ve learned about alternate style sheets thus far, we can easily present
hot.css (refer to Listing 8-5) to our users as another user interface option:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”alternate stylesheet” title=”Higher Contrast” href=”contrast.css”
type=”text/css” />
<link rel=”alternate stylesheet” title=”Gratuitous CSS” href=”hot.css”
type=”text/css” />

If our users have the ability to select another alternate CSS file from their browsers, then they’ll be able
to see our new styles as shown in Figure 8-5. And, as before, the change is a fairly drastic one — but
we’ve finally allowed the users to choose an appealing design and tailor our content to meet their needs.

289

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 289



Figure 8-5: With our understanding of how the cascade works, we can build even
more complexity into our alternate CSS documents.

Another Solution We (Almost) Can’t Quite Use
As with some of the most promising features of CSS, adoption of alternate style sheets would be more
widespread if browser support were more robust. As of this writing, the number of browsers that
natively allow users to select alternate style sheets is limited to Gecko-based browsers such as Mozilla or
Firefox, and the Opera browser. For example, Apple’s Safari has no way to select alternate or preferred
style sheets. And, you guessed it, Internet Explorer (the browser known and loved the world over) won’t
allow users to select the alternate user interfaces we build for them. If the world’s most popular browser
keeps this feature out of the hands of our users, then we have a bit more work to do yet.

290

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 290



Furthermore, the browsers that do natively support alternate style sheet switching have only a limited
switching functionality. While these browsers do allow the user to easily switch between the default CSS
and any alternates provided by the author, they do not remember the user’s selection. This means that, if
a reader selects an alternate style sheet and then reloads the page or leaves and returns to it, the browser
will forget the earlier choice and reinstate the default style.

Obviously, neither of these scenarios will work for our users. We’re lucky that there are some additional
steps we can take to bring the full benefits of CSS switching to them.

The Reality: How It Can Work Today
We’ve established that most of our audience won’t be able to use in-browser CSS switching (and identi-
fied those who don’t have much functionality available to them) so we must build an interface into our
page that allows users to overcome these limitations. Now, you might realize that the two client-side
technologies we’ve been studying up to this point aren’t especially well equipped to handle this. While
XHTML and CSS excel at describing and styling content, respectively, neither was designed to interact
with the user. Sure, we can use XHTML to build a list of links on the page as follows:

<div id=”switcher”>
<ul>

<li id=”style-default”><a href=”styleswitch.html”>Default style</a></li>
<li id=”style-contrast”><a href=”styleswitch.html”>Higher Contrast</a></li>
<li id=”style-hot”><a href=”styleswitch.html”>Gratuitous CSS</a></li>

</ul>
</div>

And we can add some CSS to core.css (refer to Listing 8-2) to style them accordingly, as shown in
Figure 8-6:

/* switcher styles */
#switcher ul {

text-align: right;
list-style: none;

}

#switcher ul li {
border-left: 1px solid;
list-style: none;
display: inline;
padding: 0 0 0 1em;
margin: 0 1em 0 0;

}

#switcher #style-default {
border-left: 0;
padding-left: 0;

}

#switcher ul a.now {
color: #000;

291

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 291



font-weight: bold;
text-decoration: none;

}
/* END switcher styles */

Figure 8-6: We’ve added the links for our switcher to the top of our page, but all 
they can do at the moment is look pretty — and we’re about to change that.

However, what happens when the user clicks on those links? If your answer was something akin to
“zilch,” then you win the blue ribbon. XHTML and CSS can’t really do anything when you’re talking
about responding to a user’s actions. They can, in turn, affect the content and the presentation of the
page, but when the user tries to click a link to change the active style sheet, that’s where we need to turn
to the third tool in the standards-savvy designer’s toolkit: JavaScript.

Jumping on the JavaScript Bandwagon
To put it simply, JavaScript was created as a client-side scripting language. JavaScript (or JS, to use the
parlance of lazy typists everywhere) is a language designed to add a layer of interactivity into our Web
pages. When a user visits a Web page that has some JavaScript code in it, the browser reads the JS, and
then follows any instructions that might be contained therein. Those instructions might tell the browser
to display helpful messages to a user as he or she completes a form, or to perform basic validation on the
data he or she enters there. We can even use JS to instruct the browser to perform a certain action when
the user clicks a link. In short, JavaScript is the means through which we bridge the divide between our
content and our users, allowing the latter to fully interact with the former.

Sounds intimidating (and more than a little stuffy), doesn’t it? Perhaps it’d be best to just dive right in.

292

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 292



Gathering Requirements
Before we begin a lick of coding, we should make sure that we understand exactly what it is that we’re
building. Just as we discussed the benefits of requirements gathering to a client project in Chapter 1, the
smallest development gig can benefit from some sort of needs analysis. With a better understanding of
what we need to build and the goals that what we are building should achieve, we can code more
quickly and efficiently — two qualities that will make our clients and us quite happy.

So let’s take a quick inventory of what we’re working with:

❑ We have three link elements in the head of our XHTML document that include screen-specific
CSS files: a persistent style sheet (main.css), and two alternate style sheets (contrast.css in
Listing 8-4 and the ultra-swank hot.css in Listing 8-5).

❑ Accordingly, at the top of our document we’ve created a list of three anchors, each correspond-
ing to a different style sheets. Granted, these anchors are about as useful as a road map in the
desert, but we’re going to change that shortly.

With this in mind, what exactly should our function do? Ideally, when a user clicks a link:

1. The function should cycle through each of the link elements in the head of our XHTML, and
inspect those that link to style sheets and have a title.

2. If the link matches the link that the user selected, then it should be set to be the “active” CSS.

3. Otherwise, the link should be set to “disabled,” which will prevent the browser from loading
the style sheet.

4. Once the function has finished setting the active link element, it should remember the user’s
choice. The style sheet the user selected will, therefore, remain “active” as the user browses
through the site, and the choice will be remembered if the user returns to our site during a later
browsing session.

How, you may ask, will we do all of this? Well, the solution ultimately involves a fair amount of pixie
dust and happy thoughts — but we shouldn’t get too far ahead of ourselves.

Building the Switching Function
With our goals firmly in mind, we can begin building our style sheet functions. Let’s create a new file
called scripts.js, and include the following markup in the head of our XHTML document:

<script type=”text/javascript” src=”scripts.js”></script>

Much as we’re using the link element to include external CSS files for our site’s presentation, we can use
the script element to reference an external JavaScript file. And, in that file, we can write in the first lines
that will power our CSS switcher. If JavaScript syntax looks a bit intimidating, don’t worry. We’ll simply
touch on some of the highlights, and get back to that “Professional CSS” malarkey as quickly as possible.

// activeCSS: Set the active stylesheet
function activeCSS(title) {

var i, oneLink;
for (i = 0; (oneLink = document.getElementsByTagName(“link”)[i]); i++) {

if (oneLink.getAttribute(“title”) && findWord(“stylesheet”,
oneLink.getAttribute(“rel”))) {

293

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 293



oneLink.disabled = true;
if (oneLink.getAttribute(“title”) == title) {

oneLink.disabled = false;
}

}
}

}

// findWord: Used to find a full word (needle) in a string (haystack)
function findWord(needle, haystack) {

return haystack.match(needle + “\\b”);
}

In this code snippet, we have two JavaScript functions, which are basically discrete chunks of functionality.
The two functions we’re looking at here are activeCSS() and findWord(). Each function contains a
series of instructions that are passed to the browser for processing. For example, when activeCSS is
invoked, it performs the following tasks:

1. It assembles a list of all link elements in our document (document
.getElementsByTagName(“link”)), and proceeds to loop through them.

2. For each link element found, it checks to see if there is a title available, and then evaluates
the rel attribute to see if the word “stylesheet” is present. The findWord() function is used
here to search the rel for a whole-word match only. This means that if someone accidentally
types rel=”stylesheets” or the like into their link element, our function ignores them.

3. Each link that meets the criteria in Step 2 will be disabled (oneLink.disabled = true;).

4. When the function is first invoked, an argument (or variable) is passed with the title of the
desired “active” style sheet. So, as the function loops through each of the link elements, it
checks to see if the title of the link matches the title of the function’s argument. If so, the link
element is reactivated.

Admittedly, this is a bit of a gloss of the functions’ syntax. JavaScript is a robust and rewarding language,
but we’re nonetheless forced to breeze through some of its subtleties to get back on the CSS track.
However, the preceding list demonstrates the high-level concepts at play in the code we’ve created, and
should provide a fine starting point for those interested in further exploring JavaScript’s elegant syntax.

While these two functions enable us to switch our CSS, they simply lie dormant until they are invoked
(or called) by our markup. Because we want our switcher to fire when a user selects a link from our
#switcher list, the easiest place to do so is within the anchors of our style switcher list:

<div id=”switcher”>
<ul>

<li id=”style-default”><a href=”styleswitch.html”
onclick=”activeCSS(‘default’); return false”>Default style</a></li>

<li id=”style-contrast”><a href=”styleswitch.html” onclick=”activeCSS(‘Higher
Contrast’); return false”>Higher Contrast</a></li>

<li id=”style-hot”><a href=”styleswitch.html” onclick=”activeCSS(‘Gratuitous
CSS’); return false”>Gratuitous CSS</a></li>

</ul>
</div>

294

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 294



The onclick attribute we’ve introduced here is called an event handler. When the user performs a certain
action or “event” (such as, in this case, a mouse click), the JavaScript contained in the attribute value is
fired. So, in the preceding example, the onclick handler will detect when a user clicks on the anchor,
and will in turn fire the activeCSS() function.

Strictly speaking, you could argue that use of these event handlers, such as onclick, onblur,
onmouseover, and so on, is analogous to relying on the style attribute — that these inline attributes
blur the separation of structure and behavior, and can easily increase the cost of maintenance and sup-
port. Rather than editing our XHTML to reflect any changes in the JavaScript, it would instead be
possible to use more modern JS to automatically generate the event handlers our links will need, and,
therefore, keep the necessary divide between our markup and our scripting. For more information, we
recommend Peter-Paul Koch’s “Separating behavior and structure” (http://digital-web.com/
articles/separating_behavior_and_structure_2/).

However, as we look closely at the three different event handlers, we can see that each reference to
activeCSS() differs slightly. Between the parentheses, we’ve included the title of the style sheet the
link should activate. This is the argument we mentioned earlier and is the string of text that the
activeCSS() function compares to the title of each link element.

You may have noticed that after the call to the activeCSS() function, the onclick handler contains
some additional text: return false;. This plays a very small (but integral) part in our switcher
because it tells the handler not to follow the URL referenced in the anchor’s href attribute. Otherwise,
the user would end up deposited on styleswitch.html after clicking any of the links.

So, let’s do a bit of role-playing. Let’s just run through the steps that occur when we click a link. For
argument’s sake (oh, aren’t we clever), let’s assume that our user selects the third anchor, the onclick
handler that contains the activeCSS(‘Gratuitous CSS’); reference:

1. The three link elements are compiled into an array, and the function proceeds to loop over each
of them. Remember that only those links that contain titles and that have a rel attribute that
contains the word “stylesheet” will be examined. This leaves us with the links for contrast.css
(refer to Listing 8-4) and hot.css (refer to Listing 8-5).

2. The first link element has a title of “Higher Contrast.” The function disables the link element.
Because its title doesn’t match our function’s argument (“Gratuitous CSS”), it stays disabled.

3. The second link element has a title of “Gratuitous CSS.” The function disables the link element.
Because the title does match our function’s argument, the link is immediately reactivated.

And voilà! As you can see in Figure 8-7, we’ve completed the effect. Clicking each anchor activates the
alternate style sheet whose title matches the one referenced in the activeCSS() function call.

However, even though we’ve successfully built a function to switch between the different CSS files,
we’re only halfway there. If the user refreshes the page or leaves the current one after selecting a new
alternate style sheet, the choice is forgotten, and the default style sheet is restored. So, obviously, we’ve a
bit more work to do. Let’s see if we can’t put a little memory into our JavaScript functions.

295

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 295



Figure 8-7: With our JavaScript-enabled style switcher in place, our users 
can now select a look that best suits their needs.

Baking a JavaScript Cookie
As you’ve seen with our not-quite-finished CSS switcher, our browsers don’t seem to remember any-
thing about a page once we’ve left or refreshed it. This is by design. The HTTP standard (which is the
protocol over which the Web’s pages are transferred from a server to your desktop) was designed to be
“stateless.” This means that each time you visit a page, the Web server considers it to be your first time,
every time. Thankfully, we have a way to fill this memory gap. It’s called a cookie, and it’s less fattening
than its baked namesake.

A cookie is a small text file that is sent by a Web server to a user’s browser, and contains small bits of
important information about that user’s browsing session. Cookies may contain user preferences, regis-
tration information, or the items placed in an online shopping cart, and so on. Once it receives a cookie,
the browser saves the information on the user’s computer, and sends it back to the Web server whenever
the user returns to that Web site.

We’re not just flapping our gums here. We’re mentioning cookies because we can use JavaScript to set
and read them. So, armed with this knowledge, we can finally see our way to the finish line. By adding a
few more JavaScript functions to those we’ve already written, we can build an improved style sheet
switcher, and one that will respect our user’s preferences across multiple pages, or visits to, our site.

296

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 296



From this, we need two tools in our cookie-baking toolkit (we can mix metaphors with the best of them).
We need to be able to set a cookie containing our user’s style preference, and to then later read the
cookie. So, let’s add a new cleverly named function to our scripts.js file, setCookie():

// Set the cookie
function setCookie(name,value,days) {

if (days) {
var date = new Date();
date.setTime(date.getTime()+(days*24*60*60*1000));
var expires = “;expires=”+date.toGMTString();

} else {
expires = “”;

}
document.cookie = name+”=”+value+expires+”;”;

}

And now, in our original activeCSS() function, we can add a single line to store our user’s preferences
in a cookie on the user’s computer:

// Set the active stylesheet
function activeCSS(title) {

var i, oneLink;
for (i = 0; (oneLink = document.getElementsByTagName(“link”)[i]); i++) {

if (oneLink.getAttribute(“title”) && findWord(“stylesheet”,
oneLink.getAttribute(“rel”))) {

oneLink.disabled = true;
if (oneLink.getAttribute(“title”) == title) {

oneLink.disabled = false;
}

}
}
setCookie(“mystyle”, title, 365);

}

With this one line, half of our work is finished! The setCookie() function accepts three arguments: a
name for the cookie (so that we might later reference it), the value to be stored in the cookie, and the
number of days until the cookie expires. So, in the previous code snippet, we’ve created a cookie named
“mystyle”, the value of which is set to the value of the title argument of activeCSS(). This means
that if a user selects a link that specifies activeCSS(‘Higher Contrast’) in its onclick handler (that
is, it invokes activeCSS with a title argument of Higher Contrast), then our “mystyle” cookie will,
therefore, have a value of Higher Contrast.

In our setCookie() function, specifying the number of days until cookie expiration is optional. The
latter argument is optional. In the preceding example, we’ve arbitrarily decided to set the “mystyle”
cookie to expire in 365 days, or one calendar year. Because the argument is optional, we could leave it
out entirely. However, omitting it will cause the setCookie() function to create a “mystyle” cookie
that expires at the end of the user’s session — causing the user’s preference to be lost as soon as he or she
closes the browser.

297

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 297



So, with this lone call to setCookie(), we’ve managed to store the user’s selection from our list of style
sheet anchors. But now that we’ve stored it, how do we read the cookie and honor the preference? Well,
once we place the following lines in our scripts.js file, it would seem that the answer is, “simply
enough”:

window.onload = initCSS;

// initCSS: If there’s a “mystyle” cookie, set the active stylesheet when the page
loads
function initCSS() {

var style = readCookie(“mystyle”);
if (style) {

activeCSS(style);
}

}

// Read the cookie
function readCookie(name) {

var needle = name + “=”;
var cookieArray = document.cookie.split(‘;’);
for(var i=0;i < cookieArray.length;i++) {

var pair = cookieArray[i];
while (pair.charAt(0)==’ ‘) {

pair = pair.substring(1, pair.length);
}
if (pair.indexOf(needle) == 0) {

return pair.substring(needle.length, pair.length);
}

}
return null;

}

With these last lines of JavaScript in place, we’re finally finished. Our new function, initCSS(), has two
simple tasks. First, it checks to see if there is a “mystyle” cookie on the user’s machine (var style =
readCookie(“mystyle”);). If one is present (if (style)), then the activeCSS() function is invoked
with the value of the user’s cookie as its argument.

But it’s the first line of this code snippet that does the heavy lifting, even though it looks rather innocu-
ous. window.onload = initCSS; fires our initCSS() function when the document finishes loading in
the user’s browser. Now, as the user moves between the pages of our site (hypothetical though they may
be), or when the user returns during a later session, we can immediately poll for the presence of a
“mystyle” cookie as each of our pages comes up. As the user makes selections from our style switcher,
our pages will honor them, allowing the user to tailor not only individual pages, but an entire site to his
or her browsing needs.

Listing 8-6 shows the complete JavaScript file.

298

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 298



Listing 8-6: The Complete scripts.js File That Powers Our JavaScript-Enabled
CSS Switcher

/*
Onload

*/
window.onload = initCSS;

// initCSS: If there’s a “mystyle” cookie, set the active stylesheet when the page
loads
function initCSS() {

var style = readCookie(“mystyle”);
if (style) {

activeCSS(style);
}

}

/*
Switcher functions

*/
// activeCSS: Set the active stylesheet
function activeCSS(title) {

var i, oneLink;
for (i = 0; (oneLink = document.getElementsByTagName(“link”)[i]); i++) {

if (oneLink.getAttribute(“title”) && findWord(“stylesheet”,
oneLink.getAttribute(“rel”))) {

oneLink.disabled = true;
if (oneLink.getAttribute(“title”) == title) {

oneLink.disabled = false;
}

}
}
setCookie(“mystyle”, title, 365);

}

// findWord: Used to find a full word (needle) in a string (haystack)
function findWord(needle, haystack) {

var init = needle + “\\b”;
return haystack.match(needle + “\\b”);

}

/*
Cookie functions

*/

// Set the cookie
function setCookie(name,value,days) {

if (days) {
var date = new Date();
date.setTime(date.getTime()+(days*24*60*60*1000));
var expires = “;expires=”+date.toGMTString();

} else {
expires = “”;

(continued)

299

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 299



Listing 8-6: (continued)

}
document.cookie = name+”=”+value+expires+”;”;

}

// Read the cookie
function readCookie(name) {

var needle = name + “=”;
var cookieArray = document.cookie.split(‘;’);
for(var i=0;i < cookieArray.length;i++) {

var pair = cookieArray[i];
while (pair.charAt(0)==’ ‘) {

pair = pair.substring(1, pair.length);
}
if (pair.indexOf(needle) == 0) {

return pair.substring(needle.length, pair.length);
}

}
return null;

}

Down with PHP
We hope we’re not becoming incredibly predictable by now. But since we’ve completed our JavaScript
solution, we feel compelled to point out some potential issues with it. Actually, we’ll limit ourselves to
one drawback because it’s the largest: How do we know that the user has JavaScript on his or her
machine? Okay, we can almost hear the snorts of derision from here — after all, JavaScript is the new
black, right? What browser doesn’t have this ultra-cool language available to it?

As it turns out, quite a few. Internet statistics repositories such as TheCounter.com (www.thecounter.com/)
suggest that anywhere from 9 percent to 11 percent of all Web users are browsing without JavaScript. It’s
true; it does sound like betting odds — 1 in 10 isn’t so bad, right? Well, once we remember that we’re
talking about millions of people in that group of “9 percent to 11 percent,” then the demographic starts
to look a little different. And, regardless of exactly how many people browse without JavaScript, why
should we exclude any from accessing our site? Especially since (as you’ll soon see) it’s incredibly easy
to replicate the same functionality with server-side programming.

Rather than relying on client-side code that may or may not be available to our users, we can instead
build a script that resides on our Web server to handle the style switching. Because we’ll be working in a
server-side environment, we can stop worrying about whether or not JavaScript is active on our users’
computers. As long as our users can accept cookies, our server-side script will be able to handle the style
sheet switching logic with ease.

Of course, there are nearly as many server-side programming languages as there are authors on this
book. For our purposes, we’ll use PHP (www.php.net/). It’s a wildly popular, open source (read: “free”)
programming language, and is available on a staggering number of today’s Web servers. Because of its
popularity, its speed, and its robust feature set, it makes a fine choice for this chapter’s experiments.

And besides, it’s free. Did we mention that? Free. We rather like that.

300

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 300



Of course, PHP isn’t a magic bullet — if it’s not installed on our Web server, we can’t take advantage of
it. So while we’re no longer reliant on our readers’ browser configuration , we’ve replaced it with a tech-
nical requirement on our server. Contact your server’s administrator to see if it’s installed on yours —
otherwise, if you want some help getting PHP installed on your machine, there are plenty of resources
available.

The official PHP documentation (www.php.net/docs.php) is possibly the best place to start —
although in all honesty, we find their installation instructions (while very clearly written) a bit intimi-
dating for those of us somewhat lacking in the 133t-ness category. If you find yourself a bit lost among
the configuration instructions, we recommend resorting to your favorite search engine. A search for
“install php windows” or “install php mac” will yield hundreds of (we hope) easy-to-read results, yet
another testament to PHP’s popularity as a powerful, robust programming language.

Additionally, Mac OS X users can avail themselves of easy-to-install packages. We personally recom-
mend Server Logistics’ feature-rich PHP installer (www.serverlogistics.com/php4.php), but
other comparable packages are available. The drawback to such packages is that it limits the amount of
control we can exercise over PHP’s configuration. If an “as-is” installation isn’t appealing to you, then
the official documentation is the best resource out there.

Creating the Script
Once we have PHP up and running on our server, we can get to work. To begin, let’s modify our
XHMTL — specifically, the unordered list that contains the different style sheet options. Whereas we pre-
viously used onclick handlers to do the dirty work, the landscape has changed somewhat:

<ul>
<li id=”style-default”><a href=”switch.php?style=”>Default style</a></li>
<li id=”style-contrast”><a href=”switch.php?style=contrast”>Higher

Contrast</a></li>
<li id=”style-hot”><a href=”switch.php?style=hot”>Gratuitous CSS</a></li>

</ul>

Now, all of our links are currently pointing to a file named switch.php— but what’s all of that ?style=
stuff in our link? The text that follows the question mark in the href is known as a query string, and
allows us to pass parameters to our CSS switcher script. Query string parameters always come in
name/value pairs, like so:

file.name?name=value
switch.php?style=contrast

If we want to pass multiple name/value pairs to our script, then we concatenate them with
ampersands (&):

Switch.php?style=contrast&amp;font=serif&amp;css=cool

In HTML, ampersands have a special meaning. They are used to signal the start of character entities,
codes that represent a special character in HTML. For example, &copy; is the entity for ©, &trade;
will display ™ in our browser, and so forth. However, when we want a literal ampersand to appear, as
we do in our query string, we need to use &amp;, which is the proper entity reference. Otherwise, our
HTML will be invalid, and our query string may break — and we don’t know about our readers, but
those two options aren’t appealing to us.

301

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 301



You’ll see shortly how these parameters play a part in our style switcher, but for now let’s create this
switch.php file, and paste in the following code:

<?php
$domain = “my-site-here.com”;

if (stristr($_SERVER[‘HTTP_REFERER’], $domain)) {
$bounce_url = $_SERVER[‘HTTP_REFERER’];

} else {
$bounce_url = “http://$domain/”;

}

setcookie(‘mystyle’, $_GET[‘style’], time() + 31536000);

header(“Location: $bounce_url”);
?>

And that’s it. No, really — this won’t be evolving into 80 lines of code over the next 50 pages, we
promise. In JavaScript, we had to write custom functions to handle some of the basic tasks we needed
our style switcher to tackle. But many of these common tasks (such as reading and writing cookies) are
already a part of the language. By using these built-in functions, we can cut down drastically on code
bloat, and get our style sheet switcher out the door as quickly as possible.

The meat of this code is the antepenultimate line:

setcookie(‘mystyle’, $_GET[‘style’], time() + 31536000);

Whereas we had to create a custom function to set a cookie in JavaScript, it seems that PHP has done the
hard work for us. Its setcookie() function is readily available to us, and snaps in nicely to our script.
But the one overlap with our JavaScript setCookie() function is that we’re also passing three argu-
ments to the function, the first two being the most critical. The first argument is, as before, simply the
name for our cookie, and we’re sticking with “mystyle”.

The second argument ($_GET[‘style’]) defines what’s actually stored as the value of our “mystyle”
cookie. The $_GET variable is actually a named list, or associative array, of all the parameters passed to
the page in a query string. Let’s assume that our switch.php page is called with the following URL:

http://my-site-here.com/switch.php?style=hot&css=cool

Given that query string, the value of $_GET[‘style’] is what follows the equal sign in the style=hot
name/value pair, or “hot”; similarly, $_GET[‘css’] would return a value of cool. As a result, our
setcookie() function will build a “mystyle” cookie with a value of hot, which is exactly what we
(and our users) want.

The time() + 31536000 may look like we’d need a decoder ring to make sense of it, but it’s not quite
as intimidating as it might seem. The time() function simply returns the current time, measured in
seconds from midnight on January 1, 1970 — also called “the Unix Epoch,” a common point of refer-
ence for functions dealing with time-based tasks. Once we have the current time, we’re adding a year’s
worth of seconds to it (60 seconds * 60 minutes * 24 hours * 365 days = 31536000). So, with all this,
we’re essentially getting the time that is exactly one year later than when the cookie was set, and using
that to determine when the cookie expires.

302

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 302



Once the cookie’s been set, we simply redirect the user back to $bounce_url, which was set at the
beginning of the file. We’ve included some extra processing at the top of switch.php, examining the
user’s referrer (the URL of the page he or she was visiting before being sent to switch.php). If the user
was referred from a page on our $domain (if (stristr($_SERVER[‘HTTP_REFERER’], $domain))),
then we’ll simply redirect the user to it. However, if another site decided to link directly to our style
switcher, we’ll set $bounce_url to our homepage ($bounce_url = $_SERVER[‘HTTP_REFERER’];).

So, we’ve successfully set the cookie in record time and redirected the user back to our site. What hap-
pens next? We need to set up some sort of logic for handling the cookie we’ve just baked. Let’s dive right
in and see what we can uncover.

Eating the Cookie
This second step requires inserting some PHP code directly into our XHTML — nothing onerous, but we
first need to convert our markup document into one that our PHP server can read. To do so, we simply
rename the file, and change its .html extension to .php — if our system administrator has done his or her
job properly, then this should be all that’s required to ready our XHTML for a little PHP-fu.

Once we’ve changed the file extension, we can insert the following code in the head of our document:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<?php
if ($_COOKIE[‘mystyle’]) {
?>
<link rel=”stylesheet” href=”<?= $_COOKIE[‘mystyle’]; ?>.css” type=”text/css”
media=”screen” />
<?php
}
?>

<link rel=”alternate stylesheet” title=”Higher Contrast” href=”contrast.css”
type=”text/css” />
<link rel=”alternate stylesheet” title=”Gratuitous CSS” href=”hot.css”
type=”text/css” />

When our markup document is loaded in the browser, the snippet of PHP is inserted into the head. If no
“mystyle” cookie has been set (or the value is just an empty string), then none of the code wrapped in
the if { ... } statement gets run. However, if our cookie is present, then a new link element is printed
into our markup. Let’s expand on this.

According to the query strings we put in place in our #switcher unordered list, the two possible values
for our “mystyle” cookie are either hot or contrast. As a result, if you click a link with an href of
switch.php?style=hot, then the resulting link element will be:

<link rel=”stylesheet” href=”hot.css” type=”text/css” />

And with that, we’ve successfully completed our PHP style sheet switcher. Building on the goals and
concepts we outlined for our JavaScript switcher, we’ve now implemented a solution that allows our
users to select a design at their leisure, with a much lower technical barrier for entry.

303

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 303



CSS Beyond the Browser
So, we’ve established that our document is looking quite fetching when viewed in a modern desktop
browser. We’ve also explored a few different ways to allow users to change our sites’ presentation layer.
What happens when we take that document outside of the browser context? What happens when we try
to print one of our hyper-stylized designs?

Well, we’ve selected the Gratuitous CSS skin, quite a bit — let’s look at Figure 8-8.

Figure 8-8: Here’s the printed version of our page (or a preview thereof, anyway). 
We can definitely do better.

304

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 304



As you can see, a little too much of our design is showing through when it’s printed, but not enough to
be particularly effective. Gone are the page’s background color and graphic, which printers won’t render
by default. Additionally, the rules that govern the page’s layout are still fully intact. Our content appears
to have been pushed down the page for no good reason. The white space at the top doesn’t serve any
purpose, and instead clips the amount of text visible on the page. Furthermore, the small sans-serif face
we’ve settled on for the body copy might be fine on-screen (where the user can increase the size of the
type as he or she sees fit), but it’s less than ideal for paper. Serif faces are generally used to improve legi-
bility when reading a page offline, and something a few points taller than our current type size might
not hurt. In short, unless you’re Emily Dickinson, this printed version isn’t exactly appealing.

So, ultimately, we should create a separate design for the printed version of our page — one that empha-
sizes legibility over style, yet without sacrificing aesthetics altogether. Historically, this would require no
small amount of overhead on our part. The days of separate, “print-only” versions of pages still loom
largely in our memory. Keeping these “design-light” pages in sync with their “design-full” counterparts
was an incredibly time- and resource-consuming affair that often required complicated scripts, grueling
hours of manual editing, and occasionally more than a little late-night swearing at the computer monitor
(not that the pain is still fresh in our minds or anything).

Media Types: Let the Healing Begin
The authors of the CSS specification anticipated this problem. They introduced the notion of media types,
a means of classifying style sheets to deliver different designs to different devices such as printers, com-
puter monitors, screen readers, handheld Internet-ready devices, and the like. Simply by earmarking our
three link elements as containing “screen”-specific designs that should be delivered only to full graphic
browsers (such as IE or Firefox), we can avoid some of the unpleasantness we saw earlier. To do so, we
simply specify a value of “screen” in the link’s media attribute:

<link rel=”stylesheet” href=”main.css” type=”text/css” media=”screen” />
<link rel=”alternate stylesheet” title=”Higher Contrast” href=”contrast.css”
type=”text/css” media=”screen” />
<link rel=”alternate stylesheet” title=”Gratuitous CSS” href=”hot.css”
type=”text/css” media=”screen” />

Now, when we preview our document in its printed view, Figure 8-9 shows us that things look quite a
bit different.

It might not look like it, but this is, in fact, progress. By adding the media=”screen” attribute to our
links, we’ve wedded our designs to one context — the browser — and divorced them from all others.
So, when viewing our document in a different media type (such as a printer), we’re shown the raw,
unstyled content.

We can also specify multiple media types for any given link element. For example, the Opera browser
(www.opera.com/) respects the “projection” media type when browsing in its full-screen viewing
mode. As a result, it disregards any CSS we reserve exclusively for the “screen” media. If we want to
reuse our screen-specific style sheet in a projection environment, we can simply append it to the media
attribute with a comma: <link rel=”stylesheet” href=”main.css” type=”text/css”
media=”screen, projection” />.

305

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 305



Figure 8-9: Once we add media=“screen” to our link element, we’ve . . . well, we’ve
messed up our printed document royally. Thankfully, we’re only laying the foundation.

Of course, while we can deny styles to non-browser devices, we can also deliver styles exclusively to
them as well. After all, there’s no reason to suffer through an unstyled printout when our on-screen
design is so robust. So, with that, let’s create a style sheet called print.css, as shown in Listing 8-7.

Listing 8-7: Our print.css Style Sheet

body {
background: #FFF;
color: #000;
font: 12pt/1.4em Georgia, Garamond, “Times New Roman”, Times, serif;

}

306

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 306



h1, h2 {
font-weight: normal;
margin: 1em 0;
padding: 0;
text-transform: small-caps;

}

img.portrait, #switcher {
display: none;

}

#blurb {
background: #CCC;
border: 1px solid #999;
float: right;
font: 16pt/1.5em Helvetica, Arial, Geneva, Verdana, sans-serif;
margin: 0 0 1em 1em;
padding: 1em;
text-align: right;
text-transform: small-caps;
width: 10em;

}

Expecting something a bit more complex? As much as we enjoy throwing curveballs at our audience,
there’s no reason to do so here. When creating a print-specific style sheet, we can use the same syntax
and tactics we’ve discussed throughout the book. Whether applied in the browser or on a piece of paper,
it’s still CSS — no curveballs required. Granted, there are a few things to consider when designing for
print:

❑ Perhaps the most striking thing about our print-specific style rules is that we’re using points to
control the size of our type. While points are an absolute measure of font size, we opted to use
them to show the only acceptable context for their use: print styles. When designing for the
screen, we’ve avoided points like the plague because of browsers’ inconsistent rendering of
point sizes. For print, however, points are ideal. Of course, the other relative sizing tactics we’ve
used in the past (that is, relying on ems or percentages to control the type relative to the user’s
settings) are perfectly acceptable, and will, in fact, be kinder to our users’ browser preferences.

❑ We’ve decided that certain aspects of our markup don’t need to be displayed in the printout.
Perhaps we should spare users from printing out the photo of our ugly mug (and besides, we’d
prefer it wasn’t tacked up on office cube walls to be used as a dartboard). And of course, the
links for our in-browser style sheet switcher are wholly pointless. With our print-specific style
sheet, it’s a simple matter of specifying img.portrait, #switcher { display: none; }.
Through the magic of media types, these two elements will still be available on-screen, but
removed from the printed version.

307

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 307



After creating our print-specific style sheet, let’s include it in the head of our document. As always, we’ll
use a link to do so, but we’ll take extra care to specify the correct media type: namely, “print”:

<link rel=”stylesheet” href=”main.css” type=”text/css” media=”screen” />

<link rel=”stylesheet” href=”print.css” type=”text/css” media=”print” />

<link rel=”alternate stylesheet” title=”Higher Contrast” href=”contrast.css”
type=”text/css” media=”screen” />
<link rel=”alternate stylesheet” title=”Gratuitous CSS” href=”hot.css”
type=”text/css” media=”screen” />

When we try printing again, the results should be a bit more pleasing to the eye. This time around, the
screen-specific style sheets will be ignored, and our print.css will be allowed to control the presenta-
tion. As you can see from Figure 8-10, our assumptions seem to be pretty much spot-on.

Figure 8-10: And here we are, with our print-specific style sheet in place.

308

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 308



Our minuscule, sans-serif typeface has been replaced with a much more attractive serif face. Of course,
we’re not ones to settle for the Model-T of fonts so we’ve opted to use the much more attractive
Garamond or Georgia for our page’s print version. And, whereas we previously styled our #blurb para-
graph as a full-column block on its own row, we use the float model to pull it out of the document flow,
and give our pull quote much more of an “in-content” feel.

All of this has happened independently of the progress we’ve made with our on-screen designs.
Essentially, our use of media types has allowed us to create two separate and distinct “views” of our
page: the on-screen (aesthetically rich) version of our on-screen design and the off-line (content-over-
panache) printed view. One markup document is displayed on multiple devices. Style sheets allow us to
realize the promise of device independence, all the while keeping us from those late-night sessions of
yelling at our computer monitors.

The Problem with Choice
But now that we’ve implemented our media-specific designs, we are in some respects back at square
one. Now that we’ve allowed our users the ability to choose an on-screen design that works most effec-
tively for them, we’ve imposed a print-specific style sheet on them, with no option to change it. Do our
users have to sacrifice choice in non-screen media?

We love asking leading questions. In short, the answer is, “No.” We could go back to our JavaScript- and
PHP-enabled style switchers and add in cases for print-specific styles. Of course, given the number of
different media possibilities, our scripts (and the UI we present to our users) could become prohibitively
large and difficult to maintain. What we need, then, is an elegant, scalable solution that allows us to
easily and quickly manage our alternate styles for multiple media types — and all without sacrificing
usability.

Stuff and Nonsense: Building 
a Better Switcher

We’re lucky that certain innovative folks are already thinking along these lines. Enter Stuff and
Nonsense, a design studio (www.malarkey.co.uk/) based in Wales, UK. (Figure 8-11 shows its home
page.) A quick browse through the studio’s portfolio (www.malarkey.co.uk/Our_work_and_our_
clients.aspx) leads to two separate realizations: first, that the studio has done eye-catching, beautiful
work for such globally recognized brands as Disney and the World Wildlife Fund; second, the design of
each of their portfolio sites is driven by cascading style sheets, and built upon a foundation of valid
XHTML.

309

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 309



Figure 8-11: The home page of Stuff and Nonsense (www.malarkey.co.uk/),
a well-respected design boutique based in the UK

So, obviously, Web standards are a passion over at Stuff and Nonsense. But as you browse through its
site, an obvious respect for its users’ needs runs equally deep. Featured prominently on each page is a
link inviting users to “Customise this site” (www.malarkey.co.uk/Customise_this_site.aspx), as
shown in Figure 8-12. On the resulting page, users are able to select various style options for not only
their in-browser experience, but different options for printing as well. Whether a user prefers reading
printed documents in either a small sans-serif typeface or a larger serif, Stuff and Nonsense has given
him or her the ability to decide. And furthermore, the user’s preferences are stored in a cookie, so that the
preferences persist throughout the time spent visiting the site. The user can browse to or print any page
on the site, and will be presented with the design that best meets his or her needs throughout the stay.

This is the oddly named yet feature rich “Invasion of the Body Switchers” (IOTBS)–style switcher, its
name derived from how its switching functionality is powered by switching the class attribute on the
body element. It’s quite possibly the perfect style switcher, and the authors of IOTBS have made it freely
available for download at http://stuffandnonsense.co.uk/resources/iotbs.html. Remarkably
easy to install and configure, IOTBS affords maximum convenience to site owners and users alike. It
even generates its entire interface via JavaScript, ensuring that users unable to take advantage of CSS
switching won’t be presented with non-functional markup.

With a tool like IOTBS in our arsenal, we can avail ourselves more of the true power of media-specific
style sheets. Its easy-to-install interface will have our users thanking us, as we’ve managed to democra-
tize our design. They can now sand down the rough edges that don’t meet their needs, and tailor our
site into something truly usable.

310

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 310



Figure 8-12: The “Invasion of the Body Switchers”–style switcher, seen here at the 
Stuff and Nonsense site, allows users to select style options for screen, print, or any 
other media type through one simple interface.

Meet the Designer : Andy Clarke
With our brief introduction to IOTBS behind us, let’s meet one of the minds behind it. The creative direc-
tor of Stuff and Nonsense, Andy Clarke is a rare breed of Web professional. A multitalented designer,
developer, and writer, Andy has been the creative director of Stuff and Nonsense since founding it in
1998. As one-half of the team that brought the Web such an ingenious approach to style switching, Andy
was gracious enough to answer a few brief questions about accessibility, high-caliber design, and how
the two aren’t mutually exclusive.

Q: Andy, it’s great to have you for this little chat. We’ve just had a browse through your personal Web site
(www.stuffandnonsense.co.uk/), and can tell that, aside from some sort of odd scooter fixation,
you’re quite passionate about designing for the Web. Your professional biography (http://malarkey
.co.uk/The_Stuff_and_Nonsense_team.aspx#clarke) tells us that you have a background in
advertising. How is it, then, that you moved into Web design?

A: Well, it’s a long story, and I won’t bore you with all of it. When I left college (having studied
for a degree in Fine Art), I worked in various jobs, but was always involved in the arts and
always with technology. I was one of the first people in the UK to work with professional
digital cameras and before that, with electronic retouching, in the dark days before Photoshop!

311

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 311



My background in art always let me keep a creative eye on the job, and when I got the chance to
move to a creative advertising agency in London, I jumped at the chance.

This was a time when the Web was beginning to “get commercial,” and I saw very early that the
Web done well is just like advertising: communicating messages and getting an audience to
identify with a client. Then, in 1998, I moved away from London, and before long, people began
asking, “Can you do . . .?” Seven years later, I’m very lucky in that they haven’t stopped asking.

Q: The client list of your studio, Stuff and Nonsense, features an impressive array of brand names, including
(but not limited to) the Disney Store UK and World Wildlife Federation UK. Even more impressive is
the fact that all of your portfolio work is both crisply designed and built with XHTML/CSS. Why Web
standards?

A: Why not? I don’t see either Web standards or (for that matter) accessibility as issues. I believe
that they are simply part of doing the job “right.” One of the things that I have learned in work-
ing with clients at Stuff and Nonsense is that they rarely care “how” a job is done. What matters
to them is successfully connecting with their target audience.

You mentioned Disney Store UK and I think that it is fair to say that like most clients, they did
not ask for a standards-compliant site. But they were looking for reductions in download times,
an altogether faster shopping experience, and easier ways for them to update their site.
Implementing the design with Web Standards technologies fit the bill and achieved their goals
perfectly.

The Disney Store UK site was developed using the Karova Store platform (www.karova.com/),
which not only separates the presentation tier from the rest of site, but has an XML architecture
rather than a database backend. XML is transformed into XHTML through XSLT, the end result
being a site that is extremely flexible and will allow Disney Store UK new opportunities to
deliver their content in the future, including through RSS feeds. At the end of the day, what mat-
ters to most clients is not the “tools,” but the solutions offered to them. Web standards offers
more solutions and that is why Stuff and Nonsense develops only with standards.

Q: So, tell us a bit about this clever little thing you cooked up. Something about a style sheet switcher, we
understand?

A: You’re referring to “Invasion of the Body Switchers” (IOTBS), the style sheet switcher that I
wrote about on A List Apart magazine (www.alistapart.com/articles/bodyswitchers/)?
Well, I can’t take credit for the really clever stuff. The technical genius behind IOTBS was my
good friend James Edwards (www.brothercake.com) who took my concept and made it work.

One of the important aspects of Web standards is the ability for designers to work on presenta-
tions through CSS without changing the underlying markup (HTML or XHTML) of a Web page.
Nowhere is this demonstrated better than on Dave Shea’s CSS Zen Garden (www.csszengarden
.com/), where we see different designs of the same page made possible through using CSS style
sheets.

“Switching” style sheets can be necessary for all sorts of reasons. Perhaps a client would like to
offer visitors the ability to switch between a fixed-width or a “liquid” layout that fills the win-
dow — designer and author Dan Cederholm offers just such a choice on his site, SimpleBits
(www.simplebits.com/). Alternatively, you may wish to offer visitors with low vision an
“accessible” design. The possibilities are endless and sometimes the aims and results are
serious, sometimes just geeky gimmicks.

312

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 312



Server-side and JavaScript style sheet switchers have been around for years. But what makes
“Invasion of the Body Switchers” different is the ability to independently switch screen, printer,
and other media styles. All with only one CSS and one JavaScript file. I’m very proud of IOTBS
and I hope that it will help convince more designers that working with standards can expand
their creative options.

Q: We see that it’s used heavily on the site of Stuff and Nonsense (www.malarkey.co.uk/). Have you
used it on any professional projects? Is this something that’s important to clients?

A: What is becoming increasingly important to our clients is offering visitors choices. Style sheet
switchers such “Invasion of the Body Switchers” can be used to offer separate design themes
to different visitor groups. But by using CSS “display properties,” we can also hide and reveal
content.

This has been put to great effect in several recent projects that target young people. By using the
possibilities opened up by CSS and IOTBS, we no longer have to code three or more versions of
an XHTML document or even an entire Web site. This reduces development times, makes our
business more efficient, and ultimately saves the client money. Everyone is happy.

Q: Some designers might find it unsettling to allow users to, well, essentially revise their sites’ design. What
would you say to them? Why should we let our users have greater control over the design of our pages?

As designers or developers of Web sites, we need to remember who we are working for. Of
course it is our client who puts our food on the table, but our work is ultimately judged by site
visitors. The happier they are, the happier our clients will be and the better the chance that they
will come back.

The Web is unlike any other media. In television the picture stays pretty much the same no
matter what size screen you are viewing on. CRT, LCD, or Plasma, 17-inch portable or 52-inch
widescreen, things stay pretty much the same. On the Web, we do not simply “sit back and
watch.” We have more control over how the content is delivered and Web designers must
remember that visitors’ opinions matter more than their own.

Q: After poking around a bit, it seems that there have been a number of style switchers published online.
Some of them rely on client-side JavaScript (as yours does), whereas others rely on some back-end coding.
Is there a clear benefit to either approach?

A: Now you’re getting all technical on me! I’m only a humble designer! Many different solutions
are available to implement style sheet switching; some of them are “server side” (relying on
back-end languages such as PHP) and others like “Invasion of the Body Switchers” are “client-
side,” using languages such as JavaScript. Which solution a developer chooses depends on the
environment in which the site is running and the specific needs of the client.

It’s only a personal preference, but as style sheet switching is a “client function,” I prefer to use
client-side solutions. That said, I can give you the exclusive news that there will be a server-side
version of “Invasion of the Body Switchers” coming very soon.

So, I suppose that begs the question: What is it that makes your client-side switcher stand apart
from the crowd?

313

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 313



“Invasion of the Body Switchers” takes a new approach to style sheet switching. Our approach
does require abandoning conventional “stylesheet” and “alternate stylesheet” semantics, but
this doesn’t trouble me, because:

1. Many browsers do not implement native style sheet switching.

2. Those that do do not apply any persistence to a selected alternate style sheet.

Other solutions rely on multiple style sheets, using <link /> elements and “stylesheet / alter-
nate stylesheet” semantics. This adds extra server calls, but more important, it does not allow
for different media styles to be selected independently of each other.

“Invasion of the Body Switchers” lets us target different media types independently, and gives
site visitors a simple interface from which to select their preferences, all saved into a cookie until
they change their mind.

IOTBS works by adding one or more unique class names to the page’s <body> tag. Styles are
then defined using descendant selectors. The end result gives users much greater control over
the output of your Web pages.

Q: Interesting, so what are these “media types” you speak of? Why should the CSS-savvy Web designer care
about them?

A: It’s sometimes hard for designers who come to the Web from other media to understand that
that not only is their work not viewed “pixel perfect” by everyone, but that people access Web
content through different media. Sometimes that media is our good friend the computer moni-
tor; sometimes it is an Internet kiosk at the airport; sometimes a handheld computer, a projected
image, or even a mobile phone. Some people find it more difficult to read from a screen and like
to print out pages.

In the past, preparing for all these different media types would have been cost-prohibitive, if not
impossible, as it required making different versions for different viewing devices. But, with the
advent of technologies that support common standards, we can create content that can be writ-
ten once only, and then styled for different media output, all through the magic of CSS.

Q: Stepping back a bit, we’d be interested to hear a bit more about your design process. How do you usually
work?

A: Our first job is to understand what the client is trying to communicate to his or her audience.
We also get a feel for the “personality” of the company and look at their brand values (even if
they haven’t done so themselves) so that we can match the tone of the design to the personality
and brand values. Effective design for the Web is about effective communication between a
client and their audience. That is why we focus on what and how to communicate, before we
think about technical or creative issues.

We start by developing paper prototype designs, from sketches to layouts made in either
Photoshop or Macromedia Fireworks. These layouts begin as simple wireframes and from them
we build markup guides, often on paper, which our developers use as their XHTML structure. 

Some time ago, I developed a set of naming conventions for our site development, specific
names for <div>s and classes that relate to content rather than presentation (#branding rather
than #header, and so on). We stick tightly to these conventions so that the entire team under-
stands what a particular CSS rule relates to. We also have conventions for the naming of images
and this also speeds development.

314

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 314



Our graphic layouts then develop into production art for our design team and it is rare that our
final Web pages do not match the graphic layout exactly. We also get approval from the client at
each stage and always work within our internal convention framework to ensure that develop-
ment is as efficient as possible.

Q: And what about inspiration? When you’re staring down a tight client deadline, from where do you get
your ideas?

A: I’m a real pop culture junkie. I love trashy pulp detective novels such as Mickey Spillane’s Mike
Hammer. I love comics even more and works by comic artists such as “Sin City’s” Frank Miller
and “Concrete” creator Paul Chadwick are a few of my passions.

You might find it unusual to hear that I am also passionate about political art from Soviet-era
Russia, China, and Cuba. I find the cult of personality fascinating and across recent history there
have been many terrific examples where political art in the form of posters or statues becomes
almost “high” art. The most recent examples I have seen have come from pre-invasion Iraq.

I suppose that if I think about it, what these examples have in common is that they are both
designed to engage an audience, drawing them into a different world. Again, it’s about commu-
nicating messages . . . and so we get back on to the subject of the Web.

Q: Are there any CSS issues that you face more regularly than others? How do you work through them?

A: CSS issues are becoming rarer for me and when one does raise its ugly head, there is usually a
solution to be found by doing a quick bit of Googling. Many people with far bigger brains than
mine — Brothercake, Dave Shea (http://mezzoblue.com), Doug Bowman (http://stopdesign
.com/), and John Gallant immediately spring to mind — have found solutions to browser bugs
and behaviors I would never have dreamt existed. Of course, there are times when I curse one
browser or another and yell “This would be soooo much easier with tables!” But those outbursts
are getting rarer.

There are now ways to fix or work around almost every CSS issue and when one does appear
unexpectedly, it is important to take a logical approach, as sometimes one element in combina-
tion with another will trigger a problem.

Validation is extremely important and ensuring that my code validates is always my first move
before I even open a CSS file. If my code and CSS both validate and the problem still appears, I
deconstruct the page, removing elements in turn so that I can see which element is straining my
sanity.

Many browser bugs are now so well-known that entire sites such as John Gallant’s Position Is
Everything (www.positioniseverything.net/) are dedicated to them. If an answer can’t be
found on PIE or on many other sites, I recommend asking a question of the many experts who
contribute to Eric Meyer’s (www.meyerweb.com/) excellent CSS-D mailing list (http://
css-discuss.org/). Ask nicely and you’re likely to find a helpful soul with a solution.

Q: What exactly do you look for in a “successful” site design? Are there any design principles you hold
especially dear?

A: I suppose that I’m not the best person to judge whether or not a design is successful, but I do
listen to feedback from clients and their customers. What matters to me is that the project has
made good business for the client who pays my wages. That way, I hope that they will keep
coming back.

315

Stuff and Nonsense: Strategies for CSS Switching

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 315



When I look back on many of the designs I have made, it is always the clearer, simpler ones that
I like the most. I take the approach that no amount of design “fairy dust” can transform a poor
content site into a successful site. So, I work with clients on ensuring that content always come
first.

Working from content outward is always better than trying to “shoehorn” content into a precon-
ceived design or layout, and that is why I often spend more time on planning and wireframing
a site before I contemplate the design look-and-feel.

Q: Any last words you’d care to share with us?

A: “When I didn’t know what color to put down, I put down black. Black is a force: I depend on
black to simplify the construction.” Actually not my words, but those of artist Henri Matisse.

Summary
Well, that was something of a whirlwind, wasn’t it? With a heightened understanding of media-specific
CSS and three different style-switching strategies, we’ve covered no small amount of ground. Yet, as
with much of this book, this is but a road map to some incredibly rich landscapes. As a result, it’s going
to feel like quite a gloss. We could cover an entire chapter on each of these topics, and would recom-
mend further, deeper research on any of these CSS switching strategies. Our users will thank us if we do
that, our sites will be available to a much wider audience, and we’ll be able to tell our mother that we
actually wrote something useful.

And to that end, it’s time to stop seeing us walk the walk — in the next chapter, we talk all kinds of talk.
By applying the techniques discussed throughout the book, it’s time to finally put these strategies to
practice in a real-world site design. Exciting, yes?

316

Chapter 8

10_588338 ch08.qxd  6/22/05  11:27 AM  Page 316



Bringing It All Together

“Good artists borrow, great artists steal.” — Picasso

The first two chapters of this book discussed planning and best practices, and each subsequent
chapter focused on a particular aspect of CSS-enabled design from some of today’s most popular
Web destinations.

From Blogger’s use of rollovers to Stuff and Nonsense’s style switcher, the methods in this book
are just as crucial to online design success as they are relevant to the sites you build — whether
you are building your company’s site, a site for a client, or just building your own site.

In this chapter, the lead author, Christopher Schmitt, demonstrates the process that went into
building his own home page design. He illustrates how the lessons in the previous chapters (as
well as some new techniques) are helpful for your own professional projects.

Enter ChristopherSchmitt.com
I’ve been designing Web pages since 1993. While I had a couple versions of a home page, my own
Web site came online around 1997, back when it was okay to have a tilde (~) character in the Web
address.

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 317



That Web site was a glorified hodgepodge of nested HTML tables, single-pixel GIFs, and JavaScript-
enabled rollovers, as shown in Figure 9-1. Updates to the site were difficult and rarely happened.
Because JavaScript powered the menu navigation, a visitor using a text browser or screen reader wasn’t
able to get past the front page. Although that design wasn’t too shabby for a site built in the mid-1990s,
on many levels, my site was failing me.

Figure 9-1: An earlier version of ChristopherSchmitt.com (formerly known as
Christopher.org)

To rectify the problem, I used a stopgap measure: taking that site design down and putting up a small
site that was, in essence, a portfolio/resume site, as shown in Figure 9-2. I could have spent more time
and energy making the site a blog or expanding the content, but I’ve been busy. My life the last couple of
years has involved dealing with several moves, navigating a new relationship, working a part-time job,
and attending graduate school. If you ever needed a reason why you didn’t update your Web site,
chances are I could have given you one. I’ve had plenty of excuses to spare.

Now my life has become more stable (knock on wood), and I have more time to devote to my spot on
the World Wide Web. Before I crank open an HTML editor or even my cherished Photoshop application,
I’m going to plan out what I’m going to do.

318

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 318



Figure 9-2: The bare-bones version

Planning Saves Time
My first hard lesson in planning as it relates to graphic design came when I was a journalism student in
my high school. I was the graphics editor, and my responsibilities included creating the images for each
edition of an eight-page newspaper. While today it’s easy to surf over to a Web site and download a
cheap royalty-free image at iStockPhoto.com, back in 1991 the process was a bit more laborious.

For the first couple of issues I worked on, I gathered the list of articles from my staff members to deter-
mine how many images were required for the next issue. With the list in hand, I then sat in front of the
Macintosh computer with a blank Photoshop document open.

First I tinkered with the Photoshop settings and filters to see if something would just happen to appear.
When that didn’t work, I typed a couple of keywords related to the article in weird typefaces. Then I
made another trip to the Photoshop settings and filters. After a few hours, I was lucky if I had a solid
image or two to show for my effort.

319

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 319



By the time the third issue rolled around, I knew that I wasn’t using the computer effectively. I had spent
many hours listlessly trying to create graphics out of thin air instead of coming to the computer with an
agenda or a goal. The solution was to change how I approached a computer and my work.

Instead of going straight to the computer to work on graphic designs, I took a few sheets of paper from
the printer tray, walked past the computers, and headed over to a workbench. Once there, I came up
with ideas for graphics for each story by doodling, sketching, or brainstorming and by using cluster dia-
grams. With the ideas for images in place, I then went to the computer.

The results were staggering. Instead of several days of working out only a couple of graphics, I spent
one day coming up with the concepts for the images and then one to two days creating them. This
immediate efficiency was also welcomed by my fellow staff members, who, having discovered that I had
more free time, put me to work helping out with their tasks.

To effectively use the computer, I needed a plan on how to use it. Otherwise, the computer was a 
hindrance.

Defining the Site’s Scope
With the lessons of planning firmly ingrained and underscored in Chapter 1, let’s define the goals, deliv-
erables, and assumptions for my new site:

❑ Goals:

❑ Improve aesthetic design. My current site is a simple, straightforward Web site built
in CSS. One of the goals for the site is to be more visually appealing and push the CSS
further.

❑ Add a blog. To ease when updating the site, I want to implement blogging software.
My software of choice will be WordPress because it relies on open source software (PHP
and MySQL). Also, I’m familiar with both technologies, so I should be able to make
tweaks to the code or integrate other components of my site more easily than with
another solution.

❑ Provide usable navigation. The design must make navigation simple and must be
usable on text-only browsers as well as on screen readers.

❑ Update photo headers. To facilitate some updates, I want to include a photo in the
header of the page and update it when I have an interesting photo I’ve taken with my
trusty digital camera.

❑ Increase traffic to the site. With an improved design, generating heavier traffic to my
domain name is still the major goal. While the blogging software will help to manage
the content, site updates must happen on regular basis. That means, as the sole content
producer, I have to publish on a regular basis.

320

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 320



❑ Deliverables:

❑ Photoshop comps. The design of the site will include a main page design that can be
modified for other pages in the site.

❑ HTML+CSS templates. After the completion of the design in Photoshop, I will con-
struct the design templates with valid HTML and CSS. Once the templates are finished,
the next step is to integrate them into the blogging software.

❑ Assumptions:

❑ Audience. For the most part, the site’s audience is computer and Web savvy. Because of the
nature of my work with Web design, my primary audience has better-than-average
computer systems, including up-to-date Web browsers and monitor resolutions.

❑ Browsers. With an advanced audience, the site design should target certain browsers. I
will build the site for Internet Explorer for Windows 5.5+, Netscape Navigator 7+,
Safari, and Firefox 1+.

Content and the Site Map
With the scope set, my attention turns to taking an inventory of the content. While it may sound like a
difficult task, it’s very easy. Only if the site is medium to large is the process time-intensive.

Considering all the material that was online (or material that I wanted to have online), I think the hard-
est part is really taking an honest look at what I have to work with.

When designing for someone other than yourself, you are warned that obtaining content from clients is
the hardest part of the Web development process.

Where does the content come from? The choices fall into four categories:

❑ Gathered from internal sources (and, I hope, not strewn across databases, Microsoft Word files,
and print collateral)

❑ Original content (previously unwritten) created by the client

❑ Content that you pay someone to write (preferably a professional copywriter or technical
writer)

❑ A combination of the three

From my experience, clients will write their own content or reduce the number of sections to save costs.
However, paying a professional copywriter or technical writer to create quality has more of a chance in
improving the success of a project.

321

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 321



After an examination of my own content, I determined these were the main sections for my site, as
shown in Figure 9-3:

❑ Home (or Main). Links back to the front page.

❑ Journal. The main page for the blog and the place that contains links to archived blog entries.

❑ About. A brief biography section.

❑ Work. The portfolio section for my print and work.

❑ Shop. A section for people to buy books and other items for sale.

❑ Publications. The listing of my writings and speaking engagements.

❑ Contact. A site’s contact form should always be in easy reach of your audience.

Figure 9-3: A site map representing the proposed site architecture

Framing the Layout
With the content inventory and site map in hand, I have the major building blocks in place. The next
step is examining the structure of the Web pages themselves.

As mentioned in Chapter 2, a wireframe is a line drawing that illustrates the different areas of content on
a page. It doesn’t showcase any design-related information except for the composition of the elements
within the page. Drawn in tools such as Adobe Illustrator or Omni Group’s OmniGraffle, the wireframe
is a simple schematic that showcases the placement of content areas within a page, as shown in Figure
9-4.

Journal About

Home ChristopherSchmitt site map

Work

Accolades

Shop Publications Contact

Print Web

Speaking

Books ArticlesArchive

322

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 322



Figure 9-4: The wireframe for my page design

Logo

Footer

Photobar

Page Description/Page Title

Blog Post(s)

Search Box

Site Navigation

Blog Roll

323

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 323



Designing the Site
With the preparation of scope, site map, content inventory, and wireframe done, it’s time to start design-
ing the site.

Based on the direction from Chapter 2, the next steps include deciding on the tone, looking for inspira-
tion, determining the layout, and, you know, working on a design.

Emoting Is Designing
One of the key things you learn about design is that, at its core, it’s about communicating emotion. All
design elements that come into play with a design (whether it’s print, television, or the Web) reflect how
well the design of the message was aptly matched with the message itself.

A simple way to think about the separation of design and the message is to think about how you com-
municate with your voice. By placing emphasis on a different word in a sentence, you change the mean-
ing of the sentence.

Read the following sentences aloud, placing the emphasis on the words in italics:

❑ Why did you sign the file?

❑ Why did you sign the file?

❑ Why did you sign the file?

❑ Why did you sign the file?

❑ Why did you sign the file?

As you go through the sentences, you should hear that the meaning of the sentence changes from one to
the next, even though the words stay the same. With design, it’s pretty much the same thing.

A designer has a toolbox of theories and techniques to apply the right emphasis to get a message the
proper reception from the viewers. However, an uninformed designer can place the emphasis poorly in
a design, minimizing the effect of the message and causing a communication problem with the audience.

Or, worse yet, the intended audience doesn’t receive the message at all. With communication, it’s the
message that is received that’s the most important message, no matter how good your intentions are.
With any design, how you say it is as important as what you say.

Setting the Tone
As the designer, I must determine how to emphasize the message. There are elements of a design that a
person can control to craft the right impression for a design, including typography, colors, imagery, and
layout for the content. To set the right tone for my site, I must determine how to best use typography,
colors, imagery, and layout for the content. I must choose these elements carefully, because when the
elements I pick come together, they will set the tone of the site.

324

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 324



In my site design, the overall tone I want to set is friendly so that people respond to the site on an infor-
mal basis. However, at the same time, I do want to project a professional image. To achieve this, I want
to have a mixture of organic characteristics (friendly) meshed with structured, conservative elements
(professional).

To achieve the more structured, conservative approach to the site, the inherent nature of the CSS box model
will help. Also, I will be using the SuperTiny SimCity style. If you have played games such as SimCity or
visited sites that look like k10k (see www.k10k.net/), you will immediately recall the style of these images.
This style is characterized by a heavy reliance on grid layout and a glorification of the pixelated imagery.

To provide some balance to the conservative nature of the site, I’m going to employ some organic art-
work. I’m going to rely on the creative use of background images and a special typeface that is perfect
with organic characteristics.

One problem with having an organic presentation on a Web page is that it’s inherently chaotic at first
glance. I’m not the first one to attempt to combine an organic approach with a more rigid framework —
I just hope my design doesn’t turn out to be another Frankenstein monster.

Typography
With the Web, I’m a bit in a bind because I must use typefaces that are installed on both Windows and
Mac OS platforms. For areas of common text (such as blog posts), I will use common Web fonts, Georgia
and Verdana, with font-matching substitutes for each font as shown in the following table.

Page Section Typeface

Logo, special treatments Not Caslon (see www.emigre.com/EF.php?fid=111)

Headings Georgia, Times New Roman, Times (serif)

Content Verdana, Arial, Helvetica (sans-serif)

However, for the logo (which will bear my name), I want to use Not Caslon from Émigré, as shown in
Figure 9-5.

Figure 9-5: Not Caslon shown in the logo

Colors
For this Web site, I’m using a mixture of bold, modern colors. For the organic feel, the leaves around my
hometown serve as inspiration. The colors I’m going to be using are bright greens and yellows, as well
as brown and an orange for the highlight.

Feel free to visit ChristopherSchmitt.com for a look-see at the color choices and let me know what
you think.

325

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 325



Imagery
The imagery comes from a variety of sources. For starters, I’m exploiting Émigré’s typeface. It comes out
of the box with great forms perfect for the organic style I desire, but it also begs for experimentation.

To complement the organic characteristics, I’m using circles balanced with horizontal rectangles, espe-
cially in the navigation, as shown in Figure 9-6.

Figure 9-6: A composite of the elements used in the design

326

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 326



Layout
The layout is pretty much set in stone with the completion of the wireframe, but I want to take a
moment to discuss the rationale behind some aspects of the layout: 

❑ Navigation. Based on personal observation and preference, I placed the navigation on the right-
hand side because most people position the cursor on the right-hand side of the browser win-
dow while they are skimming a Web page. As soon as the user wants to go to a different section,
the amount of distance the cursor must cover to reach the navigation is less when the menu is
on the right compared to the left. The less time to accomplish a task often means a better surfing
experience for the visitor.

❑ Search box. I placed the search box on the top of the page because that’s where Jakob Nielsen
placed his on his site (see www.useit.com). Actually, I put the search feature there as a release
valve for my readers. If they can’t find what they are looking for through a couple clicks on the
navigation, they can go to the search feature. But in these crazy search engine days of Google, I
realize that people often “surf” through a site by hitting the search function first.

❑ Fixed-width, 800 pixels wide. As a designer, I like the control that having a fixed-width design
affords me. Also, I’m in favor of making sure the design is large enough to fill the screen at 800
pixels wide. This width is slightly unusual in that Web pages monitor resolutions at 800 pixels
wide. Resolutions that can expand only to 800 pixels wide mean that Web page designs must
have a viewport of no more than 792 pixels to ensure that the entire page is visible. The ratio-
nale for having a larger page width is based on three things:

❑ Monitor resolutions are increasing. Out of the box, new computers are coming with
monitors that can handle higher resolutions. And the audience for my site is using the
latest and greatest computer technologies and should be able to view the site just fine.

❑ Be bold, baby. When I was first starting out as a designer, I was lucky enough to attend
a talk given by Dr. Mario Garcia, who has redesigned newspapers for more than 30
years (see www.mariogarcia.com/Profile.asp?PageId=50). After he redesigned
my local newspaper, he was asked by the publication to give a talk to the community
about the redesign. One of the minor notes he made in his presentation that has stuck
with me throughout my design career was that his clients always tended to be on the
shy side with their logos. He makes it a point to make the logo a bold presence on the
front page. In other words, don’t hesitate to be bold.

❑ It’s a nice even number. I’m not going to lie. Although I don’t think of myself as a
slouch in the math department, there’s a reason I’m a designer rather than an engineer.
I’m not big on math and 800 is a nice easy number to work with, especially in light of
Microsoft’s box model (see Chapter 8) and the need to make use of workarounds
because of it. So, making things easier on myself at the beginning will help me down
the road.

Now that we’ve looked at the tone of the forthcoming design, I open Adobe Photoshop and start work-
ing on design versions.

327

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 327



Building It in Photoshop
With a direction and tone set, I can open up Photoshop and simply design our page, right? No. The
work I have done so far only reduces the amount of time I stay on the computer, as well as making sure
I stay on target with my original goals. The actual designing still takes time. Thankfully, through the
magic of book publishing, I already have the design finished (as shown in Figure 9-7), so we don’t have
to waste any time.

Figure 9-7: Finished home page design

328

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 328



Developing the Site
Now it’s time to turn our attention to building the page template with markup and a flash of style.

When building a page with CSS, it’s best to code the content in semantic HTML, as demonstrated in
the projects discussed in the previous chapters. That means using the appropriate markup to reflect the
contents of the element. A heading should be placed in a heading tag; a paragraph should be placed in a
p tag and so on.

Outside-In, Top-Down Approach to CSS
Once the markup is complete, I then work with the outside-in, top-down approach when applying CSS
properties to the HTML properties.

So, first I look at the page as a whole by applying CSS rules to the body element. This is the outside-in
approach. Then I work from the top of the page to the bottom by working on the header, followed by the
navigation, content areas, and then the footer.

For this design, the first step is to look at centering the fixed-width layout.

Centering the Page (and Why It Matters)
Back in the mid 1990s, my solution to center the Web site design came from the use of HTML frames.
Frames aren’t very user-friendly and, if they aren’t coded correctly, can lock out disabled users or text-
browser users to your site. Keeping visitors away from a Web site is not a habit I want to keep for this
new design.

Thankfully, in this new millennium, we can use CSS without resorting to dreaded frames. Let’s take a
look at the markup:

<body>
<div id=”frame”>
[ ...content goes here... ]

</div>
</body>

For the div titled frame, we want to set the width as well as the margins:

#frame {
width: 800px;
margin: 0 auto;

}

The margin property values are written in shorthand and tell the browser to reduce the margins on top
and bottom of the element to zero, while automatically adjusting the margin on the left and right side so
that they are equal, as shown in Figure 9-8.

329

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 329



Figure 9-8: Centered content

In a world with only perfect CSS-compliant browsers, this little bit of CSS is all we would need to do.
However, Internet Explorer for Windows doesn’t understand the auto value for margins and thus won’t
center the layout in that browser, as shown in Figure 9-9.

To work around Internet Explorer, we apply the text-align property to the body element:

body {
text-align: center;

}

330

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 330



Figure 9-9: Internet Explorer for Windows 5.5 does not center the div element correctly.

The text-align property aligns the child element frame to the center. This means, too, that all the con-
tent within the frame container is aligned to the center as well. To counter that effect, I give the frame
declaration block its own text-align property:

#frame {
width: 800px;
margin: 0 auto;
text-align: left;

}

Now, the content within the frame container is centered for all the modern browsers, as shown in
Figure 9-10.

331

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 331



Figure 9-10: Frame container is centered for Internet Explorer for Windows.

With the body and frame of the page set, I then set some additional CSS declarations to every element in
the page.

Font Sizing
Even though CSS provides greater control over the typography in a Web design, determining the best
way to set the font sizes is not an easy thing to do. For designers who love typography (like myself), it’s
hard not to take browsers ruining the fonts in our designs personally.

Let’s look at some of the common problems with Web typography:

❑ Fonts set in the value of pixels (for example, font-size: 12px;) are not resizable in Internet
Explorer for Windows.

❑ Using the value of font-size keywords isn’t an option without a workaround because Internet
Explorer for Windows 4/5.5 sets the value of a keyword to the lower value. For example, a
value of x-small is translated as xx-small.

❑ Even with an Internet Explorer for Windows workaround (set to deliver the appropriate key-
word values), designers wanting more control over the fonts than seven keyword sizes are at a
loss.

332

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 332



Without further losing our sanity, an ingenuous method to gain greater control over Web typography
comes from the clever Richard Butter’s excellent tutorial, “How to Size Text Using Ems” (see
www.clagnut.com/blog/348/). 

Butter’s solution is to first set the value of the font-size in the body to a value of 62.5 percent:

body {
text-align: center;
font-size: 62.5%;

}

The rationale for this step is that current browsers apply the value of 16 pixels to the value of the medium
keyword, which is the default size for HTML text. By setting the font-size for the body to 62.5%, that
translates to a very manageable 10 pixels for the math-challenged:

16px * 62.5% = 10px

With the base value of 10 pixels set, I then adjust the size of the text elsewhere in the document using
only em units. (One em unit is equal to the default size of the nearest font.)

For example, if I want a portion of text to be 12 pixels, I set the value of the font-size property to 1.2em.

(16px * 62.5%) * 1.2em = 12px 

If I wanted to set text to the value of the rather large 25 pixels, what would the em value be?

(16px * 62.5%) * x = 25px
10px * x = 25px
x = 25/10px
x = 2.5em 

There are a few curiosities with this solution that should be addressed. (You knew there was going to be
a catch, right? This is Web typography after all.)

❑ The font-size property values for input, select, th, and td elements must be set to their
appropriate size:

input, select, th, td {
font-size: 1em;

}

❑ In browsers with the Gecko rendering engine (Mozilla and Firefox, to name two), the values in
this method are set to the font-size of 12 pixels. To get a uniform size of the headers in Gecko
and non-Gecko browsers, spell out the font sizes for the headings:

h1 {
font-size: 2.5em;

}
h2 {
font-size: 2em;

}
h3 {

333

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 333



font-size: 1.75em;
}
h4 {
font-size: 1.5em;

}
h5 {
font-size: 1.25em;

}
h6 {
font-size: 1em;

}

❑ When nesting elements such as list items, the sizes of fonts are going to be sized smaller and
smaller. If the font size for a list item is .8em to get a value of 8 pixels, the value of a nested list
item within that list will have a value of 6.4 pixels! Let’s take a look at some examples and math:

<ul>
<li>The Parent List Item: 10px * 8em = 8px
<ul>
<li>The Child List Item: 8px * 8em = 6.4px!</li>

</li>
</ul>

To work around the problem, set the value of nested list items to 1em:

li li {
font-size: 1em;

}

Other than that, it’s easy. Okay, it’s not exactly a walk in a park compared to using font-size key-
words, but you do remember the talk about Web typography being tortuous? So, keeping an eye on the
placement of HTML elements isn’t that difficult a trade-off when there is more control over the Web
typography.

With our font solution decided, and the framing of the Web page done (as shown in Listing 9-1), it’s time
to start working on the content from the top to the bottom starting with the header.

Listing 9-1: The Main CSS Rules for the Page Design

body {
text-align: center;
font-size: 62.5%;
font-family: Verdana, Helvetica, Arial, sans-serif;

}
#frame {
width: 800px;
margin: 0 auto;
text-align: left;

}
input, select, th, td {
font-size: 1em;

}

334

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 334



Entering the Head
The first item in the header is a link for skipping the content portion of the Web page. This link allows
visitors on a text browser (or people with visual disabilities) to skip past the repetition of hearing or see-
ing the logo and navigation sections on every page, as shown in Figure 9-11.

<body>
<div id=”frame”>
<p><a href=”#content”>Skip navigation.</a></p>

</div>
</body>

Figure 9-11: The link is visible.

However, I want to hide this link from people seeing the visual design of the Web page. To do this, I cre-
ate a new class selector in the style sheet with its sole purpose to keep certain elements of a page hidden
from view:

.no {
display: none;

}

Next, I apply the class selector to the markup so that the style sheet hides the link and the link is gone, as
shown in Figure 9-12:

<body>
<div id=”frame”>
<p class=”no”><a href=”#content”>Skip navigation.</a></p>

</div>
</body>

Figure 9-12: The link is invisible.

335

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 335



Finding the Search Box
With the link to the content dealt with, it’s time to move to the search box. Listing 9-2 showcases the
HTML for the search box (as shown in Figure 9-13).

Listing 9-2: The HTML for the Search Box

<body>
<div id=”frame”>
<p class=”no”><a href=”#content”>Skip navigation.</a></p>
<fieldset>
<legend><a href=”/search/”>Search</a></legend>
<form action=”/search/” name=”searchbox”>
<input type=”submit” value=”search” />
<input type=”text” name=”q” />

</form>
</fieldset>

</div>
</body>

Figure 9-13: The default rendering of the search box

You’ll notice that in Figure 9-13, the search box appears on the left, but I want it on the right of the page.
To ensure that all the content within the fieldset is styled for this particular fieldset instead of
another fieldset that might be placed in the content area of a Web page, the first step is to modify
the fieldset property with an id attribute and an appropriate value:

<fieldset id=”searchbox”>

Again we are applying the outside-in approach to designing, so the next move is to apply styles to the
fieldset itself. What I want to accomplish with the fieldset is to place the green bar at the top of the
page, while also aligning the two elements of the form to the right. So, the first CSS rule is this one, as
shown in Figure 9-14:

fieldset#searchbox {
border: none;
background: #d9ff00 url(“/_assets/img/brandStripe_bkgd.gif”) repeat-x;
margin: 0;
padding: 0;
text-align: right;

}

336

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 336



Figure 9-14: Styling the fieldset element

With this CSS rule, I removed the border, the margins, and padding. Next, I added a green color
(#d9ff00) to match the background image, which was repeated horizontally. The color was added
so that, in case a user’s default type size is larger than normal, at least the background color shows
through. And the last declaration tells the browser to scoot the contents to the right.

The next step is to hide the legend value, which is easy to do: 

fieldset#searchbox legend {
display: none;

}

Instead of using a descendant selector, I could have re-used the class selector .no. However, that would
have required the additional markup of a class attribute and its value to the code. So, instead of adding
more markup, I might as well be more specific in the CSS, rather than mess up the markup. (For more
information on descendant selectors, see Chapters 2 and 6.)

Now I want to adjust the margins, padding, and font size of the form itself, as shown in Figure 9-15:

fieldset#searchbox form {
margin: 0 30px 0 0;
padding: 4px 0;
font-size: 0.8em;

}

Figure 9-15: Styling the form element

337

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 337



The next step is to adjust the width and colors of the input and submit buttons, respectively, as shown in
Figure 9-16.

fieldset#searchbox form input[type=”text”] {
width: 152px;

}

fieldset#searchbox form input[type=”submit”] {
background-color: #FFFF00;

}

Figure 9-16: The stylized rendering of the buttons

If you notice, I’m using attribute selectors as mentioned in some detail in Chapters 2 and 6. This selector
currently works in Netscape 6+ and Opera 5+ only. Also, browsers such as Safari use their own GUI ele-
ments for the form buttons, so styling those elements is out of the question.

A way around the problem of attribute selector support is to change to class selectors. Adding class
attributes to both of the input elements changes the markup:

<input type=”submit” value=”search” class=”submit” />
<input type=”text” name=”q” class=”text” />

Then, all that is required is modifying the attribute selectors to class selectors like so:

fieldset#searchbox form input.text{
width: 152px;

}

fieldset#searchbox form input.submit {
background-color: #FFFF00;

}

Personally, I prefer to leave the attribute selectors in place. To borrow some language from the movie
Office Space, “It’s the browser that sucks, why do I have to change?” But then, that’s not a positive atti-
tude, so I should not digress and just move on.

338

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 338



Making Room for the Logo
The next part of the header deals with the logo and the site’s tagline. I’m going to add a touch of magic
with this approach, but I promise to explain why after it’s all done. First, however, I provide the basic
markup for the image of the logo as well as the text for the tagline (as shown in Figure 9-17):

<div id=”header”>
<h1><a href=”/” title=”Christopher Schmitt, keeping it real 

since 1975”><img src=”/_assets/img/logo.gif” alt=”Christopher Schmitt 
logo” border=”0” /></a></h1>
<p>derived from simple pleasures</p>

</div><!-- END #header -->

Figure 9-17: The default rendering of the header pieces under the search box

Breaking Down the HTML
While the last two items (the skip to content link and the search box) could be considered part of the
header, I’ve left them out of the div container called “header” because I want the div header to contain
components that I feel are essentially part of the header, the logo, and the tagline.

If you recall from Chapter 5 regarding the UFL.edu site redesign, the navigation labels were set in h2
elements to give what Mark Trammell refers to as “the proper gravitas” — the labels played an essential
part in the content of the page as well as for the whole site. People using assisted-browsers such as JAWS
will get a benefit from the improved markup, but also search engines notice the extra weight a heading
element gives to the content. In this same vein, I’m wrapping the image with an h1 element.

Last, at the end of the markup for the header and tagline, notice the HTML comment that reads END
#header. This marker is placed at the end of closing div tags to help in the editing of the HTML. With
CSS, there is a heavy reliance on the div elements to create the necessary hooks to stylize the content.
The more div elements, the more there are closing div elements. After a while, keeping track of all those
closing div elements can make a person go cross-eyed. To help reduce the eye strain, I place an HTML
comment marker at the end of every div element.

339

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 339



Applying the Style
With the basic HTML set, I want to apply the styles to the header. First, I want to remove the default
margins for an h1 element that the browser supplies:

#header h1 {
margin: 0;

}

The next step is to apply the photobar at the top of the header. The photobar will be a revolving image
placed right above the logo. The next CSS rule accomplishes two things needed to do that: placing
the image and then setting enough padding (40 pixels) to keep the background image from obscuring
the logo:

#header {
background: transparent url(“/_assets/img/photoChange001.jpg”) 0 0;
padding: 40px 0 0 0;

}

Remember when I talked about magic? Well, here’s the trick: I want to make my logo disappear. 

The reason for this trick is that I want to keep the logo as shown in Figure 9-17 when users only print out
the Web page. The logo that is currently seen in the default rendering is absolutely perfect for printing.
However, for my intended Web page design, it’s not so perfect. For color monitor displays, I want
another logo to take its place, one that takes advantages of those colors.

To pull this off, I’m going to employ an ingenious trick by applying a CSS rule to the anchor element
within the h1 element:

#header h1 a {
display: block;
width: 800px;      
height: 89px;
background-image: transparent url(“/_assets/img/logo_screen.gif”) no-repeat 0 0;
text-indent: -1000em;

}

By default, anchor elements are inline elements that cannot accept a width declaration, no matter how
nicely you ask them. By setting the display to block, we can then tell the anchor element to take on fixed
dimensions. In this case, the anchor element will take on a width of 800 pixels and a height of 89 pixels
— the very same dimensions for the new logo. The background-image then brings in the background
image, which is the image consistent with the new logo.

The bit of magic that does the trick is the text-indent property. By placing a negative value of 1,000
em units we are pretty much assured that the default logo image possessing the width of 494 pixels
won’t ever be seen. Voilà! Check out the results in Figure 9-18.

340

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 340



Figure 9-18: The new logo set firmly in place

Next, we need to add a bit of insurance. Because of a problem with Internet Explorer for Windows, there
might be a flickering problem if you roll over the image. There are two ways to counter this problem. A
setting in the browser’s options creates the flickers.

In Internet Explorer, select Tools ➪ Internet Options to pull up the Internet Options dialog box. Within
the Temporary Internet Files fieldset, click Settings.... At the top of the Settings dialog box (as shown
in Figure 9-19), there is an option to set how often the browser should check for new files. 

Figure 9-19: The Settings dialog box and the Temporary 
Internet files folder

341

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 341



Like the dedicated Web developer I am, I often have the option set to Every Visit to the Web Page.
While this helps in troubleshooting problems with building Web page designs, I don’t want the browser
to cache and keep on displaying an old version of a Web page when I’m trying to solve another Web
browser issue.

However, this setting also means that the browser is forced to reload the image every time the cursor
rolls over the image, instead of relying on the cached version. So, to get the flickering to occur, I set the
option to Automatically.

Another solution is a CSS rule addition that is also quite easy and doesn’t rely on every visitor to my
Web site to change his or her Internet Explorer settings. The CSS rule is set up to apply the very same
background image in the anchor link to the parent element. So, as the browser goes to refresh the back-
ground image and the image vanishes, the same image will show up right behind it in the parent ele-
ment’s background:

#header h1.logo {
background-image: transparent url(“/_assets/img/logo_screen2.gif”) no-repeat 0 0;

}

Moving to the Tagline
With the logo adequately addressed, I move to the tagline. The tagline is set an HTML text, so I can
change it whenever it strikes my fancy without having to crack open a digital imaging software applica-
tion or rack my brain trying to learn how to use PHP and the GD library to generate an image on the fly.

For the tagline, let’s apply a few declarations:

#header p.tagline {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 1.2em;
color: #6e2703;
margin: -10px 0 35px 0;
padding: 0 0 0 15px;
letter-spacing: 0.3em;

}

First, I set the tagline to the Verdana font (with appropriate typeface backup measures), and then I set
the typeface to 1.2em.

Next, in the CSS rule is a setting for the color for the text (which is set to #6e2703). When picking colors
for a design, a little trick I use is to pick colors from other areas in the design. For this color, I went to
the circles in the logo design and used the Eye Dropper tool to pick the color. By doing this, I quickly
and painlessly pick a color that works harmoniously with other colors in the design, as shown in
Figure 9-20.

342

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 342



Figure 9-20: Selecting the extra color from 
elsewhere in the design

After the color selection, I want to move the tagline to be closer to the logo. I do this by applying a nega-
tive value to the margin property. Also, I want the tagline to be flush to the left of the logo, so I apply a
left padding value of 15 pixels. Finally, I want to spread out the letters in the tagline by setting the value
of letter-spacing to 0.3em, as shown in Figure 9-21.

With the logo all set up, it’s time to move to the Web page columns.

Figure 9-21: The logo with the newly stylized tagline

Starting the Two-Column Layout
The elements of the header span the entire 800 pixels I allotted for the design. While that’s good for
branding purposes, it’s not an efficient use of the space in terms of displaying information. Imagine if
everything you read from newspapers to magazines had their articles and photos stacked on top of each
other from top to bottom.

343

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 343



It would take a lot longer to scroll down the Web page, and it would probably look a lot like what the
Web looked like in 1993. (I sure don’t want to re-create that for my Web site.) Thus, I need columns —
actually, two columns.

Columns in HTML
First, let’s look at the HTML for that’s what will be used to define the areas of the two columns in the
Web page:

<body>
<div id=”frame”>
<fieldset id=”searchbox”>
[ ...content goes here... ]

</fieldset>
<div id=”header”>
[ ...content goes here... ]

</div>
<div id=”sidecol”>
[ ...content goes here... ]

</div>
<div id=”maincol”>
[ ...content goes here... ]

</div>
</body>

In this version, I decided to have the content for the side column (on the right-hand side) come first in
the HTML, while the main content (on the left-hand side) comes later.

Side Column
What I want to do to get the side column is to bring the content out of the normal flow of the document.
I do this by using the position property and setting the value to absolute.

Absolute positioning allows me to take a certain element and put it at a precise point in the Web page.
I’m talking pixel-perfect positioning, which after the discussion on Web typography, seems as if it is an
impossibility. However, it’s the truth.

So, reviewing my design in Adobe Photoshop (as shown in Figure 9-22), I measure where I want the top-
left corner of the side column to start and come up with the values 545 pixels from the left and 185 pixels
from the top. Also, I double-check my column widths and make a note from the Info palette that the
width of the side column in my design is 255 pixels.

344

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 344



Figure 9-22: Using Photoshop to determine the placement for 
the side column

I will use these three new pieces of information to write the offset properties in the following CSS rule to
help position the side column:

#sidecol {
position: absolute;
top: 185px;
left: 545px;
width: 255px;
margin: 0;
padding: 0 0 1.6em 0;
background: transparent url(“/_assets/img/sidecol_bkgd.gif”) no-repeat top right;

}

I also place in properties for the margin (set to zero), the padding, and a background image as a flourish
for the site design. But, looking at the column in my browser, I notice a problem.

When using absolute positioning, the column stays in place, no matter if the browser window is resized
large or small, and, what’s worse, it could obscure the other content in the Web page, as shown in
Figure 9-23.

Unfortunately, this is the nature of the absolute positioning. It’s impossible to set an element to be posi-
tioned and have it move with the content as the user resizes the window (that is, if we just use absolute
positioning by itself).

To solve this problem, I use another magic trick. This time, I set the positioning to relative of the parent
element of the side column container.

345

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 345



Figure 9-23: The side column not playing well with the other content

Elements that are positioned with relative positioning aren’t taken out of the flow of a document render-
ing as they are for absolutely positioned elements. Those elements are placed as they would normally
appear in a Web browser. However, the offset properties such as left and top apply only to the element’s
location in that document flow. So, an element that’s relatively positioned with an offset property of top
set to a value -2em appears to be moved up, as shown in Figure 9-24.

Figure 9-24: A couple of words levitating thanks to relative 
positioning

346

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 346



When combined with relative positioning on a parent element (such as the div frame container), abso-
lute positioned elements can be placed precisely and still expand with the rest of the content as a user
expands the browser. Why the frame container? Because that’s the element that is setting the overall
width of the design of the Web page. Recalling what I did earlier, I looked up the offset property values
for top and left by the upper-left corner of the Photoshop document. The frame container acts as the
representation of that document by, well, framing all the Web page design elements into the 800-pixel
width.

Take note that you can use this setup on other elements in a Web page design in addition to side
columns. This is truly a great technique that has so many applications. So, experiment and share with
others what you find out.

So, let’s apply the position property to the frame container:

#frame {
width: 800px;
margin: 0 auto;
position: relative;

}

Now, the side column should be placed exactly where I want it within the frame container. However, I
still have the overlap issue, with the content in the left and right columns, as shown in Figure 9-25. Not
to fear, though, for it’s time to work on the main, left-hand column.

Figure 9-25: The side column positioned perfectly

347

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 347



Main Column
The positioning of the side column has left some work to be done. I need to remove the obfuscation
of the content that’s created by both columns. The solution is a very easy addition of applying padding
to the right side of the main column so that there is enough room for the side column. In this design, the
side column is 255 pixels.

So, I give the padding on the right side that much, plus 40 extra pixels, to make it a total of 295 pixels, as
shown in Figure 9-26. The 40 pixels create a gutter (a space between the two columns so that they don’t
touch or run into each other).

#maincol {
margin: 0;
padding: 0 295px 1.6em 0;
color: #030;
background: transparent url(“/_assets/img/journal_bkgd.gif”) no-repeat 0 0;

}

Figure 9-26: Two columns of text

The other CSS properties for the main column container include the addition of design flourishes such as
the color of the text, as well as a background image that starts at the top of the main column.

348

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 348



The color property is very important because any new HTML text that is written within this container
gets set to this color by default. So, that frees my hands of setting the color for each element within the
main column container to the same value. In the future, I need to worry about changing the color of an
element only if it needs to be something other than the default value.

Now, my next step is to work on the content that goes into the main content column.

Main Column Content
With the two columns set up, it’s time to take a look at the content within the two columns. First up is
the content in the main column.

My Site Says, “Hi,” Does Yours?
One of the most important things I tell my students and clients is to have an introductory paragraph on
the main page of your site. It’s important to let new visitors (and maybe some of the regulars) know
what to expect when they come to a Web site.

When Web developers build their own sites, we sometimes get so caught up in the designing and devel-
oping that something as simple as a few quick lines describing what we are trying to accomplish seems
foolish.

Not everyone can determine the purpose of a site by the domain name or title, For example, my new
media design and publishing company name is Heatvision.com. What does it do? Sell comic books or
sunglasses? Well, it does neither. So, to stop the confusion, I have a few lines that say what the company
does:

Heatvision.com consults on user interface design issues, builds brands, offers training in Web
production and design techniques, and assists in Section 508 compliance.

Whether the goal is to sell, promote, teach, enlighten, or entertain, we sidestep hype and fash-
ion to focus on what really works in making a client’s message compelling and useful to their
audience.

It’s simple and to the point. People thinking I sell comics or sunglasses are as quick as The Flash told
otherwise, and they can search elsewhere for the issue where he races Superman.

For my personal site, I want to put in the following markup for the introductory text, as shown in
Figure 9-27:

<div id=”desc”>
<h2>What is this site?</h2>
<p>This is the web site for me, Christopher Schmitt. I’m an author, graduate

student, web designer, product developer, and an idea generator. After two years,
I’m currently wrapping up my graduate studies at Florida State University in
Interactive and New Communication Technologies.</p>
</div><!-- END #desc -->

349

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 349



Figure 9-27: The default styling of the introductory text

I wrap the introductory paragraph in a div with an id attribute set to the value of “desc”. This will be
the containing block for the description. Within the div element are the question wrapping in an h2 ele-
ments and a paragraph containing the answer. 

Now that we have the markup set up in place, I start again to style the content from the outside in, start-
ing with the div element, as shown in Figure 9-28.

Figure 9-28: The styling of the description container

#desc {
margin: 12px 0 0 0;
padding: 0 0 0 111px;
background: transparent url(“/_assets/img/pageDesc/dots_4x3.gif”) no-repeat 

16px 0;
color: #2D6734;
line-height: 1.5;
width: 350px;

}

350

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 350



The first declaration for the margin sets 12 pixels at the top of the introductory text. This move is made
to create some white space.

The next rule is important when it comes to the introductory text. Since I want to have the graphic image
of dots positioned in the upper-left corner, I need to position the text out of the way so that the dots
don’t interfere with the background image. So, in the same manner I moved the main column content by
adjusting the padding on the right side, I adjust the padding on the left-hand side of the introductory
text to make room for the background image.

The next three declarations set the background image, color of the text, and the line-height for the text.

The last property sets the width of the introductory text. I have set the width in my design for the main
column to 505 pixels. Even with the left-side padding of 111 pixels, that still leaves 394 pixels. Why
shrink the width of the paragraph by 44 pixels?

The answer is that I want to create that white space again because I want the visitor’s eye to see the logo
and not be hindered by a block of text. Although there is 40-pixel gutter between the two columns,
enlarging the gutter at the very top of the main page acts as a sort of visual funnel. It diverts the eye
from the header into the main content of the main page.

However, by setting the width on the sides of the desc container, I’ve run afoul of Microsoft’s box model
for Internet Explorer 5.5 for Windows. So, do get around this, I use the hack as described in Chapter 8:

#desc {
margin: 12px 0 0 0;
padding: 0 0 0 111px;
background: transparent url(“/_assets/img/pageDesc/dots_4x3.gif”) no-repeat 

16px 0;
color: #2D6734;
line-height: 1.5;
width: 461px;
voice-family: “\”}\””;
voice-family: inherit;
width: 350px;

}

The first width value is a false value slipped like a poison to WinIE 5.5 so that it correctly sizes the
desc container. The other browsers are able to read the second width property value through the
voice-family hack.

By “all the other browsers” I mean all except Opera, which requires an extra CSS rule by itself. But this
isn’t a problem. Extra CSS rules don’t cost much:

html>#desc {
width: 350px;

}

351

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 351



Then, the next two properties apply the styles for the heading and paragraph text to make it look more
in tune with the way I designed, as shown in Figure 9-29:

#desc h2 {
font-size: 1em;
font-weight: bold;
margin: 0;
padding: 0;

}

#desc p {
font-size: 0.9em;
margin: 0 0 15px 0;
padding: 0;          

}

Figure 9-29: The stylized introductory text

Styling the Blog Posts
Much like the heading and paragraph in the introductory text, the styling of the text in the blog posts is
a fairly straightforward exercise. Today, most blog posts are auto-generated by applications such as
WordPress (see www.wordpress.org) or Movable Type (see www.movabletype.org).

If you are following along at home with a different blogging software package, your mileage will vary in
how closely my markup matches up with yours because of the differences in each application. However,
the markup from these tools should be somewhat similar, although you might need to make some adjust-
ments if you want to re-create my design.

First, I take a look at the markup for a sample blog post, as shown in Figure 9-30:

<div class=”post”>
<h2>Recent Journal Entry</h2>
<h1 class=”storytitle”><a href=”/log/index.php?p=1” rel=”bookmark”

title=”Permanent Link: Something So Embarrasing”>Something So Embarrasing</a></h1>
<div class=”storycontent”>
<p>My garbage can was stolen last night.</p>
<p>[ ...content goes here ... ]</p>

352

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 352



<p>That’ll show &#8216;em. That’ll show em, all! Bwahahahaha! </p>
</div><!-- END #storycontent -->
<div id=”postfooter”>
<div class=”meta”> filed under

<ul class=”post-categories”>
<li><a href=”/log/index.php?cat=1” title=”View all posts in

General”>General</a></li>
<li><a href=”/log/index.php?cat=4” title=”View all posts in

Life”>Life</a></li>
<li><a href=”/log/index.php?cat=5” title=”View all posts in

Miscellaneous”>Miscellaneous</a></li>
</ul>
on <a href=”http://www.christopherschmitt.com/log/index.php?p=1”

rel=”bookmark” title=”Posted at 9:24 pm”>2/3/2005</a> </div>
<!-- END .meta -->

<div class=”feedback”> <a
href=”http://www.christopherschmitt.com/log/index.php?p=1#comments”>Comments
(1)</a>

</div><!-- END #feedback -->
</div><!-- END #postfooter -->

</div><!-- END #post -->

It looks like a lot is going on and, for the most part, it is. But if we take it apart piece by piece, I can make
a bit of sense out of it. Along the way, I will apply CSS rules to the markup to create the look I want.

The first bit of markup is the div element with the class value of post. Everything within this container
is going to pertain to the blog post and, using a descendant selector in the following CSS rules, I can
control the design of the elements only in the post container:

<div class=”post”>
[ ...content goes here... ]

</div><!-- END #post -->

Now I set up the CSS rule for the post container:

.post {
margin: 0 0 0 15px;
font-size: 1.25em;

}

I set the left-side margin for 15 pixels. This is done to line up visually the 4 by 3 sets of dots, as well as
the logo and tagline elements that are located in the introductory section and header. Then I set the size
of the type to 1.25ems, which translates into 12.5 pixels based off our typography rundown earlier in
this chapter. 

The next item is the heading for the blog post:

<div class=”post”>
<h2>Recent Journal Entry</h2>
[ ...content goes here... ]

</div><!-- END #post -->

353

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 353



Figure 9-30: The default rendering of the blog post

For the design, I want to have a background image placed behind the heading to make it stand out a lit-
tle more, as well as tweak the margin, padding, color, and typography:

.post h2 {
background-image: url(“/_assets/img/content_hdg_bkgd.gif”);
margin: 0;
padding: 0;
color: #495301;
font-family: normal Geneva, Arial, Helvetica, sans-serif;;
letter-spacing: .1em;

}

354

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 354



However, I also want to add some brackets on either side of the heading. I could add them to the HTML
text, but I feel that would not be semantically correct. After all, the brackets are a design element, not
actually the heading. To add the brackets as shown in Figure 9-31, I use the pseudo-elements :after
and :before to insert content into the heading:

.post h2:after {
content: “ ]”;

}

.post h2:before {
content: “[ “;

}

Figure 9-31: The heading with the brackets

355

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 355



The only warning about using the pseudo-elements is that they aren’t supported by Internet Explorer for
Windows. However, I’m not that concerned about it because the brackets are a rather small element in a
larger design. Blame it on old age or too many scars, but I’ve learned to pick my battles instead of fight-
ing every one. 

However, one way of implementing the design would be to make an image out of each bracket. Then
wrap the text in another level of markup like so:

<h2><em>Recent Journal Entry</em></h2>

Position the left bracket as a background image in the h2 element and then place the right bracket back-
ground image in the em element.

Next is the h1 element reserved for each blog post:

<div class=”post”>
<h2>Recent Journal Entry</h2>
<h1 class=”storytitle”>Something So Embarrassing</h1>
[ ...content goes here... ]

</div><!-- END #post -->

Then I apply a CSS rule for the design:

h1.storytitle {
margin: 12px 0 0 0;
padding: 0 33px 0 0;
font-family: Georgia, “Times New Roman”, Times, serif;
font-weight: normal;

}

There’s nothing too fancy here. I apply a margin of 12 pixels to the top of the heading to give it some
space (or leading) away from the previous heading.

Then, I also apply a padding of 33 pixels to the right side. Again, this is to create some white space in
case the heading runs long. I’d prefer to have a blog title run two lines rather than have the text be equal
to the width of the blog content in order to create more contrast in the design.

The last two declarations deal with typography issues: setting the right font, as well as removing the
bold weight associated with a heading element.

The next item deals with the footer for the blog post. Each blog post contains what’s referred to as meta
information. The meta information contains information regarding what categories are associated with
the blog post, when the post was published, as well as links to any comments that a visitor might have
left in regard to the post.

356

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 356



Let’s take a look at the markup for the blog post footer:

<div class=”post”>
<h2>Recent Journal Entry</h2>
<h1 class=”storytitle”><a href=”/log/index.php?p=1” rel=”bookmark”

title=”Permanent Link: Something So Embarrasing”>Something So Embarrasing</a></h1>
<div class=”storycontent”>
<p>My garbage can was stolen last night.</p>
<p>[ ...content goes here ... ]</p>
<p>That’ll show &#8216;em. That’ll show em, all! Bwahahahaha! </p>

</div><!-- END #storycontent -->
<div id=”postfooter”>
<div class=”meta”> filed under

<ul class=”post-categories”>
<li><a href=”/log/index.php?cat=1” title=”View all posts in

General”>General</a></li>
<li><a href=”/log/index.php?cat=4” title=”View all posts in

Life”>Life</a></li>
<li><a href=”/log/index.php?cat=5” title=”View all posts in

Miscellaneous”>Miscellaneous</a></li>
</ul>
on <a href=”http://www.christopherschmitt.com/log/index.php?p=1”

rel=”bookmark” title=”Posted at 9:24 pm”>2/3/2005</a> </div>
<!-- END .meta -->

<div class=”feedback”> <a
href=”http://www.christopherschmitt.com/log/index.php?p=1#comments”>Comments
(1)</a>

</div><!-- END #feedback -->
</div><!-- END #postfooter -->

</div><!-- END #post -->

From the source code, there are two nested div element containers, meta and feedback, as shown in
Figure 9-32.

Figure 9-32: The default rendering of the blog post footer

357

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 357



For the postfooter container, I’m going to apply the following CSS rule:

#postfooter {
margin: -.5em 0 1em 0;
text-transform: lowercase;
letter-spacing: .1em;
color: #cccc99;
font-size: 1em;

}

The rule applies some minor design changes. It moves the footer up by -.5em and places a padding of
1em at the bottom of the footer. Then, to differentiate the content in the footer from the blog post, the CSS
rule also does the following:

❑ Changes the text in the footer to be all lowercase through the text-transform property

❑ Spaces out the letters by a tenth of an em unit

❑ Colors the text in the footer to a light brown color

❑ Reduces the size of the text in the footer

With the postfooter container examined, I move to the meta container. Keep in mind that I want to
have the meta container and the feedback container on the same line, but on the left and right side of
each other, respectively. To do this, I use the float property.

The float property lets content wrap around the floated element. I want to adjust the widths of each of
the meta and feedback elements so that they don’t overlap each other and I want to set the float value to
left and right, respectively. I quickly achieve part of my goal by having the two containers side-by-side,
as shown in Figure 9-33:

#postfooter .meta {
width: 355px;
float: left;
text-align: left;
padding: 0 0 1.66em 0;

}

#postfooter .feedback {
float: right;
text-align: right;
padding: 0 0 1em 0;

}     

Figure 9-33: The meta and feedback containers on the same line

358

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 358



The next step is to address the list item in the meta container. The unordered list displays all the catego-
ries related to the blog post. However, it takes a rather large amount of space. To fix this problem, I’m
going to change the display of the unordered list from block-level elements to inline, as well as remove
the bullet point for each list item:

ul.post-categories {
display: inline;
padding: 0;
margin: 0;

}

ul.post-categories li {
display: inline;
list-style-type: none;
padding: 0;
margin: 0;

}

And to add a final touch, I want to separate each category listing by a simple comma so that the category
names don’t run into each other. To do this I re-use the pseudo-element :after for the content property,
as shown in Figure 9-34:

#postfooter .meta li:after {
content: “, “;

}

Figure 9-34: The streamlined unordered list

Again, something to keep in mind is that Internet Explorer for Windows doesn’t support this property.
And, again, I’m not going to lose any sleep over the fact a handful of commas don’t show up in a broken
browser.

With the end of styling the post, I’ve reached the end of main column content. In the main column is the
introduction describing the nature or author of the site, as well as a typical blog post and respective con-
tent such as the categories and comment link.

Side Column Content
Moving from the main column to the second column, the approach is the same, but the parameters are
bit different. I’m going to be working in a smaller amount of space, letting blog posts gain a greater por-
tion of the screen real estate. However, the content in the side column is still very important, with the
most important being the site navigation, followed by the ubiquitous blog roll.

359

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 359



Again, I start to apply styles by working from top to bottom. The first item in the side column is the
main navigation.

Start of Site Navigation
The spine for any site is the menu navigation. The Web is a loose collection of documents that are con-
nected by links. The difference between any old link and a site’s menu can be debated by people wiser
than I, but links in a site menu need to do a few things:

❑ Stand out from the rest of the Web page design

❑ Be easy to find within a page design

❑ Let the user know where he or she is in the structure of a Web site

Because I’m going to focus a lot of attention in the design and execution of the navigation, I want to cre-
ate a separate HTML page so that I won’t interfere with the other elements on the Web page. When I’m
done working on the navigation, I will move the HTML over to the original Web page design and graft
the CSS rules for the navigation to the main CSS file.

So, with a new HTML page, I set up an unordered list structure to mirror the site map I worked out ear-
lier in the chapter, as shown in Figure 9-35.

Figure 9-35: The default rendering of 
the main navigation

The look for menus needs to be similar to (yet stand out from) the rest of the design to facilitate quick
reference by visitors.

In my design I conjured up in Photoshop, I believe that I have the successful look — but the interesting
part is to see if I can get CSS to help me produce it.

360

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 360



First, let’s take a look at the navigation markup, as shown in Figure 9-35:

<h4 class=”no”>Main Navigation</h4>
<ul>

<li><a href=”/”>Home</a></li>
<li><a href=”/journal/”>Journal</a></li>
<li><a href=”/work/”>Work</a>

<ul>
<li><a href=”/work/print/”>Print</a></li>

<li><a href=”/work/web/”>Web</a></li>
<li><a href=”/work/accolades/”>Accolades</a></li>
</ul>

</li>
<li><a href=”/publications/”>Publications</a>

<ul>
<li><a href=”/publications/books/”>Books</a></li>
<li><a href=”/publications/articles/”>Articles</a></li>
<li><a href=”/publications/speaking/”>Speaking Events</a></li>

</ul>
</li>
<li><a href=”/shop/”>Shop</a></li>
<li><a href=”/about/”>About</a></li>
<li><a href=”/contact/”>Contact</a></li>

</ul><!-- END #mainnav -->

For the most part the markup is straightforward. It is your normal, everyday-looking heading and an
unordered list. Let’s break this apart piece by piece and see how CSS can help power our navigation.
First up is the heading:

<h4 class=”no”>Main Navigation</h4>

I apply the class attribute in the heading with the value of no. The CSS rule associated with the no class
selector removes the heading from browser. This removal is done because the menu links themselves
will stand out from the rest of the page, so there is no need to have a visual label above the menu.
However, the heading is left for those using screen readers or text-only browsers.

The first ul element is up first. To apply CSS rules only to the site menu, I apply an id attribute with the
value of mainnav so that it will act as a container for my CSS rules:

<ul id=”mainnav”>

With the container marked, I can now add a few design touches. First, I want to zero-out the margin and
padding. Also, I want to remove the list bullets that come by default with an ordered list. The CSS rule to
do the changes I want (as shown in Figure 9-36) is a simple one:

ul#mainnav {
margin: 0;
padding: 0;
list-style: none;

}

361

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 361



Figure 9-36: Removing the margin,
padding, and bullets 

As you can see, I’ve adjusted the main unordered list in the navigation, but not the nested unordered
list. To do that, I add another CSS rule that addresses those lists with the same properties and values, as
shown in Figure 9-37:

ul#mainnav {
margin: 0;
padding: 0;
list-style: none;

}

/* Nested lists */
ul#mainnav li ul {
padding: 0;
margin: 0;
list-style: none;

}

Figure 9-37: Removing the margin,
padding, and bullets for the nested lists

While I’m in the process of removing items from the menu, I might as well not stop. The next rule
removes the underlines associated with the links:

ul#mainnav a {
text-decoration: none;

}

362

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 362



With the foundation set, I can now move forward and start working in the design for the navigation.

The design I’ve built for the navigation makes use of three-dimensional–looking graphics. The idea of
the navigation is to make the menu links look like buttons. However, with typical buttons in Web
design, the text of the label is “trapped” in the image. Designers write the name of the button in
Photoshop and then export the image as a GIF or JPEG file.

This technique has worked throughout the history of Web design and is perfectly acceptable practice.
But if I need to edit a label or add a new button, I need to make another stop in Photoshop and create
new images to upload, as well as rework the HTML, if I need to add a new image to the menu. So, I
want to be sure to use HTML text for the labels because, well, I’m lazy. I don’t want to spend my entire
life in Photoshop.

To re-create the buttons from Photoshop into the Web document, I want to use a variation of Douglas
Bowman’s excellent Sliding Doors technique (see www.alistapart.com/articles/slidingdoors/).
Essentially, I want to separate the button graphic into two parts: a top and bottom part, as shown in
Figure 9-38.

Figure 9-38: Splitting the button into two parts

Then, I’m going to extend the length of one of the images (as shown in Figure 9-39).

Figure 9-39: Extending the top portion of the button

Now that I have the button set, I want to create a set of similar-looking images to indicate that the page
is currently being viewed. So, with my design for the buttons, I create two sets with two images each (as
shown in Figure 9-40):

❑ Off State. Two images that indicate an “off” state

❑ On State. Two images that indicate an “on” state

363

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 363



Figure 9-40: The button sets

With the images ready, it’s time to focus on bringing the menu navigation into the browser. I start by
revising the CSS rule for the links (as shown in Figure 9-41):

ul#mainnav li a {
display: block;
width: 240px;
margin: 0;
padding: 0 0 7px 0;
background: transparent url(“/_assets/img/mainNav/nav_button_full_bottom.gif”) no-

repeat
bottom left;
text-decoration: none;

}

Figure 9-41: The bottom graphic 
comes through.

364

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 364



In the CSS rule, I set the display to block. Again, this allows me to set the width of the anchor links to
240 pixels, a value I picked up by measuring the width of the graphics I created in Photoshop.

Next, I set the margin to zero, while setting the bottom padding to 7px. The reason I did that was to
make room for the bottom portion of the button, which comes in as the next declaration.

With the bottom graphic in place, I need to quickly put the top graphic on the links. To do this, I’m going
to insert a bit of extra markup in the menu by wrapping the span element around the text of each link,
but only those links in the parent unordered list:

<h4 class=”no”>Main Navigation</h4>
<ul id=”mainnav”>

<li><a href=”/”><span>Home</span></a></li>
<li><a href=”/journal/”><span>Journal</span></a></li>
<li><a href=”/work/”><span>Work</span></a>

<ul>
<li><a href=”/work/print/”>Print</a></li>
<li><a href=”/work/web/”>Web</a></li>
<li><a href=”/work/accolades/”>Accolades</a></li>

</ul>
</li>
<li><a href=”/publications/”><span>Publications</span></a>

<ul>
<li><a href=”/publications/books/”>Books</a></li>
<li><a href=”/publications/articles/”>Articles</a></li>
<li><a href=”/publications/speaking/”>Speaking Events</a></li>

</ul>
</li>
<li><a href=”/shop/”><span>Shop</span></a></li>
<li><a href=”/about/”><span>About</span></a></li>
<li><a href=”/contact/”><span>Contact</span></a></li>

</ul><!-- END #mainnav -->

With the spans in place, I now have a hook where CSS can apply the top of the button background
images, as shown in Figure 9-42:

ul#mainnav li a span {
font-size: 1.25em;
display: block;
width: 240px;
margin: 0;
padding: 0 0 0 15px;
background-image: transparent

url(“/_assets/img/mainNav/nav_button_full_top.gif”)
no-repeat0 0;

color: #6E6F5E;
}

365

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 365



Figure 9-42: The top of the button 
is put in place.

With this CSS rule, I also apply other styles such as a padding on the left of the HTML text, as well as
setting the color of the text. Looking at Figure 9-42, I can tell that the bottom image is showing in the
nested lists. That’s because the browser is told by the CSS rules to apply the bottom background image
to any instance of li. So, in the next couple of CSS rules, I take care of that problem, as well as shore up
some other design touches (as shown in Figure 9-43) to get the navigation closer to what I have envi-
sioned: 

ul#mainnav li li {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 1em;
background-image: none;
padding: 0 0 0 8px;
margin: 0;

}

ul#mainnav li li a {
background-image: none;
margin: 0;
padding: 0 0 0 8px;
color: #8d8d4d;

}

Now, with the menu navigation almost set, I want to work on spacing out the options a bit because the
main options are running together. To do this, I apply a 2-pixel margin to the top of every list item, as
shown in Figure 9-44.

366

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 366



Figure 9-43: A spitting image of the 
menu navigation I want

ul#mainnav li {
margin-top: 2px;

}

Figure 9-44: Additional space around 
the main menu items

Wayfinding with Navigation
Now that I have the menu designed the way I designed it, I need to adjust the menu to follow my third
observation of menus: letting the user know where the he or she is in the structure of a Web site.

367

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 367



To do this, I want to show only the submenu links of the sections the user happens to be viewing. For
example, I don’t want the visitor to see options for Publications while they are looking at the Work sec-
tion.

I go about accomplishing this by hiding all submenu links (as shown by Figure 9-45). To do this, I
update the CSS rule that was previously used to remove the space around the nested lists:

ul#mainnav li ul {
display: none; /* Hides Submenu */
padding: 0;
margin: 0;
list-style: none;

} 

Figure 9-45: The submenus are gone.

Now that I’ve removed all the submenus, I need to devise a system that will bring back only the menus
of pages the user is visiting. The solution involves a couple of tweaks to the markup. First, I need to add
a marker to the page itself that identifies itself as belonging to a particular section of the site.

For example, if I want to mark a page as belonging to the Publications section, I add a class attribute to
the body of the Web document like so:

<body class=”pub-page”>

Next, I need a marker for the Publications menu. I add this marker by using an id attribute in the li
element that contains the Publications submenu:

<li id=”pub-link”><a href=”/publications/”><span>Publications</span></a>
<ul>

<li><a href=”/publications/books/”>Books</a></li>
<li><a href=”/publications/articles/”>Articles</a></li>
<li><a href=”/publications/speaking/”>Speaking Events</a></li>

</ul>
</li>

And, because I might need a marker for all the sections of the menu at some point in the future, I include
them in the other links for the main menu, as shown in Listing 9-3.

368

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 368



Listing 9-3: The Markup for the Navigation

<h4 class=”no”>Main Navigation</h4>
<ul id=”mainnav”>
<li id=”home-link”><a href=”/”><span>Home</span></a></li>
<li id=”journal-link”><a href=”/journal/”><span>Journal</span></a></li>
<li id=”work-link”><a href=”/work/”><span>Work</span></a>
<ul>
<li><a href=”/work/print/”>Print</a></li>
<li><a href=”/work/web/”>Web</a></li>
<li><a href=”/work/accolades/”>Accolades</a></li>

</ul>
</li>
<li id=”pub-link”><a href=”/publications/”><span>Publications</span></a>
<ul>
<li><a href=”/publications/books/”>Books</a></li>
<li><a href=”/publications/articles/”>Articles</a></li>
<li><a href=”/publications/speaking/”>Speaking Events</a></li>

</ul>
</li>
<li id=”shop-link”><a href=”/shop/”><span>Shop</span></a></li>
<li id=”about-link”><a href=”/about/”><span>About</span></a></li>
<li id=”contact-link”><a href=”/contact/”><span>Contact</span></a></li>

</ul><!-- END #mainnav -->

Now that I’ve included the markers, I need to use CSS to bring the Publications menu back so that the
user can see it (as shown in Figure 9-46) by using the display property with a value of block. 

.pub-page ul#mainnav li#pub-link ul {
display: block;
margin: 0;
padding: 0 0 7px 0; 

}

Figure 9-46: Only the Publications 
menu appears.

369

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 369



This menu reveal is done by using the specificity in the CSS. The CSS selector is instructed to “look” for
our markers in the HTML and, if they exist, to apply the styles set in the CSS rule. If the markers aren’t
there in the HTML, then the submenu stays hidden.

Now, while I have the CSS rule working just for the Publications page at the moment, I want to apply
other selectors for the other options in the main menu. Remember that I want to make this menu as trou-
ble-free as possible. By planning now for the time I want to add more submenus, I can save myself some
time in the future. Won’t my future self be so grateful that my past self did all the work! (Well, he’d bet-
ter be!)

So, the revised CSS rule looks like this:

.home-page ul#mainnav li#home-link ul,

.journal-page ul#mainnav li#journal-link ul,

.work-page ul#mainnav li#work-link ul,

.pub-page ul#mainnav li#pub-link ul,

.shop-page ul#mainnav li#shop-link ul,

.about-page ul#mainnav li#about-link ul,

.contact-page ul#mainnav li#contact-link ul {
display: block;
background-image: none;     
margin: 0;
padding: 0 0 7px 0; 

}

There’s one more thing to add. I want to change the button on the menu option currently being dis-
played. By using the images that showcase the “on” stage, I give my users more visual feedback as to
their location within my site.

To accomplish this visual reinforcement, I again use the markers to specifically tell CSS that I want the
section currently being viewed to have different background images than the other list options (as
shown in Figure 9-47):

.home-page ul#mainnav li#home-link a,

.journal-page ul#mainnav li#journal-link a,

.work-page ul#mainnav li#work-link a,

.pub-page ul#mainnav li#pub-link a,

.shop-page ul#mainnav li#shop-link a,

.about-page ul#mainnav li#about-link a,

.contact-page ul#mainav li#contact-link a {
background: transparent url(“/_assets/img/mainNav/nav_button_on_bottom_1item.gif”)

no-repeat left bottom;
margin: 0;
padding: 0 0 4px 0; 

}

370

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 370



.home-page ul#mainnav li#home-link a span,

.journal-page ul#mainnav li#journal-link a span,

.work-page ul#mainnav li#work-link a span,

.pub-page ul#mainnav li#pub-link a span,

.shop-page ul#mainnav li#shop-link a span,

.about-page ul#mainnav li#about-link a span,

.contact-page ul#mainnav li#contact-link a span {
background-image: transparent url(“/_assets/img/mainNav/nav_button_on_top.gif”)

no-repeat 0 0;
padding: 0 0 0 8px;
margin: 5px 0 0 0;
color: #003300;

}

Figure 9-47: The current option is 
visibly different from the other links 
in the menu.

However, if you notice in Figure 9-47, the submenu links now have the bottom background images as
well. This is an easy fix. I explicitly tell the browser that if a page is being shown when both the page
and link markers exist, get rid of any background images (as shown in Figure 9-48):

.home-page ul#mainnav li#home-link ul li a,

.journal-page ul#mainnav li#journal-link ul li a,

.work-page ul#mainnav li#work-link ul li a,

.pub-page ul#mainnav li#pub-link ul li a,

.shop-page ul#mainnav li#shop-link ul li a,

.about-page ul#mainnav li#about-link ul li a,

.contact-page ul#mainnav li#contact-link ul li a {
background-image: none;

}

371

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 371



Figure 9-48: The finalized navigation

One of the reasons why I love this solution is how it handles type sizing. If a user increases or reduces
the font size of the navigation, the buttons grow and shrink with it (as shown in Figure 9-49):

Figure 9-49: The menu as displayed 
when the user has a large font size

372

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 372



As of this moment, I never need to touch the markup that makes up the navigation, unless I want to
make edits. And, if I make any revisions to the menu, I simply add some basic HTML and then the CSS
instantly styles the menu.

BlogRoll
One of the common characteristics of a blog is the blogroll, which is a collection of links that the site owner
likes to read often. With Internet technology, the links can be dynamically sorted by the last time they
were updated. Like a few e-mails from friends and a nice cup of tea, a blogroll makes surfing in the
mornings nicer.

While keeping tabs on a lot of interesting links, a blogroll can quickly get out of hand. A very long list of
links can often overshadow the main site itself. One solution would be, of course, to keep a short list of
links. But why subject myself and friends to the awkward social construct of being virtually “defriended”
because I want to save some space on a Web page?

The right solution, then, is keeping the list, but shrinking the space allotted to the blogroll.

Let’s first take a look at the markup for the blogroll, as shown in Figure 9-50. (In the spirit of saving trees,
I’m going to use only a handful of links.)

<div id=”blogroll”>
<h4>Sites I Read</h4>
<p>sorted by freshness</p>
<ul>
<li><a href=”http://www.meryl.net/blog”>meryl’s notes</a></li>
<li><a href=”http://www.metafilter.com/”>metafilter</a></li>
<li><a href=”http://www.goodblimey.com/”>Good Blimey! - Ho...</a></li>
<li><a href=”http://www.allaboutgeorge.com/”>allaboutgeorge</a></li>
<li><a href=”http://www.evhead.com/”>evhead</a></li>
<li><a href=”http://x-pollen.com/many/”>The Power of Many</a></li>
<li><a href=”http://www.stopdesign.com/”>Stopdesign</a></li>
<li><a href=”http://www.mezzoblue.com/”>mezzoblue</a></li>
<li><a href=”http://www.nickfinck.com/journal.html”>Nick Finck</a></li>
<li><a href=”http://www.bizstone.com/”>Biz Stone, Genius</a></li>
<li><a href=”http://www.7nights.com/asterisk/”>asterisk*</a></li>
<li><a href=”http://www.sidesh0w.com/”>sidesh0w.com</a></li>
<li><a href=”http://www.veen.com/jeff/”>Jeffrey Veen</a></li>

</ul>
</div><!-- END #blogroll -->     

373

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 373



Figure 9-50: The default rendering 
of the blogroll

With the markup in place, I’m again going to work my way from the outside-in, starting with the
blogroll container. First I want to create a bugger of space at the top as well as the bottom. Because I
want the image to show at the bottom, I’m going to use the padding property to let the background
image show through, as shown in Figure 9-51.

#blogroll {
margin: 1.66em 0 0 0;
padding: 0 0 45px 0;
background: transparent url(“../img/blogRoll_bkgd.gif”) 0 0 repeat-y;

}

Figure 9-51: Styles applied to the 
blogroll container

The next step brings me to the header and the first paragraph. I want to place a white color in the back-
ground so that, as the background color stretches across the width of the column, it overlaps the back-
ground image in the parent container, sidecol.

374

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 374



Also, this CSS rule accomplishes two other items at the same time. It removes the background image
placed in the blogroll container from showing through the headlines. It also adds padding to the left
side of the text so that the heading and a paragraph are aligned left with the text in the main navigation,
as shown in Figure 9-52.

#blogroll h4, #blogroll p {
background-color: white;
margin: 0 17px 0 0;
padding: 0 0 0 13px;

}

Figure 9-52: Revised headings for 
the blogroll

The next CSS rule reduces the footprint of my blogroll, but also removes the bullets from the list items:

#blogroll ul {
list-style-type: none;
margin: 0;
padding: 0;
height: 100px;
overflow: auto;

}

I’ve reduced the footprint of the blogroll, but I want to move the vertical scroll bar to the left a bit so that
the right edge of the scroll bar is aligned with the right side of the navigation menu. I do this push by
applying a margin of 17 pixels to the right side (as shown in Figure 9-53):

#blogroll ul {
list-style-type: none;
margin: 0 17px 0 0; 
padding: 0;
height: 100px;
overflow: auto;

}

375

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 375



Figure 9-53: The shortened blogroll list

As you can tell from Figure 9-54, the space allotted on my Web page for the links is smaller, but there is
an addition of a two scroll bars to the right and bottom of the list. The property overflow is the reason
for both scroll bars.

Figure 9-54: The removal of the 
horizontal scroll bar

By default, the overflow property is set to auto. Typically when you have text that’s a bit long (such as
an article), the browser expands the containing box to make room for the content.

Yet, I want to make sure that doesn’t happen. So, I put in the value of auto for the overflow property,
which doesn’t do much by itself. It’s only with the addition of the height property set to 100 pixels that
the browser creates the scroll bar that stops the text from visually running long.

While I want the smaller footprint for my blogroll, which I now have, the addition of two scroll bars is a
bit too much. I want to keep the vertical scroll bar for the blogroll so that users can move up and down
the list of links, but the horizontal scroll bar is fairly useless and should be removed.

The horizontal scroll bar is showing because of the vertical scroll bar. Because the vertical scroll bar takes
away some of the 100 pixels allocated for the width of the blogroll, the browser displays the horizontal
scroll bar so that users can scroll to the right and view the content that is behind the vertical scroll bar.

Even though there’s absolutely nothing behind the scroll bar I want to see, the browser can’t make that
decision on its own. So, to stop the browser from showing the vertical scroll bar, I must reduce the size of
the content area.

376

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 376



I apply a padding of 25 pixels to the right-hand side. This should be enough width for any browser’s
vertical scroll bar.

Also, when I removed the horizontal scroll bar, I added a margin of 13 pixels to the right side (Listing
9-4) and background color to the list items to create the L-shaped pattern, as shown in Figure 9-54.

Listing 9-4: CSS for the Blogroll List Items

#blogroll li {
background-color: #ffffcc;
margin: 0 0 0 13px;
padding: 0 25px 0 0;

}

I took out the bullets for the list items earlier in the code, I need to place another marker to take their
place; otherwise the links are going to appear to run together. I don’t want to go back to a browser’s
default markers.

To add a custom list marker, I can use the list-style-image property, but I also need to replace the
previous list-style-type declaration with a new one (as a backup, in case my image fails to load),
as shown in Figure 9-55:

#blogroll ul {
/* list-style-type: none; */
list-style-type: disc;
list-style-image: url(“../img/bullet_green_dark.gif”); 
margin: 0 17px 0 0; 
padding: 0;
height: 100px;
overflow: auto;

}

The main problem with this CSS rule (as Figure 9-55 shows) is that the marker is pushed off to the left
of the screen and fairly invisible to the user. This is because of the left margin value of 13 pixels in
Listing 9-4. Reducing the size of the margin isn’t going to work because I need that space to move the
list elements over.

Figure 9-55: The replacement of the 
list marker

377

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 377



One fix could introduce more elements (such as a span or div) into the unordered list to add more
hooks. With those hooks, I can then associate styles to create finer control over the margin and padding.
That process, however well-intentioned, would take us further away from semantic markup. To solve
the problem, I find a different approach.

Instead of applying a custom marker image to the list via the list-style-image property, I apply
padding to the left side of each link in the blogroll. Then I turn off the list markers altogether (like
before) and apply a background image to each link in the blogroll, as shown in Figure 9-56:

#blogroll li a {
padding-left: 20px;
list-style-image: url(“/_assets/img/bullet_green_dark.gif”);

}

Figure 9-56: A better list marker solution

With that, the blogroll is done, with a smaller footprint and with a better-looking style.

The Footer
The footer (or content that is at the bottom of the page) is pretty straightforward. It usually contains
some sort of copyright or common creative license information. Sometimes Web designers place links to
validators or a listing of the tools that help them maintain the page. There is nothing fancy in terms of
content:

<div id=”footer”>
<p class=”credit”>Copyright &copy; 2005 Chrisopher Schmitt. All rights

reserved.<br />
Powered by <cite><a href=”http://wordpress.org” title=”State-of-the-art semantic

personal publishing platform”><strong>WordPress</strong></a></cite>. 
</p>

</div><!-- END #footer -->

When styling the footer, it’s good to think about what could happen in the content in the other sections.
In this case I’m concerned about content in the main column and elements that might be floated. For
example, the blog post footer uses floats to balance the meta and comment areas on the same line.

378

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 378



With the floats, however, the content in the footer also starts to flow around the meta information, as
shown in Figure 9-57.

Figure 9-57: The footer is raised to the content in the main column container.

So, the workaround is to set a clear property for the footer container with the value of both, as
shown in Figure 9-58: 

#footer {
text-align: left;
clear: both;
border-top: 1px solid #c2fa00;
margin: 0;
padding: 0.33em 15px 0.66em 15px;
color: #acacac;
font-size: bold 10px Verdana, Arial, Helvetica, sans-serif;

}

#footer p {
margin: 0;
padding: 13px 0;

}

Figure 9-58: Fixing the footer

The clear property is used to design the control of elements that are floated. Elements with the clear
property set to clear won’t be wrapped around elements preceding it that are floating to the left or to
the right.

Other values for the clear property are none, left, right, and inherit. The default value is none
and that means the element will be wrapped around floated content. For clear values of left or
right, content won’t be wrapped if the content preceding it is floating to the left or right, respectively.

The value of inherit takes whatever the clear property value is for its parent element. If the parent
element does not have a value, the child element goes with none (because it is the default value).

379

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 379



Page as a Whole
With the footer done, my page design is complete, as shown in Figure 9-59, and is ready to be incorporated
into the blogging software!

Figure 9-59: The finished home page design

380

Chapter 9

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 380



Summary
The development of the Web page has been a long road that began with some random thoughts in my
head and led to the finished product.

Starting out with planning, I developed the site’s scope. With the scope in place, the parameters for the
project were set in place as well as determining the content and site map. Afterward, I focused on the
design of site and creating emotion through typography, colors, and layout.

With the preparation finished, the process of development started. When designing with CSS, I followed
my mantra of outside-in and top-down by applying styles to the body of the page, and then the header,
the main column, the side column, and, finally, the footer.

While the development of the Web page may seem to have taken a long time, it would have taken longer
without the proper planning and the methodical approach to the production.

Remember that when you work on your own projects, set the goal and work diligently. Good luck!

All of the source code used in this chapter is available for download at www.wrox.com. Once at the site,
simply locate the book’s title (either by using the Search box or by using one of the title lists) and click
the Download Code link on the book’s detail page to obtain all the source code for the book. Because
many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-8833-8.

381

Bringing It All Together

11_588338 ch09.qxd  6/22/05  11:29 AM  Page 381



11_588338 ch09.qxd  6/22/05  11:29 AM  Page 382



HTML 4.01 Elements

Before you design with CSS, the content in a Web document must be marked up with HTML ele-
ments. To efficiently make use of CSS, those HTML elements must be used correctly by placing the
correct HTML element around the appropriate content.

The following table provides a listing of all the HTML elements in the 4.01 specification provided
by the World Wide Web Consortium (W3C), the governing body that determines Web-related
standards. The far-left column shows the name of the element. The next column indicates whether
the element has a start tag. The next three columns describe the element in more detail. If the col-
umn has an “O,” it means the part of the element is optional. “F” means forbidden, “E” means
empty, and “D” means deprecated. The DTD column provides information on which Document
Type Definition an element belongs in. If the element is found only in one kind of DTD, the key
will either be “L” for Loose DTD or “F” for Frameset DTD. The final column provides a text
description of the element.

Name Start Tag End Tag Empty Deprecated DTD Description

A Anchor

ABBR Abbreviated
form (for example,
WWW, HTTP, and
so on)

ACRONYM Indicates an
acronym

ADDRESS Information on
author

Table continued on following page

12_588338 appa.qxd  6/22/05  11:30 AM  Page 383



Name Start Tag End Tag Empty Deprecated DTD Description

APPLET D L Java applet

AREA F E Client-side image map
area

B Bold text style

BASE F E Document base URI

BASEFONT F E D L Base font size

BDO I18N BiDi override

BIG Large text style

BLOCKQUOTE Long quotation

BODY O O Document body

BR F E Forced line break

BUTTON Push button

CAPTION Table caption

CENTER D L Centers content

CITE Citation

CODE Computer code
fragment

COL F E Table column

COLGROUP O Table column group

DD O Definition description

DEL Deleted text

DFN Instance definition

DIR D L Directory list

DIV A division

DL Definition list

DT O Definition term

EM Emphasis

FIELDSET Form control group

FONT D L Local change to font

FORM Interactive form

FRAME F E F Subwindow

384

Appendix A

12_588338 appa.qxd  6/22/05  11:30 AM  Page 384



Name Start Tag End Tag Empty Deprecated DTD Description

FRAMESET F Frame container;
replacement of body
for frames

H1 Heading level 1

H2 Heading level 2

H3 Heading level 3

H4 Heading level 4

H5 Heading level 5

H6 Heading level 6

HEAD O O Document head

HR F E Horizontal rule

HTML O O Document root element

I Italic text style

IFRAME L Inline subwindow

IMG F E Embedded image

INPUT F E Form control

INS Inserted text

ISINDEX F E D L Single-line prompt

KBD Text to be entered by
the user

LABEL Form field label text

LEGEND Fieldset legend

LI O List item

LINK F E A media-independent
link

MAP Client-side image map

MENU D L Menu list

META F E Generic meta-
information

NOFRAMES F Alternate content con-
tainer for nonframe-
based rendering

Table continued on following page

385

HTML 4.01 Elements

12_588338 appa.qxd  6/22/05  11:30 AM  Page 385



Name Start Tag End Tag Empty Deprecated DTD Description

NOSCRIPT Alternate content con-
tainer for nonscript-
based rendering

OBJECT Generic embedded
object

OL Ordered list

OPTGROUP Option group

OPTION O Selectable choice

P O Paragraph

PARAM F E Named property value

PRE Preformatted text

Q Short inline quotation

S D L Strikethrough text style

SAMP Sample program out-
put, scripts, and so on

SCRIPT Script statements

SELECT Option selector

SMALL Small text style

SPAN Generic language/an
inline style container

STRIKE D L Strikethrough text

STRONG Strong emphasis

STYLE Style info

SUB Subscript

SUP Superscript

TABLE Container element for
tables 

TBODY O O Table body

TD O Table data cell

TEXTAREA Multiline text field

TFOOT O Table footer

TH O Table header cell

386

Appendix A

12_588338 appa.qxd  6/22/05  11:30 AM  Page 386



Name Start Tag End Tag Empty Deprecated DTD Description

THEAD O Table header

TITLE Document title

TR O Table row

TT Teletype or monospaced
text style

U D L Underlined text style

UL Unordered list

VAR Instance of a variable or
program argument

The listing of HTML 4.01 elements (www.w3.org/TR/html4/index/elements.html) is
copyright © December 24, 1999 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved. www.w3
.org/Consortium/Legal/2002/copyright-documents-20021231

387

HTML 4.01 Elements

12_588338 appa.qxd  6/22/05  11:30 AM  Page 387



12_588338 appa.qxd  6/22/05  11:30 AM  Page 388



Rules for HTML-to-XHTML
Conversion

Hypertext Markup Language (HTML) is a simple language that led to the boom of the Web in
the 1990s. However, its simplicity was also a roadblock for progress. The early success of HTML
attracted a larger Web developer audience and spawned a desire to push the medium. HTML
outgrew its simple upbringing.

For example, while placing images in a Web page is easy to do with HTML, placing the images
in a specific location on a Web page is impossible without violating the intent of the table tag.
Another example is placing the multimedia content in a Web page, which usually results in the
use of invalid, proprietary elements and attributes.

In addition, HTML contained a limited set of elements and attributes. Other industries such as
engineering or chemical companies couldn’t mark up their formulas. Instead of writing an all-
encompassing version of HTML, the W3C worked on eXtensible Markup Language (XML),
which is a flexible meta-language.

XML provides the framework for other markup languages to be created. Other industries can cre-
ate their own markup languages rather than face a restrictive environment such as HTML.

However, for most Web developers who are familiar primarily with HTML, the major benefits of
XML (creating new elements and specifying their treatment) are not important. Instead, the ele-
ments found in HTML will be of the most use.

The W3C reformulated HTML off of the XML standard to create backward-compatibility, while
making the language embrace the structure found in XML. XHTML is the essence of HTML
defined in the XML syntax.

In other words, XHTML is a set of rigid guidelines written to allow Web developers familiar with
HTML to write valid XML documents without being completely lost.

13_588338 appb.qxd  6/22/05  11:30 AM  Page 389



Yet, reworking content from HTML into XHTML creates headaches when developers move into a stricter
coding environment. The XHTML syntax (or rules for coding) is less forgiving of coding mistakes than
old-school HTML and browsers.

To help you achieve more solid understanding of coding XHTML correctly, this appendix serves as a
guide to transition the Web developer from an old-school HTML developer to a proper XHTML user.

The XML Declaration
No doubt, as a Web developer you know the importance of having the html element at the top of your
Web document. With XHTML you may place the following line above the html element:

<?xml version=”1.0” encoding=”iso-8859-1”?>

That line simply states that you are using version 1.0 of XHML with the character set of iso-8859-1.

Note that XML declaration is recommended, but not required. Because it’s a simple line that goes at the
top of your Web document, why wouldn’t you include it? Well, here are some potential problems when
using the XTML declaration:

❑ Some browsers might render the markup as it appears when you “view source” a Web page
instead of rendering the document.

❑ Other browsers might parse the Web document as an XML tree instead of rendering the
document.

❑ In Internet Explorer for Windows 6.0, the browser will display the Web document in quirks
mode, even if the Web document is valid.

❑ If you use PHP to create dynamic pages, you might notice that the start of that line with the
left bracket and question mark is how you begin writing PHP code. This code, if left as-is in
your PHP document, confuses your server and will not successfully parse your page. The
workaround for this situation is to use the echo function in PHP at the start of the document
to write out the first line:

<?php echo “<?xml version=\”1.0\” encoding=\”iso-8859-1\”?>\n”; ?>

Picking Your Comfort Level
XHTML comes in three different flavors: strict, transitional, and frameset. These varieties are based on
three Document Type Definitions (DTDs). DTDs define XHTML, and determine which elements and
attributes are allowed and how they should be used. Think of a DTD as a dictionary of allowable terms
for a certain document.

To create a valid XHTML document, you must include a DOCTYPE Declaration, which makes up a line
or two at the top of your document below the XML declaration (should you decide to use one). The line

390

Appendix B

13_588338 appb.qxd  6/22/05  11:30 AM  Page 390



of code indicates what kind of DTD you are using, and sets the groundwork for how the browser and
validators should handle your content.

To define your Web document in strict means that you will follow the letter of the law as well as the
spirit. You are a true believer in XHTML and no longer want to use any HTML elements that were used
for presentation. With the strict DTD, you are using XHTML elements to mark up content and not format
the presentation of the page. Place the following line below the XML declaration, but before the html
element:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

The transitional DTD is best if you want to dive into XHTML, but want some more freedom to use depre-
cated elements and attributes along the way, or to use certain classic HTML tags:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

The frameset DTD is for the Web documents that require you to use frames in your Web pages:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

Note that the frameset DTD is to be used in Web documents that contain the frameset only. You do not
need to use the frameset DTD for each Web document that comprises a “frame” in a frameset. For those
documents, you should use either a strict or transitional DTD.

Rules for XHTML
Now that you have set up the XML declaration and the DTD, the next step is to properly format your
Web document. The following sections cover how to properly mark up your content and use XHTML
correctly.

Don’t Forget the Namespace Attribute
Stating what type of document type you’re using at the top of the document indicates which elements
and attributes are allowed in the document. Along with the DOCTYPE declaration, the namespace is an
additional means of identifying your document’s markup, in this case XHTML.

In order to identify the namespace, place what’s called a namespace attribute, xmlns, in the html element,
in the opening html tag:

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>

391

Rules for HTML-to-XHTML Conversion

13_588338 appb.qxd  6/22/05  11:30 AM  Page 391



Quoting Attribute Values
All values for attributes in an element are required to be wrapped in quotation marks. So, you would not
use this example:

<img src=file.gif width=133 height=133 />

Instead, you should follow this correct example:

<img src=”file.gif” width=”133” height=”133” />

No Attribute Minimization
For some elements in HTML (such as the horizontal rules tag, hr), attributes can be minimized, and sim-
ply listing the attribute name is valid:

<hr noshade />

In XHTML, however, there is no attribute minimization. When you are faced with an attribute that typi-
cally has never needed a value, set the value of the attribute to the name. In the case of this example
using the hr element, the value for the attribute noshade is noshade:

<hr noshade=”noshade” />

Terminating Empty Elements
Empty elements are elements that do not come in pairs (such as img, br, or hr).

Non-empty elements (such as p or h2) are fairly common in HTML. They are used for marking the start-
ing and ending of content in a Web page, such as using the following p tag to indicate a paragraph:

<p>That’s when I thought I should decline a second helping of her infamous
spaghetti and meatball salad.</p>

With XHTML, all elements must be terminated, including empty elements.

To keep on using empty elements in XHTML, empty elements must be modified slightly. Add a space
and a forward slash at the end of the element:

<img src=”file.gif” alt=”Company logo” width=”125” height=”36” />

Note that including the space before the trailing slash isn’t a requirement for the code to be valid, but a
technique to keep older browsers such as Netscape Navigator 4 from failing to render the element.

392

Appendix B

13_588338 appb.qxd  6/22/05  11:30 AM  Page 392



Cleaning Nests
Nesting elements properly is simple and should already be a part of any Web developer’s practices. In
the following line, the ending tag for the strong element is outside of the closing p element.

<p>That’s when I thought I should <strong>decline a second helping of her infamous
spaghetti and meatball salad.</p></strong>

Whereas, this is the correct method for marking up the content:

<p>That’s when I thought I should <strong>decline</strong> a second helping of her
infamous spaghetti and meatball salad.</p>

XHTML with CSS and JavaScript Files
Associating CSS and JavaScript files is the preferred method by which you incorporate presentation and
behaviors to your Web pages:

<script src=”/js/validator.js” type=”text/javascript”></script>
<link rel=”stylesheet” href=”/css/layout.css” type=”text/css” />

If you must use internal JavaScript, wrap the code with the starting marker, <![CDATA[, and ending
marker, ]]>.

Keep It on the Downlow
From now on, all elements and attribute names in XHTML must be set in lowercase. This means you
should not use all uppercase, or mix uppercase and lowercase. The following are examples of incorrect
usage:

<HTML> </HTML>
<Strong></Strong>

Following is an example of correct usage:

<body></body>

Note that using a mixture of lowercase and uppercase for the values of attributes is still valid:

<a href=”IWantToBelieve.html”>Photos of Aliens</a>

Introduce ID When Using name
In XHTML the name attribute is deprecated and will be removed from the specification altogether in the
future. In its place, you must use the id attribute. Until the name attribute is no longer a valid attribute,
use id in addition to the name attribute:

<a name=”admin” id=”admin”>Administration at CLC</a>

393

Rules for HTML-to-XHTML Conversion

13_588338 appb.qxd  6/22/05  11:30 AM  Page 393



Encode Ampersands
When you are using an ampersand (&) for the value of an attribute, be sure to use the character entity,
&amp;. 

When encoding ampersands, and when working with dynamic pages, pass parameters through the
URL string in the browser like so:

<a href=”add-cart.html?isbn=0764588338&amp;id=023”>Add this 
item to your cart</a>

When in Doubt, Validate
We all are human. We make mistakes with coding. To help point out troubles with XHTML, or just
to make sure what has been created is coded correctly, take your page to a validator such as http://
validator.w3.org/ and test often.

Also, most WYSIWYG and some non-WYSIWYG Web authoring tools have built-in validators. Read the
documentation that came with the software to learn more about these validators.

394

Appendix B

13_588338 appb.qxd  6/22/05  11:30 AM  Page 394



CSS 2.1 Properties

When marking up content with HTML, you must be aware of the elements that are at your dis-
posal. The same goes for designing with CSS: you must be fully aware of the properties and their
values to effectively design for the Web.

In this vein, the following table lists all the CSS 2.1 properties that are at your disposal. In the far-
left column is the name of the CSS property. Next are the values associated with that property and
then the initial value. The next column states what HTML element that CSS property applies to.
The Inherited column states whether the property can be inherited to other elements. The far-right
column indicates the applicable media group.

Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘azimuth’ <angle> | center All Yes Aural 
[[ left- side |

far-left | left | 

center-left | 

center | center-

right | right | 

far-right | right-

side ] || behind ] | 

leftwards | 

rightwards |

inherit 

‘background- scroll | fixed | scroll All No Visual 
attachment’ inherit 

Table continued on following page

14_588338 appc.qxd  6/22/05  11:31 AM  Page 395



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘background- <color> | transparent All No Visual 
color’ transparent | 

inherit

‘background- <uri> | none | none All No Visual 
image’ inherit 

‘background- [ [ <percentage> |  0% 0% All No Visual 
position’ <length> | left | 

center | right ] 

[ <percentage> | 

<length> | top | 

center | bottom ]? ] | 

[ [ left | center | 

right ] || [ top | 

center | bottom ] ] | 

inherit

‘background- repeat | repeat-x | repeat All No Visual 
repeat’ repeat-y | no-repeat 

| inherit 

‘background’ [‘background-color’ Shorthand All No Visual 
|| ‘background- property; see 
image’ || ‘ individual 
background-repeat’ properties
|| ‘background-

attachment’ || 

‘background-position’] 

| inherit 

‘border- collapse | separate | separate ‘table’ and Yes Visual 
collapse’ inherit ‘inline-table’

elements 

‘border-color’ [ <color> | Shorthand All No Visual 
transparent ] property; see 
{1,4} | inherit individual 

properties

‘border- <length> <length>? 0 ‘table’ and Yes Visual 
spacing’ | inherit ‘inline-table’

elements 

‘border-style’ <border-style>{1,4} | Shorthand All No Visual 
inherit property; see 

individual 
properties

396

Appendix C

14_588338 appc.qxd  6/22/05  11:31 AM  Page 396



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘border-top’ [ <border-width> | Shorthand All No Visual 
‘border-right’ | <border-style> | property; see 
’border-bottom’ | ‘border-top-color’ ] individual 
‘border-left’ | inherit properties

‘border-top- <color> | transparent The value All No Visual 
color’ ‘border- | inherit of the ‘color’
right-color’ property 
‘border-bottom-

color’ ‘border-

left-color’ 

‘border-top- <border-style> | none All No Visual 
style’ ‘border- inherit

right-style’ 

‘border-bottom-

style’ ‘border-

left-style’

‘border-top- <border-width> | medium All No Visual 
width’ ‘border- inherit 

right-width’ 

‘border-bottom-

width’ ‘border-

left-width’ 

‘border-width’ <border-width> Shorthand All No Visual 
{1,4} | inherit property; see 

individual 
properties

‘border’ [ <border-width> | Shorthand All No Visual 
| <border-style> | property; see
| ‘border-top-color’ ] individual 
| inherit properties

‘bottom’ <length> | auto Positioned No Visual 
<percentage> | elements
auto | inherit 

‘caption-side’ top | bottom | top ‘table- Yes Visual 
inherit caption’

elements 

‘clear’ none | left | right | none Block-level No Visual 
both | inherit elements 

‘clip’ <shape> | auto | auto Absolutely No Visual 
inherit positioned 

elements 

Table continued on following page

397

CSS 2.1 Properties

14_588338 appc.qxd  6/22/05  11:31 AM  Page 397



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘color’ <color> | inherit Depends on All Yes Visual 
user agent 

‘content’ normal | [ <string> | normal :before and No All 
<uri> | <counter> | :after pseudo-
attr(<identifier>) | elements 
open-quote | close-
quote | no-open-

quote | no-close-
quote ]+ | inherit

‘counter- [ <identifier> none All No All 
increment’ <integer>? ]+ |

none | inherit 

‘counter-reset’ [ <identifier> none All No All 
<integer>? ]+ |

none | inherit

‘cue-after’ <uri> | none | inherit none All No Aural 

‘cue-before’ <uri> | none | inherit none All No Aural 

‘cue’ [ ‘cue-before’ || Shorthand All No Aural 
‘cue-after’ ] | inherit property; see 

individual 
properties

‘cursor’ [ [<uri> ,]* [ auto | auto All Yes Visual, 
crosshair | default | Inter-
active

pointer | move |

e-resize | ne-resize |

nw-resize | n-resize |

se-resize | sw-resize |

s-resize | w-resize |

text | wait | help |

progress ] ] | inherit

‘direction’ ltr | rtl | inherit ltr All Yes Visual 

‘display’ inline | block | list- inline All No All 
item | run-in | inline-

block | table | inline-

table | table-row-group 

| table-header-group | 

table-footer-group | 

table-row | table-

column-group | table-

column | table-cell | 

table-caption | none |

inherit

398

Appendix C

14_588338 appc.qxd  6/22/05  11:31 AM  Page 398



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘elevation’ <angle> | below | level All Yes Aural 
level | above | higher 

| lower | inherit 

‘empty-cells’ show | hide | inherit show ‘table-cell’ Yes Visual 
elements 

‘float’ left | right | none | none All but No Visual 
inherit positioned 

elements and 
generated 
content

‘font-family’ [[ <family-name> | Depends on All Yes Visual 
<generic-family> ]  user agent 
[,<family-name>| 

<generic-family>]* ] | 

inherit

‘font-size’ <absolute-size> | medium All Yes Visual 
<relative-size> | 

<length> | 

<percentage> | 

inherit 

‘font-style’ normal | italic | normal All Yes Visual 
oblique | inherit 

‘font-variant’ normal | small-caps | normal All Yes Visual 
inherit 

‘font-weight’ normal | bold | normal All Yes Visual 
bolder | lighter | 100 | 

200 | 300 | 400 | 500 | 

600 | 700 | 800 | 900 | 

inherit

‘font’ [ [ ‘font-style’ || Shorthand All Yes Visual 
‘font-variant’ || property; see 
‘font-weight’ ]? individual 
‘font-size’ [ / ‘line- properties
height’ ]?‘font-

family’ ] | 

caption | icon | 

menu | message-box | 

small-caption |

status-bar | inherit 

Table continued on following page

399

CSS 2.1 Properties

14_588338 appc.qxd  6/22/05  11:31 AM  Page 399



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘height’ <length> | auto All elements No Visual 
<percentage> | but non-
auto | inherit replaced inline 

elements, table
columns, and 
column groups 

‘left’ <length> | auto Positioned No Visual 
<percentage> | elements 
auto | inherit 

‘letter- normal | <length> normal All Yes Visual 
spacing’ | inherit 

‘line-height’ normal | <number> normal All Yes Visual 
| <length> | 
<percentage> |
inherit 

‘list-style- <uri> | none | inherit none Elements with Yes Visual 
image’ ‘display: 

list-item’

‘list-style- inside | outside | outside Elements with Yes Visual 
position’ inherit ‘display: 

list-item’ 

‘list-style- disc | circle | square disc Elements with Yes Visual 
type’ | decimal | decimal- ‘display: 

leading-zero | lower- list-item’ 

roman | upper-roman 

| lower-greek | lower-

latin | upper-latin | 

armenian | georgian | 

none | inherit 

‘list-style’ [ ‘list-style-type’ || Shorthand Elements with Yes Visual 
‘list-style-position’ || property; see ‘display: 

‘list-style-image’ ] | individual list-item’

inherit properties

‘margin-right’ <margin-width> | 0 All elements No Visual 
‘margin-left’ inherit except elements

with table display
types other than
table and 
inline-table

400

Appendix C

14_588338 appc.qxd  6/22/05  11:31 AM  Page 400



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘margin-top’ <margin-width> 0 All elements No Visual 
‘margin-bottom’ | inherit except elements 

with table display 
types other than 
table and 
inline-table

‘margin’ <margin-width>{1,4} Shorthand All elements No Visual
| inherit property; see except elements 

individual with table display 
properties types other than 

table and 
inline-table

‘max-height’ <length> | none All elements No Visual 
<percentage> | except non-
none | inherit replaced inline 

elements and 
table elements 

‘max-width’ <length> | none All elements No Visual 
<percentage> | except non-
none | inherit replaced inline 

elements and 
table elements 

‘min-height’ <length> | 0 All elements No Visual
<percentage> | except non-
inherit replaced inline 

elements and 
table elements  

‘min-width’ <length> | 0 All elements No Visual 
<percentage> | except non-
inherit replaced inline 

elements and 
table elements 

‘orphans’ <integer> | inherit 2 Block-level  Yes Visual, 
elements Paged 

‘outline-color’ <color> | invert |  invert All No Visual, 
inherit Inter-

active

‘outline-style’ <border-style> | none All No Visual, 
inherit Inter-

active

Table continued on following page

401

CSS 2.1 Properties

14_588338 appc.qxd  6/22/05  11:31 AM  Page 401



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘outline-width’ <border-width> | medium All No Visual, 
inherit Inter-

active 

‘outline’ [ ‘outline-color’ | Shorthand All No Visual, 
| ‘outline-style’ | property; see Inter-
| ‘outline-width’ ] individual active 
| inherit properties

‘overflow’ visible | hidden | visible Block-level No Visual 
scroll | auto | and replaced 
inherit elements, table 

cells, inline 
blocks 

‘padding-top’ <padding-width> | 0 All elements No Visual 
‘padding-right’ inherit except elements 
‘padding-bottom’ with table display 
‘padding-left’ types other than 

table, inline-
table, and table-
cell

‘padding’ <padding-width> Shorthand All elements No Visual 
{1,4} | inherit property; see except elements 

individual with table display 
properties types other than 

table, inline-
table, and table-
cell

‘page-break- auto | always | auto Block-level No Visual, 
after’ avoid | left | right elements Paged 

| inherit 

‘page-break- auto | always | auto Block-level No Visual, 
before’ avoid | left | right elements Paged 

| inherit 

‘page-break- avoid | auto | auto Block-level Yes Visual, 
inside’ inherit elements Paged 

‘pause-after’ <time> | 0 All No 
Aural

<percentage> |

inherit

‘pause-before’ <time> | 0 All No Aural 
<percentage> |

inherit 

402

Appendix C

14_588338 appc.qxd  6/22/05  11:31 AM  Page 402



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘pause’ [ [<time> | Shorthand All No Aural 
<percentage>] property; see 
{1,2} ] | inherit individual 

properties

‘pitch-range’ <number> | inherit 50 All Yes Aural 

‘pitch’ <frequency> | x-low medium All Yes Aural 
| low | medium | 

high | x-high | 

inherit

‘play-during’ <uri> [ mix || auto All No Aural 
repeat ]? | auto | 

none | inherit

‘position’ static | relative | static All No Visual 
absolute | fixed | 

inherit

‘quotes’ [<string> <string>]+ Depends on All Yes Visual 
| none | inherit user agent 

‘richness’ <number> | inherit 50 All Yes Aural 

‘right’ <length> | auto Positioned No Visual 
<percentage> | elements 
auto | inherit 

‘speak-header’ once | always | once Elements that Yes Aural 
inherit have table header 

information 

‘speak-numeral’ digits | continuous | continuous All Yes Aural 
inherit 

‘speak- code | none | inherit none All Yes Aural 
punctuation’ 

‘speak’ normal | none | normal All Yes Aural 
spell-out | inherit

‘speech-rate’ <number> | x-slow | medium All Yes Aural 
slow | medium | 

fast | x-fast | faster | 

slower | inherit

‘stress’ <number> | inherit 50 All Yes Aural 

‘table-layout’ auto | fixed | inherit auto ‘table’ and No Visual 
‘inline-table’

elements 

Table continued on following page

403

CSS 2.1 Properties

14_588338 appc.qxd  6/22/05  11:31 AM  Page 403



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘text-align’ left | right | center | ‘left’ if Block-level Yes Visual 
justify | inherit ‘direction’ elements, 

is ‘ltr’; table cells, and 
‘right’ if inline blocks 
‘direction’

is ‘rtl’

‘text- none | [ underline | none All No Visual 
decoration’ | overline || line-

through || blink ] | 

inherit 

‘text-indent’ <length> | 0 Block-level Yes Visual 
<percentage> | elements, table 
inherit cells, and inline 

blocks 

‘text- capitalize | none All Yes Visual 
transform’ uppercase | 

lowercase | 

none | inherit 

‘top’ <length> | auto Positioned No Visual 
<percentage> | elements 
auto | inherit

‘unicode-bidi’ normal | embed | normal All elements, No Visual 
bidi-override | but see prose 
inherit

‘vertical- baseline | sub | baseline Inline-level No Visual 
align’ super | top | text- and ‘table-

top | middle | cell’ elements 
bottom | text-bottom 

| <percentage> | 

<length> | inherit 

‘visibility’ visible | hidden | visible All Yes Visual 
collapse | inherit 

‘voice-family’ [[<specific-voice> | Depends on All Yes Aural 
<generic-voice> ],]* user agent
[<specific-voice> | 

<generic-voice> ] |

inherit 

‘volume’ <number> | medium All Yes Aural 
<percentage> | 

silent | x-soft | 

soft | medium | 

loud | x-loud | 
inherit 

404

Appendix C

14_588338 appc.qxd  6/22/05  11:31 AM  Page 404



Name Values Initial Applies to  Inherited Media 
Value (Default: All) Groups

‘white-space’ normal | pre | normal All Yes Visual 
nowrap | pre-wrap

| pre-line | inherit 

‘widows’ <integer> | inherit 2 Block-level Yes Visual, 
elements Paged 

‘width’ <length> | auto All elements but No Visual 
<percentage> | non-replaced 
auto | inherit inline elements, 

table rows, and 
row groups 

‘word-spacing’ normal | <length> | normal All Yes Visual 
inherit 

‘z-index’ auto | <integer> | auto Positioned No Visual 
inherit elements 

The listing of CSS 2.1 properties (www.w3.org/TR/CSS21/propidx.html) is copyright 
© February 25, 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European 
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

405

CSS 2.1 Properties

14_588338 appc.qxd  6/22/05  11:31 AM  Page 405



14_588338 appc.qxd  6/22/05  11:31 AM  Page 406



Troubleshooting CSS Guide 

Does everything appear fine in the code, but not in the page design? Relax. CSS beginners and
gurus alike have all been through this. This troubleshooting guide will save the frustrations and
help determine the cause of your CSS crisis.

Validation
When you run into a problem, the first thing that must be done is to ensure that your HTML and
CSS syntax are correct. Even if you use a product such as Macromedia Dreamweaver or Microsoft
FrontPage that can hide the markup and code while you design, the syntax the software generates
in the background still must be checked.

If your Web development software does not come with its own validators (check your software’s
documentation for details), be sure to set the preferences so the Web development software
excludes proprietary elements, like center, so that the validator is checking the standard DTD.

Use the following Web sites.

HTML
For HTML validation service, see http://validator.w3.org/.

Once at this site, enter into the form the URL of the page that is causing your trouble. If you use
the URL, make sure the Web address is actually visible on the Web, meaning that the file is not
behind a firewall or a password-protected zone such as an intranet. If your HTML file falls into
one of those categories, use the upload feature provided by the validation service.

For information about HTML elements, see Appendix A. If you need information on how to con-
vert HTML to XHTML, see Appendix B. 

15_588338 appd.qxd  6/22/05  11:31 AM  Page 407



CSS
For CSS validation service, see http://jigsaw.w3.org/css-validator/.

Like the HTML validator, validation can be conducted through the submission of a URL or uploading a
style sheet file. Be sure not to submit a file that includes both CSS and HTML because that will confuse
the validator and create grounds for automatic failure of validation.

Another option to test CSS syntax is to copy and paste the code in the direct input form located at the
bottom of the page. This option might be best suited for your needs and might be a bit faster, too, if your
CSS is not accessible on the Web, or if your file is actually an HTML file with some CSS code.

Manipulating the Elements
At this stage, the syntax is accurate, but that doesn’t mean much. Even if your French is spot on, you
could still find yourself accurately ordering your aunt’s handbag for lunch to the bewilderment of your
waiter at an outdoor café near the Louvre.

The next move is direct manipulation of the CSS itself. Use one or a combination of the following tech-
niques to help isolate your CSS problems.

Zeroing Out the Padding and Margins
The default style sheet used by browsers places default values for margins and paddings on block-level
elements. To ensure that those default values are not interfering with your design, set the margin and
padding for the block-level elements to zero.

A fast way to zero out the padding and margins is to use the universal selector like so:

* { 
margin: 0;
padding: 0;
}

Then, place that CSS rule at the start of the style sheet. By placing the CSS rule at the start of the CSS,
other CSS rules that have values for padding, margin, or both in the style sheet can override the effects
of zeroing out the padding or margins.

Look for any changes in your page design and make any required adjustments.

Applying Color to Borders and Backgrounds
The purpose of this method is to highlight the CSS rules you are working on and see if they are indeed
the design elements of the Web page that are causing the problems. Once you have identified the right
problematic element, you can move on to the next steps in fixing the problem.

408

Appendix D

15_588338 appd.qxd  6/22/05  11:31 AM  Page 408



Apply a color to the block-level element (or elements) in your CSS that is causing you grief. An example
of this CSS rule might look something like this:

#content #navigation {
border: 1px solid red;

}

This CSS rule creates a red border around the specified block-level element to better see it in the page
design. If you already have too much red in the design to notice a red outline, try blue, or green, or sim-
ply change the background color instead, as shown here:

#content #navigation {
background-color green;

}

Placing Variations in Property Values
After finding the CSS that is causing problems, the next step is to adjust the values of the properties. Is
the problem that the padding is too much in one browser? Or, maybe the font size is too small in another
browser?

When placing different values than the ones you are using, start with cartoonish large amounts. For
example, change 25 px for padding to 2500px to see if the design breaks as you know it should.

Then the next moves should be small. Use tiny increments, for example, in adjusting font sizes from 0.8
em to .81 em.

Playing Hide and Seek
The way in which we write CSS rules can also cause problems. CSS is set up to allow certain properties
and their values to become inherited by their children. For example, if you set the font properties for the
body element, then child elements within that body will take up those characteristics as well.

While CSS has built-in conflict resolution with the cascade, inheritance, and specificity, CSS rules can
still have unintended results in the design. If there’s a problem with your design, you might have to
check the CSS rules you have written. There’s a possibility that the CSS rules are conflicting or are inher-
iting values you don’t want.

If this is the case, simply comment out unnecessary property and value pairs from problematic CSS rules
and refresh the page design to look for changes.

Validating Again
At this stage, the CSS might have been rewritten, revised, or completely mangled during the trouble-
shooting process. Double-check the validation again, just to be sure nothing was missed.

409

Troubleshooting CSS Guide

15_588338 appd.qxd  6/22/05  11:31 AM  Page 409



Looking Outside for Help
At this stage, if you haven’t found the cause of the CSS problem, it’s time to seek help. Use the following
resources to investigate the problem or ask for help.

Web Site Resources
This section provides information on some key Web site resources.

positioniseverything.net
Maybe the problem isn’t the CSS, but instead it is the browser. For a list and explanation of modern
browser bugs, check out www.positioniseverything.net/.

Web Developer Toolbar
If you use Netscape 7+, Mozilla, or Firefox browsers for development, run (don’t walk) to Chris
Pederick’s browser extension called Web Developer at www.chrispederick.com/work/firefox/
webdeveloper/.

Offering numerous features that benefit the Web designer and CSS wrangler, this an indispensable tool
when troubleshooting CSS. Some of the tips mentioned in this troubleshooting guide can be imple-
mented with the click of the button on the Web Developer’s toolbar, rather than editing code by hand.

Mailing Lists
This section provides information on some key mailing list resources.

css-discuss
If everything else has not worked to your satisfaction, then try the kind folks at css-discuss. This is a
mailing list dedicated to practical discussions of CSS-enabled design. The people that occupy the mail-
ing list range from professionals to beginners, so chances are they have seen every problem you might
encounter.

For more information on the list and instructions on how to join, see www.css-discuss.org.

Babble List
Geared to advanced Web design issues, this community offers a lively exchange of information,
resources, theories, and practices of designers and developers including CSS development. The overall
goal is to hone skills and share visions of where this new medium is going.

For more information on the list and instructions on how to join, see www.babblelist.com.

410

Appendix D

15_588338 appd.qxd  6/22/05  11:31 AM  Page 410



In
de

x

Index

SYMBOLS AND 
NUMERICS
& (ampersand)

escaping in HTML/XHTML, 301, 394
PHP concatenation operator, 301

* (asterisk)
universal selector prefix, 49
wildcard character, 49

\ (backslash) comment prefix, 73, 272
]]> (brackets, greater-than sign) XHTML JS

delimiter, 393
[ ] (brackets) heading delimiters, 355–356
, (comma)

list category separator, 359
media type attribute separator, 305

> (greater-than sign) child selector prefix, 52
# (hash) id selector prefix, 51
<![ (less-than sign, exclamation mark, bracket)

XHTML JS delimiter, 393
. (period) class selector prefix, 50
“ “ (quotation marks, double)

filename delimiters, 139–140
XHTML attribute value delimiters, 392

3D box, 70, 81–82, 91
37signals.com Web site, 130
1976design.com Web site, 130

A
a HTML element, 383
a selector, 67
abbr HTML element, 383
accessibility, 183, 312, 335

acronym
annotating, 186
avoiding using on Web site, 182

acronym HTML element, 383
Active X control, 201
activeCSS JS function, 294, 295, 297
AddHandler HTML/XHTML directive, 202
address HTML element, 383
aesthetics, separating content from, 182
after pseudo-element, 93–99, 114–116, 226
alignment

box, 194
drop-down menu, 171
text, 331
vertical-align CSS property, 404

ampersand (&)
escaping in HTML/XHTML, 301, 394
PHP concatenation operator, 301

anchor
class, assigning to, 223
logo, 340
positioning, 223–224
sizing, 340, 365
style sheet switching, in, 293, 294

Apache Web server, 201–202
applet HTML element, 384
area HTML element, 384
argument, passing to JS function, 294
array, associative, 302
asterisk (*)

universal selector prefix, 49
wildcard character, 49

attribute selector, 52–54, 225, 338

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 411



audience
ChristopherSchmitt.com Web site, 321
identifying, 9–10, 14–15, 181, 182
interviewing, 10
need, determining, 8
persona, assigning to, 8–11
UF Web site, 179, 180, 181, 182, 203
WebMag 5000 sample project, 14–15
Web-savvy, 321

auditing existing site, 12–13
author style sheet, 64, 66, 67
AW Stats software, 9
azimuth CSS property, 395

B
b HTML element, 384
Babble List Web site, 410
background CSS property, 396
background-attachment CSS property, 395
background-color CSS property, 396
background.gif file, 188
background-image CSS property, 396
background-position CSS property, 396
background-repeat CSS property, 396



border
box, 70, 83, 90–91, 103
color, 62, 247, 396, 397, 408
column, 257
FC Web site, 257
list section, 191
navigation bar, 61–62
paragraph, 70
spacing, 62, 396
style, 62, 396, 397
table, 30–34, 61–62
width, 62, 94–95, 397

border CSS properties, 396–397
bottom CSS property, 397
bounding box. See box
Bowman, Douglas (Blogger Web site designer)

interview, 78–81
“A Site for Your Eyes,” 239
Sliding Doors technique, 363
Web site (stopdesign.com), 130, 243, 315

box
alignment, 194
border, 70, 83, 90–91, 103
ChristopherSchmitt.com Web site box model, 325
color, 90, 96, 110
corner, pointy, 84–86
corner, rounded

after pseudo-element, coding using, 93–99, 114–116
before pseudo-element, coding using, 93–98,

112–113
bottom of box, rounding, 98–107, 114–117
IE implementation, 90, 101–107, 118
image, placing in round-corner box, 89–90, 91,

102–104, 110–114
sidebar, 90, 111
top of box, rounding, 90–98, 111–114
width, liquid, 107–110
XHTML, 88–89

FC Web site box model, 246, 272
Firefox implementation, 101, 104–106, 117
height

Blogger Web site, 96–97, 115
UF Web site, 194, 197

IE implementation
border, 70
descendant element, 272
Mid Pass Filter, using, 75
padding, 70
rendering round-corner box, 101–107, 118
sizing, 71, 90, 272

image
placing in pointy-corner box, 85–86
placing in round-corner box, 89–90, 91, 102–104,

110–114
implied, 119–120
inline, 246
margin

Blogger Web site, 81, 83, 91, 95, 115
UF Web site, 189, 194, 195

Mid Pass Filter, applying to, 75
Opera implementation, 101, 104–106, 117
padding

Blogger Web site, 70, 81, 83, 91, 103
UF Web site, 189, 197

Safari implementation, 101, 104–106, 117
search box, 327, 336–338
specification, 84
SuperTiny SimCity box model, 325
3D, 70, 81–82, 91
tone of site, setting using box model, 325
width

Blogger Web site, 62, 71, 81, 90, 107–110
UF Web site, 189, 194

XHTML coding
corner, 88–89
width, liquid, 109

br HTML element, 43, 384
brackets, greater-than sign (]]>) XHTML JS 

delimiter, 393
brackets ([ ]) heading delimiters, 355–356
Brothercake Web site, 312, 315
browser

Camino, 68
Firefox

box implementation, 101, 104–106, 117
font size rendering, 333
hover attribute support, 147
PGA Championship Web site viewed in, 170
testing site using, 68
Web Developer Toolbar, 410

Gecko-based, 68
HTML support, 30, 35
IE

auto-margin support, 281
Band Pass Filter, workaround using, 75
border in box implementation, 70
centering page, 330–331
comment, rendering, 73
container selector implementation, 281
descendant element in box implementation, 272

413

browser

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 413



browser (continued)
Flash movie implementation, 201–202
font size rendering, 332
Holly Hack technique, 272
hover attribute support, 147, 168
IE7 JS module library, 275
Internet Options dialog box, 341
layout, implementing three-column, 267–273
list implementation, 195–196, 197
max-width CSS property implementation, 273, 275,

281–282
Mid Pass Filter, resolving box implementation bug

using, 75
padding in box implementation, 70
paragraph rendering, bug involving, 70–71
PNG support, 163
pseudo-element support, 356
rollover implementation, 139–140, 156–157, 341
round-corner box implementation, 101–107, 118
selector support, 51, 54
Settings dialog box, 341
sizing box, 71, 90, 272
standalone version, 69
Star HTML Hack, 272
Suckerfish Dropdowns support, 172, 173
Temporary Internet Files fieldset, 341
testing site using, 68–69
Web standards support, 69

import rule, testing browser support of CSS technique
using, 283

Mozilla
font size rendering, 333
Suckerfish Dropdowns support, 172
testing site using, 68
Web Developer Toolbar, 30, 410

Netscape, 182, 183
Opera

box implementation, 101, 104–106, 117
hover attribute support, 147
testing site using, 68

Safari
box implementation, 101, 104–106, 117
hover attribute support, 147
style sheet, support for alternate, 290
Suckerfish Dropdowns support, 173

style sheet
browser style sheet, 65, 67
switching support, 290–291

targeting specific, 36, 74, 271, 321
testing site using reliable, 68–69, 71

UF Web site support, 182, 183
window width, filling, 240–242, 273–275

BrowserMatch directive, 201–202
budgeting, 4, 6
Building Accessible Websites (Clark), 183
bullet, removing from list, 60, 134–135, 188, 359
button

color, 338
Google Toolbar BlogThis! button, 77
navigation button, 363–364
state, indicating, 363
three-dimensional, 363

button HTML element, 384

C
Camino browser, 68
caption HTML element, 384
caption-side CSS property, 397
card sorting, 182
cascade

inheritance, role in, 58
style origin, 64–66

case
converting, 54
sensitivity, 39, 393

Cederholm, Dan (FC Web site designer), 242–245
center HTML element, 384
centering page, 329–332
chamfer.gif file, 196
change, managing, 4–6
child

element, 57
selector, 105

chrispederick.com Web site, 170
Christopher.org Web site, 318
ChristopherSchmitt.com Web site

accessibility, 335
audience, 321
blog, 320, 352–359, 373–378
box model, 325
browser, targeting, 321
centering page, 329–332
color, 325
column layout

gutter, 348, 351
header, 343
HTML, 344
main column, 348–352
side column, 344–347, 359–360

414

browser (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 414



emotion, communicating, 324
font, 325, 332–334, 342
footer, 323, 329, 356–358, 378–379
header, 320
history, 317–318
home page, 328
image usage, 319–320, 325, 351, 354
introduction paragraph, 349–350
inventorying, 321
logo, 325, 339–343
meta information, 356, 359, 379
navigation system

button, 363–364
JS, 318
layout, 327
list, unordered, 361–362
scope, matching to, 320
Sliding Doors technique, role in creating, 363
submenu link, hiding, 368
user attention, drawing to, 360, 370, 371

Photoshop role in site design, 319, 321, 328, 344, 363
planning, 319–320
Publications menu, 368–370
rollover implementation, 341–342
scope, 320–321
search box, 327, 336–338
sections, division into, 321–322
site map, 321–322
tagline, 342–343
template system, 321
tone, 324–327
traffic, increasing, 320
width, fixed, 327, 329
wireframe, 322–323

Cinnamon Interactive Web site, 21–22
cite HTML element, 384
clagnut.com Web site, 28, 282
Clark, Joe (Building Accessible Websites), 183
Clarke, Andy (IOTBS designer), 311–316
class

anchor, assigning to, 223
document tree, choosing appropriate position in,

220, 223
even, 143
HTML element, assigning to, 166
inheritance, 167
list element, assigning to, 166, 223
nav, 220–222
odd, 143

selector
class selector, 50
content pseudo-class, 226
first-letter pseudo-class, 226
first-line pseudo-class, 226
lang pseudo-class, 226
negation pseudo-class, 226
structural pseudo-class, 225–226
UI element fragments pseudo-class, 226
UI element state pseudo-class, 226
user action pseudo-class, 226

stories, 166
style sheet, adding to, 166
ul HTML element, adding to, 222, 224

classitis, 40–42
clear CSS property, 379, 397
client

communication with, importance of, 6
goal, identifying with, 7–8
interviewing, 10
project stage sign-off, 3, 5
scope, creating with, 2, 6
site content, writing by, 321

clip CSS property, 397
code HTML element, 384
col HTML element, 384
colgroup HTML element, 384
color

background
block-level, 409
CSS background-color property, 396
drop shadow, 161, 162–163, 165, 167
Flash movie, 162–163
table, 33, 59, 143

black, simplifying construction using, 316
border, 62, 247, 396, 397, 408
box, 90, 96, 110
button, 338
ChristopherSchmitt.com Web site, 325
column, 257, 349
div HTML block, 247
FC Web site, 247, 257
hexadecimal value, 48
image, applying simultaneously with, 164
link

rollover link, 129–134, 135, 138–139
unordered list link, 188

list, unordered, 62, 166–167, 170, 188
navigation bar, 62

415

color

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 415



color (continued)
search box, 337, 338
selector color declaration, 48
table row, 140–143
text, 139, 143–145, 146, 166, 342
tone of site, setting using, 325

color CSS property, 398
column layout

ChristopherSchmitt.com Web site
gutter, 348, 351
header, 343
HTML, 344
main column, 348–352
side column, 344–347, 359–360

three-column
block, top-level, 253
border, 257
color, 257
div element, 258–259, 260
footer, 254, 257, 259, 263
header, 253, 254, 257
IE implementation, 267–273
inventorying content, 252–253
margin, 261, 264, 268–269
padding, 262
positioning, 258–266
scroll bar, removing horizontal, 267, 269, 270
sidebar, 261, 262, 263, 264–266
style, 256–257
XHTML, 254–256

two-column
color, 349
gutter, 348, 351
Harvard University Web site, 44
header, 34
HTML, 344
introduced, 30
main column, 348–352
margin, 345, 351
padding, 345
positioning, 344–345
side column, 344–347, 359–360

comma (,)
list category separator, 359
media type attribute separator, 305

comment
Holly Hack, 272
IE for Macintosh comment rendering, 73
syntax, 73

compression
GIF, 163
JPEG, 162
PNG, 162

conformance selector, 64
container selector, 281–282
“Containing Floats” (Meyer), 61, 282
content CSS property, 398
content hierarchy, 14–16
content pseudo-class, 226
content selector, 51, 56
contrast.css file, 284–285
cookie

described, 296
expiration, 297
JS, 296–300, 302
PHP, 302–303
style sheet switching, using in, 296–298

copywriter, hiring, 321
core.css file, 280–281, 282–284
counter-increment CSS property, 398
counter-reset CSS property, 398
CSF (Critical Success Factor), 7
CSS Zen Garden Web site, 312
css-discuss mailing list, 410
cue CSS properties, 398
cursor CSS property, 398

D
The Daily Telegraph newspaper, 208–210
database developer, 3
Davidson, Mike (ESPN.com Web site designer), 206–208
dd HTML element, 384
deconcept.com Web site, 175
del HTML element, 384
descendant, HTML element, 57
designer block, 245
device style, non-browser, 306
dfn HTML element, 384
Digital Web Magazine Web site, 295
dir HTML element, 384
direct adjacent combinator selector, 226
direction CSS property, 398
Disney Store UK Web site, 312
display CSS property, 398
div HTML element

Blogger Web site usage, 120–128
body attribute, 120, 121–126, 127

416

color (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 416



color, 247
divitis, 40–42
frame container, 347
header attribute, 120
id attribute, 45, 120–126, 247
inheritance, div block, 249
inner div block, 247–249, 251
introduction paragraph, placing in, 350
layout, in three-column, 258–259, 260
offset, 247, 258
outer div block, 248, 249, 250–252
positioning div block, 163–164, 247–250, 251,

258–259, 260
sidebar coding, 127–128
width, 121, 258
wrapping unordered list in, 185–186, 192–193

dl HTML element, 384
DOCTYPE (document type) declaration, 37, 54–55
Document Type Definition (DTD), 37, 383, 390–391
DOM (Document Object Model), 172
drop shadow

background color, 161, 162–163, 165, 167
bandwidth, 161
Blogger Web site, 148, 150
PGA Championship Web site, 160–168
Photoshop, editing shadow image using, 161–163, 165
rollover, 148, 150
transparency, 150, 165
UF Web site, 189
XHTML, 166, 167–168

drop-down menu
alignment, 171
hover attribute, 168
list, 169–171
margin, 171–172
padding, 171
PGA Championship Web site, 168–174
positioning, 169–170
style, 170–174
Suckerfish Dropdowns, using, 168–174
text, 171
unordered list, converting to, 43, 168, 169, 170, 172

dt HTML element, 384
DTD (Document Type Definition), 37, 383, 390–391

E
E element selectors, 225–226
Edit menu (Photoshop), 161

element
block-level, 38, 246
box descendant element, IE implementation, 272
child, 57
closing, 38–39
content area, 69
descendant, 57
hierarchy, 57–58
inline, 38, 246
input element, selecting by attribute value, 227
naming, 255
parent, 57
position property, 246
pseudo-element

after, 93–99, 114–116, 226
before, 93–98, 112–113, 226
clearing using rule, 100–101, 116
IE support, 356

sibling, 57
style, 92–93
syntax, 408–409

elevation CSS property, 399
em HTML element, 384
EM value, sizing font using, 282, 333
emotion, communicating, 324
empty-cells CSS property, 399
enhancement, progressive, 275
ESPN.com Web site

bandwidth, 206
body HTML element implementation, 214–220
CSS implementation by non-technical staff, 212
Davidson, Mike (site designer), 206–208
formatting, per-article, 208
future-proofing, 213
importance-based design, 208–212
publishing mode
body HTML element, implementing using, 214–218
Regular, 209, 211, 214, 215–219
Skirmish, 211–212, 214–220
War, 210, 212, 213, 215–219, 221

size, 205
traffic volume, 205

even class, 143
event handler, JS, 295
eXtensible Hypertext Markup Language (XHTML). See

also HTML (Hypertext Markup Language)
AddHandler directive, 202
& (ampersand), escaping, 394

417

eXtensible Hypertext Markup Language (XHTML)

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 417



eXtensible Hypertext Markup Language (XHTML) 
(continued)

attribute
id, 393
minimization, 392
name attribute, 393
syntax, 392
xmlns, 391

box coding
corner, 88–89
width, liquid, 109

case sensitivity, 39, 393
DOCTYPE declaration, 37
drop shadow, 166, 167–168
DTD, 37, 383, 390–391
element

closing, 38
empty, 392
nesting, 393

Flash movie implementation, 202
frameset, 390, 391
HTML, converting to, 389–394
JS, using with, 393
layout, three-column, 254–256
li tag, 38
list, unordered, 165–166, 167, 184–186
namespace, 391
p tag, 38
PHP code, inserting in, 303
rollover, 131, 133, 149
strict, 390, 391
style sheet switching, 278–279, 291–292, 301
table row color coding, 140–141
template, outlining, 46
transitional, 390, 391
UF Web site navigation system, 184–186, 191–193
validation, 394
well-formed, 37–38
W3C resources, 36
XML, relation to, 389–390

eXtensible Markup Language (XML), relation to
XHTML, 389–390

F
FC (Fast Company) Web site

border, 257
box implementation, 246, 272
browser window width, filling, 240–242, 273–275
Cederholm, Dan (site designer), 242–245
color, 247, 257
element name standard, 255

flexibility, 240
home page, 240
screen resolution, 241
sidebar, 261, 262, 263, 264–266
three-column layout

block, top-level, 253
border, 257
color, 257
div element, 258–259, 260
footer, 254, 257, 259, 263
header, 253, 254, 257
IE implementation, 267–273
inventorying content, 252–253
margin, 261, 264, 268–269
padding, 262
positioning, 258–266
scroll bar, removing horizontal, 267, 269, 270
sidebar, 261, 262, 263, 264–266
style, 256–257
XHTML, 254–256

Weblog feature, 240
fieldset HTML element, 336–337, 384
findWord JS function, 294
Firefox browser

box implementation, 101, 104–106, 117
font size rendering, 333
hover attribute support, 147
PGA Championship Web site viewed in, 170
testing site using, 68
Web Developer Toolbar, 410

first-letter pseudo-class, 226
first-line pseudo-class, 226
Flash movie

Active X control, 201
AddHandler HTML/XHTML directive, 202
background

color, 162–163
image, 163

detection, server-side, 201–202
div HTML block, positioning using, 163–164
embedding, 174–175, 199–202
functionality of site, preserving on computer without

Flash installed, 199–200
.htaccess file, 201–202
IE implementation, 201–202
layer effect, 161
loader movie, 200
PGA Championship Web site, 159, 161–164, 174–175
PNG file, using for importing bitmap into, 162
Satay method, 174, 199–202
shape, 161

418

eXtensible Hypertext Markup Language (XHTML) (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 418



spotlight movie, 199–202
Suckerfish Dropdowns, using with, 173–174
UF Web site, 199–202

FlashObject embedding method, 175
float CSS property, 399
float model, 61
font. See also text
BASEFONT HTML element, 384
change, local, 384
ChristopherSchmitt.com Web site, 325, 332–334, 342
CSS properties, 282, 399
family, 282, 325, 399
heading, 325
logo, 325
point measurement, 307
printing, 305, 307, 309
search box, 337
serif/sans-serif, 305, 309
size, 282, 285, 307, 332–334, 399
style, 399
style sheet switching, formatting in, 282
tagline, 342
tone of site, setting using, 325
weight, 399

font CSS properties, 282, 333, 399
font HTML element, 384
footer

blog post, 357–358
ChristopherSchmitt.com Web site, 323, 329, 356–358,

378–379
layout, three-column, 254, 257, 259, 263
table, 386

footer selector, 56, 67
form

control group, 384
HTML form, 384, 385

frame HTML element, 384
frameset HTML element, 385

G
garciamedia Web site, 327
Gecko-based browser, 68
GET variable, 302
GIF file, 163
goal

identifying, 7–8
translating into design, 22

Google Toolbar BlogThis! button, 77
greater-than sign (>) child selector prefix, 52

“Grey Box Methodology” (Santa Maria), 21
gutter, column, 348, 351

H
h HTML element, 42, 55
hack selector, 71
hack workaround, 69–75. See also specific workaround
Harvard University Web site

header, 42
home page, 30–34, 44
inventorying site, 43
layout, two-column, 44
table

background color, 33
border, 30–34

hash (#) id selector prefix, 51
head HTML element, 385
header

ChristopherSchmitt.com Web site, 320
column layout

three-column, 253, 254, 257
two-column, 343

div HTML element header attribute, 120
h HTML element, 42, 55
Harvard University Web site, 42
level, 42
link for skipping content, placing in, 335
navigation group, adding to, 194
photo header, 320
style, 55–56, 189–190, 340
table header, 386–387
UF Web site, 189–190
unordered list, associating with, 185–186, 193

heading
font, 325
HTML heading level, 385

height CSS property, 400
Hicksdesign Web site, 70
hierarchy, content, 14–16
hiring copywriter, 321
Holly Hack technique, 272
Holzschlag, Molly (“Integrated Web Design: Strategies

for Long-Term CSS Hack Management”), 75
horizontal rule, 385
hot.css file, 288–289
hover attribute

drop-down implementation, in, 168
Firefox support, 147
IE support, 147, 168

419

hover attribute

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 419



hover attribute (continued)
Opera support, 147
rollover implementation, in, 130, 131, 138–139,

142–144, 146–147
Safari support, 147

hover selector, 130, 131, 138–139, 142–144,
146–147

“How to Size Text Using Ems” (Rutter), 282, 333
hr HTML element, 385
href attribute value, selecting link by, 228
hreflang attribute value, selecting link by, 228
.htaccess file, 201–202
h3 a selector, 67
HTML Dog Web site, 169
HTML Help Web site, 131
HTML (Hypertext Markup Language). See also XHTML

(eXtensible Hypertext Markup Language)
a element, 383
abbr element, 383
acronym element, 383
AddHandler directive, 202
address element, 383
& (ampersand), escaping, 301
applet element, 384
area element, 384
attribute, empty, 39
b element, 384
base element, 384
basefont element, 384
bdo element, 384
big element, 384
bloat, 41
blockquote element, 384
body element
div element body attribute versus, 120
ESPN.com Web site implementation, 214–220
font size, specifying in, 333
id attribute, 214, 216–219, 224, 237
leftmargin attribute, 30
marginheight attribute, 30, 35
marginwidth attribute, 30, 35
publishing mode, implementing using, 214–218
topmargin attribute, 30

br element, 43, 384
browser support, 30, 35
button element, 384
caption element, 384
case sensitivity, 39
center element, 384
cite element, 384

class, assigning to element, 166
code element, 384
col element, 384
colgroup element, 384
column coding, 344
dd element, 384
del element, 384
dfn element, 384
dir element, 384
div element

Blogger Web site usage, 120–128
body attribute, 120, 121–126, 127
color, 247
divitis, 40–42
frame container, 347
header attribute, 120
id attribute, 45, 120–126, 247
inheritance, div block, 249
inner div block, 247–249, 251
introduction paragraph, placing in, 350
layout, in three-column, 258–259, 260
offset, 247, 258
outer div block, 248, 249, 250–252
positioning div block, 163–164, 247–250, 251,

258–259, 260
sidebar coding, 127–128
width, 121, 258
wrapping unordered list in, 185–186, 192–193

dl element, 384
dt element, 384
element, closing, 38
em element, 384
fieldset element, 336–337, 384
font element, 384
form, 384, 385
frame element, 384
frameset element, 385
h element, 42, 55
head element, 385
heading level, 385
hr element, 385
html element, 385
I element, 385
iframe element, 385
img element, 385
input element, 385
ins element, 385
isindex element, 385
kbd element, 385
label element, 385

420

hover attribute (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 420



legend element, 385
li element, 38, 222, 223, 228–237
link element, 286–287, 385
map element, 385
mapping site using, 16
menu element, 385
meta element, 385
noframes element, 385
noscript element, 386
object element, 386
ol element, 386
optgroup element, 386
option element, 386
p element

child selector, using with, 53
closing, 38
font-weight attribute, 52

param element, 386
pre element, 386
q element, 386
s element, 386
samp element, 386
script element, 386
search box, 336
select element, 386
small element, 386
span element, 386
specification, 29, 35, 383
Star HTML Hack, 272
strike element, 386
strong element, 386
style element, 386
sub element, 386
sup element, 386
table element, 386
tbody element, 386
td element, 386
textarea element, 386
tfoot element, 386
th element, 386
thead element, 387
title element, 387
tr element, 387
tt element, 387
u element, 387
ul element, 192, 222, 224
validation, 407
var element, 387
XHTML, converting to, 389–394

html selector, 71

hyperlink. See link
Hypertext Markup Language. See HTML

I
I HTML element, 385
IA (information architecture), 11–12, 15
id attribute
body HTML element, 214, 216–219, 224, 237
div HTML element, 45, 120–126, 247
ul HTML element, 192

id selector, 51, 61, 68, 214, 218–220
IE (Internet Explorer)

auto-margin support, 281
Band Pass Filter, 75
box implementation

border, 70
descendant element, 272
Mid Pass Filter, resolving using, 75
padding, 70
rendering round-corner box, 101–107, 118
sizing, 71, 90, 272

centering page, 330–331
comment, rendering, 73
container selector implementation, 281
Flash movie implementation, 201–202
font size rendering, 332
Holly Hack technique, 272
hover attribute support, 147, 168
IE7 JS module library, 275
Internet Options dialog box, 341
layout, implementing three-column, 267–273
list implementation, 195–196, 197
max-width CSS property implementation, 273, 275,

281–282
paragraph rendering, bug involving, 70–71
PNG support, 163
pseudo-element support, 356
rollover implementation, 139–140, 156–157, 341
selector support, 51, 54
Settings dialog box, 341
standalone version, 69
Star HTML Hack, 272
Suckerfish Dropdowns support, 172, 173
Temporary Internet Files fieldset, 341
testing site using, 68–69
Web standards support, 69

iframe HTML element, 385
IIS (Internet Information Server), 9
Illustrator, using in mapping site, 16

421

Illustrator, using in mapping site

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 421



image
background-image CSS property, 396
box, placing in

pointy-corner box, 85–86
round-corner box, 89–90, 91, 102–104, 110–114

ChristopherSchmitt.com Web site image usage,
319–320, 325, 351, 354

color, applying simultaneously with, 164
drop shadow image, editing using Photoshop,

161–163, 165
embedding, 385
Flash movie background, 163
link

map, 385
rollover, 134, 136, 137–138, 148–155

list
replacement list dot, 146
selecting image list item, 232–233
style image, 400

navigation system, usage in, 187–188, 244
photo header, 320
photobar, revolving, 340
planning, 319–320
positioning, 148–155
rollover link, 134, 136, 137–138, 148–155
stock photo, free, 319
title attribute, 227
tone of site, setting using, 325
transparency, 134

“Images in Liquid Columns” (Rutter), 28
img HTML element, 385
import rule, 74–75, 182, 282, 283
importance-based design, 208–212
important rule, 64–65, 66
Inc.com Web site, 242, 243
indentation, 195–196, 340
indirect adjacent combinator selector, 226
information architecture (IA), 11–12, 15
inheritance

cascade, role in, 58
class, 167
conflict resolution, 409
div block, 249
overriding, 58
positioning, in relative, 259
rule, 56–57, 58

initCSS JS function, 298
inline element, 38, 246
inner selector, 248–249, 251
input HTML element, 385

ins HTML element, 385
Integrated Student Information System (ISIS), 186
“Integrated Web Design: Strategies for Long-Term CSS

Hack Management” (Holzschlag), 75
Internet Explorer. See IE
Internet Information Server (IIS), 9
Internet Options dialog box, 341
interviewing site stakeholder, 10
introduction paragraph, 349–350
inventorying site, 13–14, 43, 321
IOTBS (Invasion of the Body Switchers) style switcher,

310–316
isindex HTML element, 385
ISIS (Integrated Student Information System), 186
iStockPhoto.com Web site, 319

J
jargon, avoiding, 182
JPEG compression, 162
JS (JavaScript)

argument, 294
client-side installation, dealing with missing, 300
cookie, 296–300, 302
event handler, 295
Flash movie, embedding using, 175
function

activeCSS, 294, 295, 297
argument, passing to, 294
calling, 294
findWord, 294
initCSS, 298
invoking, 294
setCookie, 297–298, 302
time, 302

IE7 JavaScript module library, 275
navigation system, JS-based, 318
PGA Championship Web site, 175
PHP versus, 300
server-side programming versus, 300
style sheet switching, 292–300
Suckerfish Dropdowns requirement, 172
text, comparing using, 294–295
validation, 175
XHTML, using with, 393

K
Kaliber10000 Web site, 23, 325
Karova Store platform, 312
kbd HTML element, 385

422

image

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 422



Koch, Peter-Paul (“Separating behavior and 
structure”), 295

Kuniavsky, Mike (Observing the User Experience: 
A Practitioner’s Guide to User Research), 182

L
label HTML element, 385
lang pseudo-class, 226
layout

fixed, 23–25
float model as layout tool, 61
liquid, 25–28
style sheet switching, declaring layout property in, 285
three-column

block, top-level, 253
border, 257
color, 257
div element, 258–259, 260
footer, 254, 257, 259, 263
header, 253, 254, 257
IE implementation, 267–273
inventorying content, 252–253
margin, 261, 264, 268–269
padding, 262
positioning, 258–266
scroll bar, removing horizontal, 267, 269, 270
sidebar, 261, 262, 263, 264–266
style, 256–257
XHTML, 254–256

tone of site, setting using, 327
two-column

color, 349
gutter, 348, 351
Harvard University Web site, 44
header, 34
HTML, 344
introduced, 30
main column, 348–352
margin, 345, 351
padding, 345
positioning, 344–345
side column, 344–347, 359–360

width of page
fixed, 23–25, 327, 329
liquid, 25–28
screen resolution considerations, 24–26, 27, 327

lcol selector, 167
left CSS property, 400
leftmargin attribute, 30

legend HTML element, 385
legibility, improving using style sheet switching,

284–286
less-than sign, exclamation mark, bracket (<![) XHTML

JS delimiter, 393
letter-spacing CSS property, 400
li HTML element, 38, 222, 223, 228–237
li selector, 67, 139
li XHTML tag, 38
line break, forced, 138, 384
line-height CSS property, 351, 400
link

anchor
class, assigning to, 223
logo, 340
positioning, 223–224
sizing, 340, 365
style sheet switching, in, 293, 294

background, 147
color

rollover link, 129–134, 135, 138–139
unordered list link, 188

hiding, 335, 368
href attribute value, selecting by, 228
hreflang attribute value, selecting by, 228
image

map, 385
rollover, 134, 136, 137–138, 148–155

line break, forcing using rule, 138
media

attribute, 305
independence, 385

sizing, 136
skipping content, for, 335
style

hiding link using style sheet, 335
print-specific style sheet, identifying using link, 308
switching, prioritizing using link element, 286–288,

293, 294–295
underline, removing, 137, 188–189, 362

link HTML element, 286–287, 385
list

array, associative, 302
border, list section, 191
category separator, 359
class, assigning to list element, 166, 223
definition list, 384
directory list, 384
drop-down menu, 169–171

423

list

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 423



list (continued)
float model, 61
grouping list items, 228–230
height, 190
IE implementation, 195–196, 197
image

replacement list dot, 146
selecting image list item, 232–233
style image, 400

indenting, 195–196
named list, 302
navigation bar, 60–63
padding, 135, 136, 166, 188, 362
PGA Championship Web site news item list, 166–167
rollover, list item, 134–137
selecting list item

child element, 233–234
definition title element, by, 234
even-numbered list item, 229, 230, 232
grouping list items before, 228–229, 230–231
href attribute, by, 228
hreflang attribute, by, 228
image list item, 232–233
odd-numbered list item, 230, 232
position in list, by, 229–230, 231–234
rel attribute, by, 227–228
text content, by, 235–237
type attribute, by, 227

style, 135, 190–191, 400
unordered

bullet, removing, 60, 134–135, 188, 359
class, assigning to unordered list element, 166, 223
color, 62, 166–167, 170, 188
div HTML block, wrapping in, 185–186, 192–193
drop-down menu, converting to, 43, 168, 169,

170, 172
header, associating with, 185–186, 193
introduced, 43
margin, 135, 188, 362
navigation system, using in, 185–186, 188,

190–191, 192, 361–362
nesting, 43, 170–171, 184–185, 362
padding, 135, 188, 362
positioning, 167
XHTML, 165–166, 167, 184–186

list-style CSS properties, 400
logging, 9–10
logo

anchor, 340
ChristopherSchmitt.com Web site, 325, 339–343

font, 325
printing, 340

M
Macromedia Flash movie

Active X control, 201
AddHandler HTML/XHTML directive, 202
background

color, 162–163
image, 163

detection, server-side, 201–202
div HTML block, positioning using, 163–164
embedding, 174–175, 199–202
functionality of site, preserving on computer without

Flash installed, 199–200
.htaccess file, 201–202
IE implementation, 201–202
layer effect, 161
loader movie, 200
PGA Championship Web site, 159, 161–164, 174–175
PNG file, using for importing bitmap into, 162
Satay method, 174, 199–202
shape, 161
spotlight movie, 199–202
Suckerfish Dropdowns, using with, 173–174
UF Web site, 199–202

main selector, 128
main.css file, 283
map HTML element, 385
mapping site, 16–18, 321–322
margin

block-level, 408
blogroll, 375
box

Blogger Web site, 81, 83, 91, 95, 115
UF Web site, 189, 194, 195

column
three-column layout, 261, 264, 268–269
two-column layout, 345, 351

container selector, controlling using, 281
default, 408
drop-down menu, 171–172
IE auto-margin support, 281
list, unordered, 135, 188, 362
search box, 337
zero, setting to, 408

margin CSS properties, 400–401
marginheight attribute, 30, 35
marginwidth attribute, 30, 35

424

list (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 424



max-height CSS property, 401
max-width CSS property, 273–275, 281, 401
media

link
independence, 385
media attribute, 305

screen media, 305–306
type, 305–309, 314

menu
drop-down menu

alignment, 171
hover attribute, 168
list, 169–171
margin, 171–172
padding, 171
PGA Championship Web site, 168–174
positioning, 169–170
style, 170–174
Suckerfish Dropdowns, using, 168–174
text, 171
unordered list, converting to, 43, 168, 169, 170, 172

hiding submenu link, 368
SoS menu script, 43, 169

menu HTML element, 385
meta information, 356, 359, 379, 385
Meyer, Eric (“Containing Floats”), 61, 282
mezzoblue.com Web site, 130, 315
Microsoft software. See IE (Internet Explorer); IIS

(Internet Information Server)
Mid Pass Filter technique, 75
min-height CSS property, 401
min-width CSS property, 401
Movable Type software, 352
Mozilla browser

font size rendering, 333
Suckerfish Dropdowns support, 172
testing site using, 68
Web Developer Toolbar, 30, 410

MSDN blogs Web site, 69

N
nav class, 220–222
nav selector, 61
navDropShadow.jpg file, 187–188
navigation

bar
border, 61–62
color, 62
id selector, using in, 61

list, 60–63
table, 40–41, 58–64

button, navigation, 363–364
ChristopherSchmitt.com Web site navigation system

button, 363–364
JS, 318
layout, 327
list, unordered, 361–362
scope, matching to, 320
Sliding Doors technique, role in creating, 363
submenu link, hiding, 368
user attention, drawing to, 360, 370, 371

HTML header, adding to navigation group, 194
image usage in navigation system, 187–188, 244
JS-based, 318
layout, 327
rollover, 183–184
style, navigation system

main system, 189–191
supplementary system, 193–195
utility system, 194–195

UF Web site navigation system
image usage, 187–188
list, unordered, 185–186, 188, 190–191, 192
main, 183–191
role-based, 178–179, 181, 192, 196–197
supplementary, 191–198
utility, 191–192, 194–195
XHTML, 184–186, 191–193

negation pseudo-class, 226
nesting

list, unordered, 43, 170–171, 184–185, 362
XHTML element, 393

Netscape browser, 182, 183
newspaper implementation of importance-based design,

208–212
1976design.com Web site, 130
noframes HTML element, 385
normal flow positioning scheme, 246
noscript HTML element, 386

O
object HTML element, 386
Observing the User Experience: A Practitioner’s Guide to

User Research (Kuniavsky), 182
odd class, 143
ol HTML element, 386
Olejniczak, Brandon (“Using XHTML/CSS for an Effec-

tive SEO Campaign”), 40

425

Olejniczak, Brandon

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 425



OmniGraffle, using in mapping site, 16
“The One I Never Tried” (Pilgrim), 74
Opera browser

box implementation, 101, 104–106, 117
hover attribute support, 147
testing site using, 68

optgroup HTML element, 386
option HTML element, 386
orphans CSS property, 401
other-news selector, 67
outline CSS properties, 401–402
outside-in approach, 329, 336
overflow CSS properties, 376, 402

P
p HTML element

child selector, using with, 53
closing, 38
font-weight attribute, 52

p XHTML tag, 38
padding

block-level, 408
box, 70, 81, 83, 91, 103
column, 262, 345
default, 408
drop-down menu, 171
list, 135, 136, 166, 188, 362
paragraph, 70
search box, 337
zero, setting to, 408

padding CSS properties, 402
page CSS properties, 402
page-title selector, 51
paragraph

border, 70
box, 70
br HTML element, defining using, 43, 384
id selector, 68
introduction paragraph, 349–350
p tag

HTML, 38
XHTML, 38

padding, 70
positioning, 249–250
rendering bug, 70–71
text

introduction paragraph, 349–350
list item paragraph element, selecting, 235–237
positioning text paragraph, 249–250

width, 70

param HTML element, 386
pause CSS properties, 402
peer review, 181–182
period (.) class selector prefix, 50
persistent style sheet, 286–287
persona, assigning to audience, 8–11
PGA Championship Web site

drop shadow, 160–168
drop-down menu system, 168–174
Firefox, viewed in, 170
Flash movie, 159, 161–164, 174–175
home page, 160
JS, 175
news item list, 166–167
SoS, 169
Suckerfish Dropdowns, use of, 168–174

photobar, revolving, 340
Photoshop software

ChristopherSchmitt.com Web site design, role in,
319, 321, 328, 344, 363

Edit menu, 161
mapping site using, 16
Rectangular Marquee tool, 161–162, 165
shadow image, editing using, 161–163, 165

PHP programming language, 300–303
PIE (Position Is Everything) Web site, 72, 90, 272, 410
Pilgrim, Mark (“The One I Never Tried”), 74
pitch CSS properties, 402–403
planning

ChristopherSchmitt.com Web site, 319–320
diagram of site content, using in, 13–14
hierarchy of site content, using in, 14–16
image usage, 319–320
inventorying site, 13–14, 43
scope, 2–6
strategy, documenting, 2
time, budgeting, 4

play-during CSS property, 403
PNG file, 150, 161–162, 163
point font measurement, 307
pointer.gif file, 187–188
Position Is Everything (PIE) Web site, 72, 90, 272, 410
position property

CSS, 403
element, 246

positioning
absolute, 246, 250, 260, 264–265, 344–345
anchor, 223–224
box, inline, 246
class in document tree, 220, 223

426

OmniGraffle, using in mapping site

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 426



column, 258–266, 344–345
div HTML block, 163–164, 247–250, 251,

258–259, 260
drop-down menu, 169–170
element position property, 246
fixed, 246
Flash movie, 163–164
image, 148–155
list, unordered, 167
normal flow positioning scheme, 246
overriding default positioning rule, 246
paragraph, 249–250
relative, 246, 250–252, 259–266, 346–347
rollover link background, 147
text block, 171

pre HTML element, 386
presentational hack, 259
print.css file, 306–307
printing

font, 305, 307, 309
logo, 340
style sheet specific to, creating, 305, 306–309, 340

project, planning, 2–6
projection media type, 305
property, CSS
azimuth, 395
background, 396
background-attachment, 395
background-color, 396
background-image, 396
background-position, 396
background-repeat, 396
bottom, 397
caption-side, 397
clear, 379, 397
clip, 397
color, 398
content, 398
counter-increment, 398
counter-reset, 398
cursor, 398
direction, 398
display, 398
elevation, 399
empty-cells, 399
float, 399
height, 400
left, 400
letter-spacing, 400

line-height, 351, 400
max-height, 401
max-width, 273–275, 281, 401
min-height, 401
min-width, 401
orphans, 401
play-during, 403
position, 403
quotes, 403
richness, 403
right, 403
rule property/value pair, 48
speech-rate, 403
stress, 403
style sheet switching, declaring layout property in, 285
table-layout, 403
top, 404
unicode-bidi, 404
vertical-align, 404
visibility, 404
voice-family, 404
volume, 404
white-space, 404
widows, 404
width, 405
word-spacing, 405
z-index, 174, 405

pseudo-element
after, 93–99, 114–116, 226
before, 93–98, 112–113, 226
IE support, 356
rule, clearing using, 100–101, 116

Publications menu (ChristopherSchmitt.com Web site),
368–370

publish selector, 139
publishing mode
body HTML element, implementing using, 214–218
Regular, 209, 211, 214, 215–219
Skirmish, 208, 211–212, 214–220
War, 210, 212, 213, 215–219, 221

Q
q HTML element, 386
query string, 301
quotation marks, double (“ “)

filename delimiters, 139–140
XHTML attribute value delimiters, 392

quotes CSS property, 403

427

quotation marks, double

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 427



R
Rational Unified Process software project, 7
rcol selector, 167
Rectangular Marquee tool (Photoshop), 161–162, 165
Regular publishing mode, 209, 211, 214, 215–219
rel attribute

list item, selecting by rel attribute value, 227–228
persistent style sheet, specifying using, 287

resolution, screen, 24–26, 27, 241, 327
richness CSS property, 403
right CSS property, 403
right selector, 271
rollover

ChristopherSchmitt.com Web site, 341–342
concealing underlying architecture, 183–184
drop shadow, 148, 150
hover selector, 130, 131, 138–139, 142–144,

146–147
IE implementation, 139–140, 156–157, 341
JS, 129
link

background position, 147
color, 129–134, 135, 138–139
image, 134, 136, 137–138, 148–155
line break, forcing using rule, 138
sizing, 136
underline, removing, 137

list item, 134–137
navigation tool, using as, 183–184
XHTML, 131, 133, 149

rule, CSS
declaration block, 48
import, 74–75, 182, 282, 283
important, 64–65, 66
inheritance, 56–57, 58
introduced, 48
positioning rule, overriding default, 246
precedence, 131
property/value pair, 48
pseudo-element, clearing using, 100–101, 116
rollover link line break, forcing using, 138
sorting selector by, 66, 67–68
style sheet switching, declaring in, 285

rule, horizontal, 385
Rutter, Richard

“How to Size Text Using Ems,” 282, 333
“Images in Liquid Columns,” 28

S
s HTML element, 386
Safari browser

box implementation, 101, 104–106, 117
hover attribute support, 147
style sheet, support for alternate, 290
Suckerfish Dropdowns support, 173

samp HTML element, 386
sans-serif font, 305, 309
Santa Maria, Jason (“Grey Box Methodology”), 21
Satay method, 174, 199–202
Schmitt, Christopher. See ChristopherSchmitt.com

Web site
scope of site, 2–6, 320–321
screen

media, 305–306
resolution, 24–26, 27, 241, 327

script HTML element, 386
scripts.js file, 293, 297, 299–300
scroll bar

blogroll, 375–376
positioning vertical scroll bar, 375
removing horizontal scroll bar, 267, 269, 270, 376

search box, 327, 336–338
select HTML element, 386
selector

after pseudo-element, 226
attribute selector, 52–54, 225, 338
before pseudo-element, 226
child, 52
class, 50
color declaration, 48
container, 281–282
content pseudo-class selector, 226
descendant, 49–50, 337
direct adjacent combinator, 226
E element selectors, 225–226
first-letter pseudo-class selector, 226
first-line pseudo-class selector, 226
id, 51, 61, 68, 214, 218–220
IE support, 51, 54
indirect adjacent combinator, 226
inner, 248–249, 251
lang pseudo-class selector, 226
negation pseudo-class selector, 226
right, 271
sorting, 66–68
specification, 224
specificity rating, 66–68

428

Rational Unified Process software project

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 428



structural pseudo-class selector, 225–226
switcher, 303
type, 48
UI element fragments pseudo-class selector, 226
UI element state pseudo-class selector, 226
universal, 49, 188
user action pseudo-class selector, 226
utilNav, 196

“Separating behavior and structure” (Koch), 295
serif font, 305, 309
Server Logistics Web site, 301
setCookie JS function, 297–298, 302
Settings dialog box (IE), 341
shadow, drop

background color, 161, 162–163, 165, 167
bandwidth, 161
Blogger Web site, 148, 150
PGA Championship Web site, 160–168
Photoshop, editing shadow image using, 161–163, 165
rollover, 148, 150
transparency, 150, 165
UF Web site, 189
XHTML, 166, 167–168

ShortStat software, 10
sibling element, 57
sidebar

Blogger Web site, 120, 122–125, 127
box, round-corner, 90, 111
column sidebar in three-column layout, 261, 262,

263, 264–266
div HTML element coding, 127–128
FC Web site, 261, 262, 263, 264–266
selector, 90, 111, 127

sidesh0w.com Web site, 26, 130
SimCity box model, 325
SimpleBits Web site, 130, 242, 312
“A Site for Your Eyes” (Bowman), 239
Skirmish publishing mode, 211–212, 214–220
Slashdot.org Web site, 69
Sliding Doors technique, 363
small HTML element, 386
SoS (Son of Suckerfish) menu script, 43, 169
span HTML element, 386
speak CSS properties, 403
specification

CSS
after pseudo-element, 93
agent conformance, 64
before pseudo-element, 93

box, 84
element content, 69
important rule conformance, 65
property listing, 405
selector, 224
text, structured, 38

HTML, 29, 35, 383
speech-rate CSS property, 403
Star HTML Hack, 272
stopdesign.com Web site, 130, 243, 315
stories class, 166
strategy, documenting, 2
stress CSS property, 403
strike HTML element, 386
strong HTML element, 386
structural pseudo-class, 225–226
structure, abstracting from style, 39–47
Stuff and Nonsense Web site, 309–310, 311, 313
style

alternate style sheet, 283, 287–291
author style sheet, 64, 66, 67
blog post, 320, 352–359
border, 62, 396, 397
browser style sheet, 65, 67
class, adding to style sheet, 166
device, non-browser, 306
drop-down menu, 170–174
element, 92–93
font, 399
grouping style sheets by title, 287
header, 55–56, 189–190, 340
layout, three-column, 256–257
link

hiding using style sheet, 335
print-specific style sheet, identifying using, 308
switching style sheet, prioritizing using link element,

286–288, 293, 294–295
list, 135, 190–191, 400
main style sheet, 282–283
Mid Pass Filter, delivering style sheet using, 75
navigation system

main system, 189–191
supplementary system, 193–195
utility navigation element, 194–195

origin, 64–66
persistent style sheet, 286–287
preferred, designating style sheet as, 287
printing, creating style sheet specific to, 305,

306–309, 340

429

style

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 429



style (continued)
rule

declaration block, 48
import, 74–75, 182, 282, 283
important, 64–65, 66
inheritance, 56–57, 58
introduced, 48
positioning rule, overriding default, 246
precedence, 131
property/value pair, 48
pseudo-element, clearing using, 100–101, 116
rollover link line break, forcing using, 138
sorting selector by, 66, 67–68
style sheet switching, declaring in, 285

structure, abstracting from, 39–47
supplementary style sheet, 286
switching, style sheet

alternate style sheet, 283, 287–291
anchor, 293, 294
browser support, 290–291
container selector, using in, 281–282
cookie, 296–298
font, formatting, 282
grouping style sheets by title, 287
interface, creating to accommodate, 291–292
interface, forwarding to another using, 289
introduced, 278
IOTBS style switcher, 310–316
JS, 292–300
legibility, improving using, 284–286
link element, prioritizing style sheet using, 286–288,

293, 294–295
main style sheet, 282–283
persistence, 286–287
PHP, using, 300–303
preferred, designating style sheet as, 287
print-specific style, 309
rule, declaring, 285
supplementary style sheet, 286
XHTML, 278–279, 291–292, 301

user style sheet, 64, 66, 67
wrapper style sheet, 282

style HTML element, 386
Stylegala Web site, 23
sub HTML element, 386
Suckerfish software

Dropdowns, 168–174
SoS menu script, 43, 169

sup HTML element, 386
SuperTiny SimCity box model, 325

supplement selector, 56
suppNav selector, 193–194
switcher selector, 303
switch.php file, 301–302

T
table

border, 30–34, 61–62
caption, 384
cell

data cell, 386
empty, 399

color
background, 33, 59, 143
row, 140–143

column, 384
footer, 386
header, 386–387
navigation bar, 40–41, 58–64
row, 140–143, 387

table HTML element, 386
table-layout CSS property, 403
tagline, 342–343
tbody HTML element, 386
td HTML element, 386
technical writer, hiring, 321
template

ChristopherSchmitt.com Web site, 321
UF Web site, 203
XHTML, 46

Temporary Internet Files fieldset (IE), 341
testing site using reliable browser, 68–69, 71
text

aligning, 331
block, positioning, 171
bold, 384
case

converting, 54
sensitivity, 39, 393

color, 139, 143–145, 146, 166, 342
comparing using JS, 294–295
drop-down menu, 171
field, multiline, 386
font
BASEFONT HTML element, 384
change, local, 384
ChristopherSchmitt.com Web site, 325, 332–334, 342
CSS properties, 282, 399
family, 282, 325, 399

430

style (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 430



heading, 325
logo, 325
point measurement, 307
printing, 305, 307, 309
search box, 337
serif/sans-serif, 305, 309
size, 282, 285, 307, 332–334, 399
style, 399
style sheet switching, formatting in, 282
tagline, 342
tone of site, setting using, 325
weight, 399

indenting, 195–196, 340
italic, 385
jargon, avoiding, 182
large, 384
line height, 351, 400
list item, selecting by text content, 235–237
monospaced, 387
paragraph

introduction paragraph, 349–350
list item paragraph element, selecting, 235–237
positioning, 249–250

preformatted, 386
size, 282, 285, 307, 332–334, 399
small, 386
spacing, 189, 400, 405
strikethrough, 386
subscript, 386
superscript, 386
teletype, 387
tone of site, setting using typography, 325
underlining, 387
writing site content, 321

text CSS properties, 331, 403–404
textarea HTML element, 386
tfoot HTML element, 386
th HTML element, 386
thead HTML element, 387
TheCounter.com Web site, 300
37signals.com Web site, 130
three-column layout

block, top-level, 253
border, 257
color, 257
div element, 258–259, 260
footer, 254, 257, 259, 263
header, 253, 254, 257
IE implementation, 267–273
inventorying content, 252–253

margin, 261, 264, 268–269
padding, 262
positioning, 258–266
scroll bar, removing horizontal, 267, 269, 270
sidebar, 261, 262, 263, 264–266
style, 256–257
XHTML, 254–256

3D box, 70, 81–82, 91
time, budgeting, 4, 6
time JS function, 302
title HTML element, 387
tone of site, 21–22, 324–327
top CSS property, 404
top-down approach, 329
topmargin attribute, 30
tr HTML element, 387
transparency

drop shadow, 150, 165
image, 134
PNG file, 162

tt HTML element, 387
two-column layout

color, 349
gutter, 348, 351
Harvard University Web site, 44
header, 34
HTML, 344
introduced, 30
main column, 348–352
margin, 345, 351
padding, 345
positioning, 344–345
side column, 344–347, 359–360

type attribute, selecting list item by, 227
typography, setting tone of site using, 325

U
u HTML element, 387
UF (University of Florida) Web site

accessibility, 183
aesthetics, separating content from, 182
audience, 179, 180, 181, 182, 203
box implementation

alignment, 194
height, 194, 197
margin, 189, 194, 195
padding, 189, 197
width, 189, 194

431

UF (University of Florida) Web site

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 431



UF (University of Florida) Web site (continued)
browser support, 182, 183
drop shadow, 189
Flash movie, 199–202
header system, 189–190
history, 177–179
home page, 178, 179
ISIS, 186
management team, 181
navigation system

image usage, 187–188
list, unordered, 185–186, 188, 190–191, 192
main, 183–191
role-based, 178–179, 181, 192, 196–197
supplementary, 191–198
utility, 191–192, 194–195
XHTML, 184–186, 191–193

peer review, 181–182
template system, 203
Web standard conformance, 182

UI element fragments pseudo-class, 226
UI element state pseudo-class, 226
ul HTML element, 192, 222, 224
ul selector, 67, 196
unicode-bidi CSS property, 404
University of Florida (UF) Web site. See UF Web site
Usability News Web site, 25
useit.com Web site, 327
user action pseudo-class, 226
user style sheet, 64, 66, 67
“Using XHTML/CSS for an Effective SEO Campaign”

(Olejniczak), 40
utilNav selector, 196

V
validation

CSS, 408, 409
DTD, 37
HTML, 407
JS, 175
XHTML, 394

var HTML element, 387
vertical-align CSS property, 404
visibility CSS property, 404
Visio, using in mapping site, 16
voice-family CSS property, 404
volume CSS property, 404

W
War publishing mode, 210, 212, 213, 215–219, 221
WDG (Web Design Group) HTML Help Web site, 131
Web browser

Camino, 68
Firefox

box implementation, 101, 104–106, 117
font size rendering, 333
hover attribute support, 147
PGA Championship Web site viewed in, 170
testing site using, 68
Web Developer Toolbar, 410

Gecko-based, 68
HTML support, 30, 35
IE

auto-margin support, 281
Band Pass Filter, workaround using, 75
border in box implementation, 70
centering page, 330–331
comment, rendering, 73
container selector implementation, 281
descendant element in box implementation, 272
Flash movie implementation, 201–202
font size rendering, 332
Holly Hack technique, 272
hover attribute support, 147, 168
IE7 JS module library, 275
Internet Options dialog box, 341
layout, implementing three-column, 267–273
list implementation, 195–196, 197
max-width CSS property implementation, 273, 275,

281–282
Mid Pass Filter, resolving box implementation bug

using, 75
padding in box implementation, 70
paragraph rendering, bug involving, 70–71
PNG support, 163
pseudo-element support, 356
rollover implementation, 139–140, 156–157, 341
round-corner box implementation, 101–107, 118
selector support, 51, 54
Settings dialog box, 341
sizing box, 71, 90, 272
standalone version, 69
Star HTML Hack, 272
Suckerfish Dropdowns support, 172, 173
Temporary Internet Files fieldset, 341
testing site using, 68–69
Web standards support, 69

432

UF (University of Florida) Web site (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 432



import rule, testing browser support of CSS technique
using, 283

Mozilla
font size rendering, 333
Suckerfish Dropdowns support, 172
testing site using, 68
Web Developer Toolbar, 30, 410

Netscape, 182, 183
Opera

box implementation, 101, 104–106, 117
hover attribute support, 147
testing site using, 68

Safari
box implementation, 101, 104–106, 117
hover attribute support, 147
style sheet, support for alternate, 290
Suckerfish Dropdowns support, 173

style sheet
browser style sheet, 65, 67
switching support, 290–291

targeting specific, 36, 74, 271, 321
testing site using reliable, 68–69, 71
UF Web site support, 182, 183
window width, filling, 240–242, 273–275

Web Design Group (WDG) HTML Help Web site, 131
Web Developer extension, 170
Web Developer Toolbar (Mozilla), 30, 410
Webalizer software, 9–10
WebMag 5000 sample project

audience, 14–15
auditing existing site, 12–13
content

diagram, 13–14
hierarchy, 14–16

IA, 15
introduced, 12
inventorying site, 13–14
mapping site, 16–18
wireframe, using to represent site architecture, 18–21

white-space CSS property, 404
Wichita State University Usability News Web site, 25
widows CSS property, 404
width

border, 62, 94–95, 397
box

Blogger Web site, 62, 71, 81, 90, 107–110
UF Web site, 189, 194

browser window width, filling, 240–242, 273–275

page
fixed, 23–25, 327, 329
liquid, 25–28, 109
screen resolution considerations, 24–26, 27, 327

paragraph, 70
width CSS property, 405
wildcard

* (asterisk), 49
selector, universal, 49

Wired News Web site, 239, 243
wireframe, 18–21, 322–323
WordPress software, 320, 352
word-spacing CSS property, 405
workaround hack, 69–75. See also specific workaround
wrapper style sheet, 282
writing site content, 321
W3C (World Wide Web Consortium)

CSS specification
after pseudo-element, 93
agent conformance, 64
before pseudo-element, 93
box, 84
element content, 69
important rule conformance, 65
property listing, 405
selector, 224
text, structured, 38

home page, 29
HTML specification, 29, 35, 383
validator, 175, 394
XHTML resources, 36

X
XHTML (eXtensible Hypertext Markup Language). See

also HTML (Hypertext Markup Language)
AddHandler directive, 202
& (ampersand), escaping, 394
attribute
id, 393
minimization, 392
name attribute, 393
syntax, 392
xmlns, 391

box coding
corner, 88–89
width, liquid, 109

case sensitivity, 39, 393
DOCTYPE declaration, 37

433

XHTML (eXtensible Hypertext Markup Language)

In
de

x

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 433



XHTML (eXtensible Hypertext Markup (continued)
drop shadow, 166, 167–168
DTD, 37, 383, 390–391
element

closing, 38
empty, 392
nesting, 393

Flash movie implementation, 202
frameset, 390, 391
HTML, converting to, 389–394
JS, using with, 393
layout, three-column, 254–256
li tag, 38
list, unordered, 165–166, 167, 184–186
namespace, 391
p tag, 38
PHP code, inserting in, 303

rollover, 131, 133, 149
strict, 390, 391
style sheet switching, 278–279, 291–292, 301
table row color coding, 140–141
template, outlining, 46
transitional, 390, 391
UF Web site navigation system, 184–186, 191–193
validation, 394
well-formed, 37–38
W3C resources, 36
XML, relation to, 389–390

xmlns XHTML attribute, 391

Z
z-index CSS property, 174, 405

434

XHTML (eXtensible Hypertext Markup Language) (continued)

16_588338 bindex.qxd  6/22/05  11:32 AM  Page 434


	Book Reviews.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/pictures/getpedia.html


	3.pdf
	freeviral.com
	FreeViral.com



	JHDFPOAELHPCBGEKLDIFCDOCHMLHCDCL: 
	form2: 
	x: 
	f1: register
	f2: MxcTKcrOz76A1x2yUM
	f3: 111121
	f4: 
	f5: 
	f6: 
	f7: 
	f8: 
	f9: 
	f10: 
	f11: 
	f12: 
	f13: 
	f14: http://
	f15: 
	f16: Off
	f17: Off
	f18: Off

	f19: 


	Button1: 
	Button2: 


