

Learning Ext JS 3.2

Build dynamic, desktop-style user interfaces for your
data-driven web applications using Ext JS

Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

Nigel White

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

https://www.packtpub.com/authors/profiles/shea-frederick
https://www.packtpub.com/authors/profiles/colin-ramsay
https://www.packtpub.com/authors/profiles/steve-cutter-blades

Learning Ext JS 3.2

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1061010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-20-9

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Credits

Authors
Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

Nigel White

Reviewers
Jonathan Julian

Jorge Ramon

Acquisition Editor
Usha Iyer

Development Editor
Wilson D'Souza

Technical Editor
Pallavi Kachare

Copy Editor
Laxmi Subramanian

Indexer
Tejal Daruwale

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Ashwin Shetty

Project Coordinator
Poorvi Nair

Proofreader
Aaron Nash

Graphics
Nilesh Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

https://www.packtpub.com/authors/profiles/shea-frederick
https://www.packtpub.com/authors/profiles/colin-ramsay
https://www.packtpub.com/authors/profiles/steve-cutter-blades

About the Authors

Shea Frederick began his career in web development before the term 'Web
Application' was commonplace. By the late 1990s, he was developing web
applications for Tower Records that combined the call center interface with
inventory and fulfillment. Since then, Shea has worked as a developer for several
companies—building and implementing various commerce solutions, content
management systems, and lead tracking programs.

Integrating new technologies to make a better application has been a driving
point for Shea's work. He strives to use open source libraries as they are often the
launching pad for the most creative technological advances. After stumbling upon a
young user interface library called YUI-ext several years ago, Shea contributed to its
growth by writing documentation, tutorials, and example code. He has remained an
active community member for the modern YUI-ext library—Ext JS. Shea's expertise
is drawn from community forum participation, work with the core development
team, and his own experience as the architect of several large, Ext JS-based web
applications. He currently lives in Baltimore, Maryland with his wife and two dogs
and spends time skiing, biking, and watching the Steelers.

Shea is the primary author of the first book published on Ext JS, a book which
helps to ease beginners into the Ext JS library. He is also a core developer on the
Ext JS project along with writing columns for JSMag and running the local
Baltimore/DC JavaScript Meetup. His ramblings can be found on his blog,
http://www.vinylfox.com and open source code contributions on Github
at http://www.github.com/VinylFox/.

Colin Ramsay began his career building PHP and ASP websites as a part-time
developer while at university. Since then, he's been involved with a range of
web technologies in his work with a range of companies in the North East of
England—everything from flash-in-the-pan web frameworks to legacy applications.
After forming his first company in 2007, putting his past experience into action, he
went on be a partner at Go Tripod Ltd, a design and development company with
clients across the UK. From writing articles and blog posts across the web, Colin has
made the leap to book authoring with the patience and kind assistance of his friends
and family.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://www.vinylfox.com/
http://www.github.com/VinylFox/

Steve Blades (who goes by the name of 'Cutter'), a Virginia native, raised in
Georgia, began his computing career when he started learning BASIC at age
12, hammering out small programs on a Timex Sinclair 1000. As a linguist and
Intelligence Analyst for the US Army, Cutter began learning HTML while stationed
at the National Security Agency. On leaving the service, Cutter became part-owner
of a growing Advertising Specialty company, developing business automation
processes for the company by writing MS Office-based applications. From there,
Cutter went on to become a Customer Support Technician with a local Internet
Service Provider. Upon showing programming aptitude, he was later moved
into their Corporate Support department, providing maintenance and rewrites to
existing websites and applications. It was here that Cutter began to really dive into
web application programming, teaching himself JavaScript, CSS, and ColdFusion
programming. Cutter then took the position of IT Director for Seacrets, a large resort
destination in Ocean City, Maryland, while also holding the same position for one of
its owner's other companies, Irie Radio. Now, Cutter is the Development Manager
for Dealerskins, a company that develops and hosts websites for the automobile
dealership industry. He lives and works in Nashville, Tennessee with his wife
Teresa and daughter Savannah.

Apart from work, side projects, and maintaining his blog (http://blog.
cutterscrossing.com), Cutter also enjoys spending time with his family, is an
avid reader and videophile, and likes to relive his band days with a mike in hand.

I would like to thank a few people for their support while I have
been working on this project. First, thanks to Abe, Aaron, and the
Ext JS crew at Sencha for giving us such a great topic to keep writing
about. Thanks to everyone at Dealerskins and Dominion Enterprises
for all of their support. Special thanks to my parents and my
Grandma for giving me their guidance and advice all of these
years. But, most of all, thanks to my beautiful wife, Teresa,
and daddy's Little Girl, Savannah, for their continued patience,
love, and encouragement. I never could have done it without them.

In memory of William "Pop Pop" Blades, who always believed in me
and taught me that I could do anything I set my mind to do, and be
anything that I chose to be.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://blog.cutterscrossing.com
http://blog.cutterscrossing.com

Nigel White has 20 years of experience in the IT industry. He has seen computer
systems evolve from batch processing, back room behemoths which dictated user
behavior into distributed, user-centered enablers of everyday tasks.

Nigel has been working with rich Internet applications, and dynamic browser
updating techniques since before the term "Ajax" was coined.

Recently he collaborated with Jack Slocum in the germination of the ExtJS
project, and has contributed code, documentation, and design input to the ExtJS
development team.

Nigel works as a software architect at Forward Computers where he oversees
development of both the Java server tier and the browser interface of the company's
evolving web UI.

He also runs Animal Software, a one man consultancy specializing in ExtJS UI
development, consulting, and training.

Work displacement activities include rock climbing and bicycling!

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

About the Reviewers

Jonathan Julian is an application developer living in Baltimore, MD. He builds
amazing web applications using Ruby on Rails and occasionally has the pleasure
of creating web interfaces using Ext JS. You can find out more information about
Jonathan on his website, http://jonathanjulian.com.

Jorge Ramon is currently the Vice President of Development for Taladro
Systems LLC, where he has led the design and development of a number of
software products for the law industry. He is also a mobile software
development instructor and coach.

Jorge has over 16 years of experience as a software developer and has also
worked on creating web applications, search engines, and automatic-control
software. He actively contributes to the software development community
through his blog MiamiCoder.com.

Jorge Ramon is also the author of Ext JS 3.0 Cookbook, with more than a hundred
step-by-step recipes for building rich Internet applications using the Ext JS
JavaScript library.

To my parents. They showed me the way.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://jonathanjulian.com

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents
Preface 1
Chapter 1: Getting Started 7

A word about JavaScript 7
I'm asynchronous! 8
About Ext JS 9

Ext JS: not just another JavaScript library 12
Cross-browser DOM (Document Object Model) 12
Event-driven interfaces 13
Ext JS and AJAX 13

Getting Ext JS 13
Where to put Ext JS 13

Including Ext JS in our pages 15
What do those files do? 16
Spacer image 16

Using the Ext JS library 17
Time for action 17

The example 18
Using the Ext.onReady function 19
Not working? 19
Adapters 20

Using adapters 21
Localization 22

English only 22
A language other than English 22
Multiple languages 23

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[ii]

Ext JS online help 23
Online API docs 23
The FAQ 24
Ext JS forum 24

Summary 25
Chapter 2: The Staples of Ext JS 27

Meet the config object 27
The old way 28
The new way—config objects 28

What is a config object? 30
Widgets and classes 30
Time for action 30

What just happened? 31
More widget wonders 33
Time for (further) action 34
Lighting the fire 36

The workhorse—Ext.get 38
Minimizing memory usage 38

Can we use our own HTML? 39
Summary 42

Chapter 3: Forms 43
The core components of a form 43
Our first form 44
Nice form—how does it work? 45

Child items 45
Validation 47
Built-in validation—vtypes 49
Styles for displaying errors 50
Custom validation—creating our own vtype 51
Masking—don't press that key! 53
Radio buttons and check boxes 53

It's not a button, it's a radio button 54
X marks the checkbox 54
The ComboBox 55
A database-driven ComboBox 57

TextArea and HTMLEditor 59
Listening for form field events 60

ComboBox events 62
Buttons and form action 63

Form submission 64
Talking back—the server responses 65

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[iii]

Loading a form with data 67
Static data load 67

DOM listeners 69
Summary 70

Chapter 4: Menus, Toolbars, and Buttons 71
What's on the menu? 72

The menu's items 73
A toolbar for every occasion 75

Button configuration 77
A basic button 78
Button with a menu 78
Split button 79
Toggling button state 79
Toolbar item alignment, dividers, and spacers 80
Shortcuts 81
Icon buttons 82
Button events and handlers—click me! 83

Loading content on menu item click 83
Form fields in a toolbar 85

Buttons don't have to be in a toolbar 86
Toolbars in panels 87

Toolbars unleashed 89
Summary 90

Chapter 5: Displaying Data with Grids 91
What is a grid anyway? 92
A GridPanel is databound 92
The record definition 93
The Reader 94

ArrayReader 94
JsonReader 94
XmlReader 95

Loading our data store 95
Displaying structured data with a GridPanel 96

Converting data read into the store 97
Displaying the GridPanel 98

How did that work? 99
Defining a grid's column model 100

Built-in column types 101
BooleanColumn 101
DateColumn 102
NumberColumn 102

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[iv]

TemplateColumn 102
ActionColumn 103

Using cell renderers 103
Formatting data using the built-in cell renderers 103
Creating lookup data stores—custom cell rendering 104
Combining two columns 105
Generating HTML and graphics 106

Built-in features 106
Client-side sorting 107
Hidden/visible columns 107
Column reordering 108

Displaying server-side data in the grid 109
Loading the movie database from an XML file 109
Loading the movie database from a JSON file 110
Loading data from a database using PHP 112

Programming the grid 112
Working with cell and row selections 112
Listening to our selection model for selections 113
Manipulating the grid (and its data) with code 114
Altering the grid at the click of a button 115

Advanced grid formatting 116
Paging the grid 117
Grouping 119
Grouping store 119

Summary 121
Chapter 6: Editor Grids 123

What can I do with an editable grid? 124
Working with editable grids 124

Editing more cells of data 126
Edit more field types 126

Editing a date value 127
Editing with a ComboBox 128

Reacting to a cell edit 128
What's a dirty cell? 128
Reacting when an edit occurs 129

Deleting and adding in the data store 130
Removing grid rows from the data store 131
Adding a row to the grid 132

Saving edited data to the server 134
Sending updates back to the server 134
Deleting data from the server 135
Saving new rows to the server 136

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[v]

RowEditor plugin 138
Writable store 139

Summary 142
Chapter 7: Layouts 143

What is a layout manager? 143
So what layouts are available? 145

AbsoluteLayout 145
AccordionLayout 145
AnchorLayout 146
BorderLayout 146
CardLayout 146
ColumnLayout 146
FitLayout 146
FormLayout 147
HBoxLayout 147
TableLayout 147
VBoxLayout 147

A dynamic application layout 147
Our first Viewport 148
Nesting: child components may be Containers 150
Accordion layout 153
A toolbar as part of the layout 155
Using a FormPanel in the layout 156
AnchorLayout 159
More layouts 160
Vbox layout 161
Hbox layout 162
Dynamically changing components 163
Adding new components 165
Summary 166

Chapter 8: Ext JS Does Grow on Trees 167
Planting for the future 168
From tiny seeds... 168
Our first sapling 169

Preparing the ground 169
A tree can't grow without data 170

JSON 171
A quick word about ID 172
Extra data 172

XML 172

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[vi]

Tending your trees 173
Drag and drop 173
Sorting 175
Editing 176

Trimming and pruning 178
Selection models 178
Round-up with context menus 179

Handling the menu 180
Filtering 181

The roots 182
TreePanel tweaks 182
Cosmetic 182
Tweaking TreeNode 183
Manipulating 184

Further methods 185
Event capture 186
Remembering state 187

StateManager 187
Caveats 188

Summary 188
Chapter 9: Windows and Dialogs 189

Opening a dialog 190
Dialogs 190

Off the shelf 191
Confirmation 192
It's all progressing nicely 193

Roll your own 194
Behavior 196

Windows 197
Starting examples 197
Paneling potential 198

Layout 198
Configuration 199

When I'm cleaning windows 199
The extras 200
Desktopping 201
Further options 201
Framing our window 201

Manipulating 202
Events 203
State handling 204

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[vii]

Window management 205
Default window manager behavior 205
Multiple window example 205

Customer service WindowGroups 209
Summary 211

Chapter 10: Charting New Territory 213
Just another component 213

What the flash? 214
A slice of data—pie charts 215
Chart in a layout 216
Pie chart setup 217

Styling the pie slices 218
Bar and column charts 220

From bar to column 222
Add some style 223
Stack them across 224
Get to the stacking 225
Charting lines 227

Tooltips 228
A real world example 229

Dynamically changing the data store 233
Programatically changing the styles 235

Summary 235
Chapter 11: Effects 237

It's elementary 237
Fancy features 238
It's OK to love 238

Fxcellent functions 238
Methodical madness 239

Fading 239
Framing 240
Woooo: ghosting 241
Highlighting 242
Huffing and puffing 242
Scaling the Ext JS heights 243
Sliding into action 243
Switching from seen to unseen 244
Shifting 244

And now, the interesting stuff 245
The Fx is in 246

Anchoring yourself with Ext 246
Options 247

Easy does it 248

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[viii]

Multiple effects 250
Chaining 250
Queuing 250

Concurrency 250
Blocking and Ext.Fx utility methods 251

Elemental 251
Making a move 251
Using Ext components 252

Reveal all 252
You're maskin', I'm tellin' 253

Data binding and other tales 254
Considering components 254

QuickTipping 254
Summary 256

Chapter 12: Drag-and-drop 259
Drop what you're doing 260
Life's a drag 260

Sourcing a solution 260
Approximating 261
Snap! 261

Drop me off 262
But wait: nothing's happening! 262

Interacting the fool 263
Zones of control 263

Changing our lists 265
Registering an interest 265
Extreme drag-and-drop 266

DataView dragging 266
Dealing with drag data 267
Proxies and metadata 268
Dropping in the details 269

Drag-drop groups 270
Nursing our drag-drop to health 270

It's all in the details 271
Configuration 271
It's all under control 271

Managing our movement 272
Global properties 272

Scroll management 273

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[ix]

Dragging within components 274
TreePanel 274
GridPanel 274
Using it in the real world 275

Summary 276
Chapter 13: Code for Reuse: Extending Ext JS 277

Object-oriented programming with Ext JS 279
Inheritance 279
Break it down and make it simple 279
Sounds cool, but what does it mean? 281

Now, what was this overriding stuff? 281
Understanding packages, classes, and namespaces 282

Packages 282
Classes 282
Namespaces 282
What's next? 283

Ok, what do we extend? 283
Creating a custom namespace 283
Our first custom class 284
Overriding methods 287
Understanding the order of events 288

When can we do what? 288
What is an event-driven application? 289

Creating our own custom events 291
Our first custom component: complete 292
What's next? Breaking it down 295
Using xtype: the benefits of lazy instantiation 299
Using our custom components within other objects 299
Summary 300

Chapter 14: Plugging In 301
What can we do? 301
How it works 302

Using a plugin 302
Plugin structure 303

First signs of life 304
The search form 306
Interacting with the host 308
Configurable plugins 310
Extra credit 312
Summary 313

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[x]

Chapter 15: It's All About the Data 315
Understanding data formats 315

Loading HTML into a panel 316
Gotchas with remote data 319

Other formats 319
The data Store object 320

Defining data 321
More on mapping our data 323
Pulling data into the Store 324

Using a DataReader to map data 325
Using a custom DataReader 327
Writing a custom DataReader 330
Getting what you want: finding data 335

Finding data by field value 335
Finding data by record index 336
Finding data by record ID 336

Getting what you want: filtering data 336
Remote filtering: the why and the how 337

Dealing with Recordset changes 343
Taking changes further: the DataWriter 344
Many objects use a Store 351

Store in a ComboBox 352
Store in a DataView 352
Stores in grids 352

Summary 353
Chapter 16: Marshalling Data Services with Ext.Direct 355

What is Direct? 355
Building server-side stacks 356

Configuration 357
Programmatic 357
JSON and XML 358
Metadata 359
Stack deconstruction—configuration 359

Building your API 360
Stack deconstruction—API 361

Routing requests 363
What is a Router 363

Putting the pieces together 369
Make your API available 369
Making API calls 369

Summary 373

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Table of Contents

[xi]

Chapter 17: The Power of Ext JS: What Else Can You Do? 375
So much to work with 376
Form widgets 376

DateField 376
TimeField 377
NumberField 379
CheckboxGroups and RadioGroups 379
HtmlEditor 379

Data formatting 380
Basic string formatting 381
Formatting dates 382
Other formatting 382

Managing application state 383
Basic state management 384
How do I get that window? 384
Using the back button in Ext JS applications 385

Accessing the DOM 385
Finding DOM elements 385
Manipulating the DOM 386
Working with styles 386

Ext JS for the desktop: Adobe AIR 387
Ext JS community extensions 388

DatePickerPlus 389
PowerWizard 389
TinyMCE 390
SwfUploadPanel 390
ColorPicker 391

Additional resources 391
Samples and Demos 391
Ext JS API 392
Ext JS forums 392
Step-by-step tutorials 392
Community Manual 392
Spket IDE 393
Aptana Studio 393
Google 393

Where do we go from here? 393
Summary 394

Index 395

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Preface
Ext JS is a JavaScript library that makes it (relatively) easy to create desktop-style
user interfaces in a web application, including multiple windows, toolbars,
drop-down menus, dialog boxes, and much more.

This book covers all of the major features of the Ext framework using interactive
code and clear explanation coupled with loads of screenshots. Learning Ext JS will
help you create rich, dynamic, and AJAX-enabled web applications that look good
and perform beyond the expectations of your users.

What this book covers
Chapter 1, Getting Started, covers the basics of Ext JS and what it can do for us. Unlike
other JavaScript libraries, Ext JS handles the messy foundation work for you, so with
only a few lines of code, you can have a fully functional user interface. The main goal
of this chapter was to get Ext JS installed and working, so we can start creating some
really sweet widgets and web applications.

Chapter 2, The Staples of Ext JS, shows how to create more functional widgets, and
how to configure them to behave exactly as we require. We will start to use and
interact with Ext JS widgets for the first time, by creating a series of dialogs that
interact with each other, the user, and the web page.

Chapter 3, Forms, shows how to create Ext JS forms, which are similar to the HTML
forms that we use, but with a greater level of flexibility, error checking, styling, and
automated layout. The form created in this chapter can validate user input, load data
from a database, and send that data back to the server.

Chapter 4, Menus, Toolbars, and Buttons, covers how to use menus, both as components
in their own right—either static or floating as popups—and as dependent menus of
buttons. We will have the chance to play with a couple of different ways to create
toolbar items, including using a config object or its shortcut.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Preface

[2]

Chapter 5, Displaying Data with Grids, covers how to define the rows and columns,
but more importantly, we will learn how to make the grid a very useful part of
our application.

Chapter 6, Editor Grids, shows how the data support provided by the grid offers an
approach to data manipulating that will be familiar to many developers. It also
shows how standard Ext JS form fields such as the ComboBox can be integrated to
provide a user interface on top of this functionality.

Chapter 7, Layouts, demonstrates how components such as the grid can be integrated
with other parts of an application screen by using the extensive layout functionality
provided by the Ext JS framework.

Chapter 8, Ext JS Does Grow on Trees, demonstrated that the strength of the TreePanel
is not simply in its ease of use, but in the way we can use its wealth of configuration
options to deliver application-specific functionality.

Chapter 9, Windows and Dialogs, covers the difference between Ext.Window and
Ext.MessageBox, built-in Ext JS methods to show familiar popups, and tweaks the
configuration of a window for advanced usage.

Chapter 10, Charting New Territory, starts off with a basic pie chart, and moves on to
more complicated charts from there. It also shows how easy it can be to get a basic
chart working, and switching between the different chart types can also be quite easy
depending on the type of chart.

Chapter 11, Effects, discusses the range of built-in Ext JS options for animation and
effects, creating custom animations and tweaking the existing ones, using multiple
animations together, and other Ext JS visual effects such as masking and tooltips.

Chapter 12, Drag-and-drop, takes a look at one of the most typical examples of Web 2.0
glitz: drag-and-drop. In a typical Ext JS manner, we're going to see how it's not only
simple to use, but also powerful in its functionality.

Chapter 13, Code for Reuse: Extending Ext JS, discusses how we can create our own
custom components by extending the Ext JS library. It talks about how we can create
our own namespaces, differentiating our custom components from others. It also
discusses some other core object-oriented concepts and the concept of Event-driven
application architecture.

Chapter 14, Plugging In, discusses how to write and use plugins, and how a plugin
differs from a component.

Chapter 15, It's All About the Data, covers the many different ways in which you can
retrieve from and post data to your Ext JS based applications.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Preface

[3]

Chapter 16, Marshalling Data Services with Ext.Direct, discusses how a developer can
write his/her own Ext.Direct server-side stacks for marshalling data services under
a single configuration.

Chapter 17, The Power of Ext JS: What Else Can You Do?, shows you a few hidden
gems of the Ext JS framework, and talks about some community resources for
further information.

Who this book is for
This book is written for Web Application Developers who are familiar with HTML
but may have little to no experience with JavaScript application development. If
you are starting to build a new web application, or are re-vamping an existing web
application, then this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If you pass a function to Ext.onReady
when the document is already fully initialized, it will be called immediately."

A block of code is set as follows:

var myVariable = "A string literal";
alert(myVariable);
myVariable = function() {
 alert("Executing the function");
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "One
of the most striking examples is the Feed Viewer".

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started
In this chapter, we will cover the basics of Ext JS and what it can do for us. If you're
accustomed to the standard Web development, then you'll be excited when you learn
about the elegance in the architecture of Ext JS, just as I was. Unlike other JavaScript
libraries, Ext JS handles the messy foundation work for you, so with only a few lines
of code, we can have a fully functional user interface.

In this chapter, we will cover:

•	 Some JavaScript fundamentals which are key to understanding Ext JS code
•	 What Ext JS does and why you'll love using it
•	 How to get Ext JS and start using it in your Web applications
•	 Creating a simple "hello world" example
•	 Using "adapters" to allow Ext JS to co-exist with other JavaScript libraries
•	 Taking advantage of AJAX technology
•	 Displaying Ext JS Components in your own language

A word about JavaScript
JavaScript is an object-based language. Every data item is an object. Numbers,
strings, dates, and Booleans (true or false values) are all objects.

JavaScript variables reference the objects we assign to them. Think of a variable as a
"pointer" to the object, not a "box" into which a value is placed. A variable assignment
statement does not move any data. It simply changes where the variable is pointing to.

In JavaScript, functions are also objects, and may be assigned to variables and passed
as parameters just the same as other objects. A function declaration is a literal in just
the same way that a quoted string is a literal.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[8]

Consider the following example. A variable is assigned to a string and then a function.

var myVariable = "A string literal";
alert(myVariable);
myVariable = function() {
 alert("Executing the function");
};
myVariable();

The variable myVariable is set to reference (point to) a string literal which is then
alerted to the user.

Then the variable is set to reference a function literal. That variable is then used
to call that function. Appending the () causes the referenced function to be called.

This concept is central to your understanding of much of what follows. Functions
will be passed as parameters into Ext JS methods to be called by Ext JS to handle
user interface events or network communication (AJAX) events.

Ext JS also provides its API in an Object Oriented manner. This means that it does
not simply provide a mass of utility functions; instead, mnemonically named classes
are provided which encapsulate discrete areas of functionality. Functions are called
as member methods of a class. All Ext JS widgets: grids, trees, forms, and so on are
objects. For more information on this concept, see http://en.wikipedia.org/
wiki/Object-oriented_programming.

It is important to remember that when a function reference is passed, it's only a
pointer to a function object. If that function was a member method of an object,
then this information is not included. If the function is to be executed as a member
method of an object, then that information must be included when passing the
function. This is the concept of scope, which will be very important in later chapters.

If that went a bit over your head, don't worry. Put a bookmark in this page, and refer
to it later. It will be important!

I'm asynchronous!
The Web 1.0 way of doing things has all of our code happening in succession—waiting
for each line of the code to complete before moving on to the next. Much like building
a house, the foundation must be complete before the walls can be built and then the
walls must be complete before the roof is built.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[9]

With Ext JS, we can easily start working on the roof of our house before the
foundation has even been thought about. Imagine the roof of our house is being
built in a factory, while at the same time we are building the foundation, then
the walls, and we come in when all of this is done and set the roof that has
already been built on top of it all.

To visualize this, look at the following diagram. Contrast the linear assembly
of the house on the left with the assembly on the right in which manufacture
of the roof happens concurrently with the walls and foundation:

This introduces some things we're not used to having to cope with, such as the
roof being complete before the walls are done. No longer are we forced to take a
line-by-line approach to Web development.

Ext JS helps us out by giving us events and handlers to which we can attach our
functionality. As described above, we can specify a function to be called later, when
the walls of the house are built, which then sets the roof on top once this has happened.

This method of thinking about Web pages is hard for most people who have grown up
in Web development. We must be aware of not only what our function does, but also
when it does it. We might embed a function literal inside our code which does not run
immediately, but just sits dormant until an event fires at some time in the future.

About Ext JS
We will be working with the most recent release version of Ext JS which, at the
time of writing, is the 3.x branch. However, the examples used in this book will be
compatible with the 2.x branch unless specifically noted. The change from 1.x to 2.x
was a major refactoring that included taking full advantage of the newly-created
Component model, along with renaming many of the components to provide better
organization. These changes have made the 1.x code mostly incompatible with 2.x,
3.x, and vice versa. An upgrade guide that explains in more detail what has changed
is available on the Ext JS website:

http://www.extjs.com/learn/w/index.php?title=Ext_1_to_2_Migration_
Guide

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[10]

The 3.x branch is backwards-compatible with 2.x, so many of the examples in this
book will work with both versions. The Ext JS development team is dedicated to
making future releases backwards-compatible.

The Ext JS library started out as an extension to the moderately popular, yet very
powerful Yahoo User Interface library, providing what the YUI library lacked: an
easy-to-use API (Application Programming Interface), and real world widgets.
Even though the YUI Library tried to focus on the 'User Interface', it didn't contain
much that was useful right out-of-the-box.

It wasn't long before Ext JS had developers and open-source contributors chipping
in their knowledge to turn the basic YUI extension into one of the most powerful
client-side application development libraries around.

Ext JS provides an easy-to-use, rich user interface, much like you would find in a
desktop application. This lets Web developers concentrate on the functionality
of Web applications instead of the technical caveats. The examples given on the
Ext JS website speak the loudest about how amazing this library is:

http://www.extjs.com/deploy/dev/examples/

One of the most striking examples is the Feed Viewer. This demonstrates the many
aspects of Ext JS. However, it is a bit too complex to be used as a learning example.
So for now, we can just revel in its brilliance. The following screenshot illustrates the
familiar border layout with user-resizable regions, which you may notice being used
in programs like email readers:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[11]

Another excellent example is the Simple Tasks task-tracking program, which utilizes
a Google Gears database.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[12]

Over the course of this book, we will learn how to build Web interfaces
as impressive as these.

Ext JS: not just another JavaScript library
Ext JS is not just another JavaScript library. It is a fully featured client UI library
capable of creating dynamic, fluidly laid out user interfaces which are bound to
structured data which itself is linked to server-side data sources. Ext JS can, however,
work alongside other JavaScript libraries by using adapters. We'll see how to work
with adapters later in this chapter.

Typically, we would use Ext in a website that requires a high level of user
interaction—something more complex than your typical website, most commonly
found in intranet applications. A website that requires processes and a work flow
would be a perfect example, or Ext JS could just be used to make your boss gasp
with excitement.

Ext JS makes Web application development simple by:

•	 Providing easy-to-use cross-browser compatible widgets such as windows,
grids, and forms. The widgets are already fine-tuned to handle the intricacies
of each web browser on the market, without us needing to change a thing.

•	 Interacting with the user and browser via the EventManager, responding
to the user's keystrokes, mouse clicks, and monitoring events in a browser
such as a window resize, or font size changes.

•	 Communicating with the server in the background without the need
to refresh the page. This allows us to request or post data to or from
our web server using AJAX and process the feedback in real time.

Cross-browser DOM (Document
Object Model)
I am sure I don't need to explain the pitfalls of browser compatibility. From the first
time we create a DIV element and apply a style to it, it becomes apparent that it's not
going to look the same in every browser unless we are very diligent. When we use
Ext JS widgets, the browser compatibility is taken care of by the Ext JS library,
so that each widget looks exactly the same in all supported browsers, which are:

•	 Internet Explorer 6+
•	 Firefox 1.5 + (PC, Mac)
•	 Safari 2+

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[13]

•	 Opera 9 + (PC, Mac)
•	 Chrome 1+

Event-driven interfaces
Events describe when certain actions happen. An event could be a user action such
as a click on an element, or it could be a response to an AJAX call. When a user
interacts with a button, there is a reaction, with not just one but many events
happening. There is an event for the cursor hovering over the button, and an event
for the cursor clicking on the button, and an event for the cursor leaving the button.
We can add an event listener to execute some function when any or all of these
events take place.

Listening for events is not strictly related to the user interface. There are also system
events happening all the time. When we make AJAX calls, there are events attached to
the status of that AJAX call to listen for the start, the completion, and possible failure.

Ext JS and AJAX
The term AJAX (Asynchronous JavaScript and XML) is an overly-complicated
acronym for saying that processes can take place in the background, talking to the
server while the user is performing other tasks. A user could be filling out a form
while a grid of data is loading—both can happen at the same time, with no waiting
around for the page to reload.

Getting Ext JS
Everything we will need can be downloaded from the Ext website, at http://
www.extjs.com/products/js/download.php. Grab the Ext JS SDK (Software
Development Kit), which contains a ton of useful examples and the API reference.
Most importantly, it contains the resources that Ext JS needs to run properly.

Where to put Ext JS
Once you get the SDK file, uncompress it onto your hard drive, preferably in its own
folder. My approach to folder naming conventions is based on the standard Linux
structure where all libraries go into a lib folder. So for the sake of the examples in
this book, uncompress all of the files in the SDK into a folder named lib.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[14]

After extracting everything from the SDK download file, your directory tree should
look like this:

To make it easier when we upgrade our Ext library to the most recently-released
version, let's rename the ext-3.2.0 folder to extjs.

If your company is using source control, along with quality assurance testing,
then sticking with a folder name based on the library version number might be
more appropriate.

The SDK contains a version of Ext JS that has everything we need included in it,
commonly called ext-all. It also contains a version used for development referred
to as the debug version, which is what we will primarily use. The debug version
makes it easier to locate errors in our code because it's uncompressed and will report
back relevant line numbers for errors. When it's time to release our creation
to the general public, we can switch our application to use the standard ext-all,
and everything will continue to work as it was.

Included in the SDK file are a specification of dependencies, documentation, example
code, and more. The adapter and resources folders shown in bold are required for
Ext to work properly; everything else is just for development purposes:

•	 adapter: Files that allow you to use other libraries alongside Ext JS
•	 docs: The documentation center (this will only work when run from

a web server)
•	 examples: Plenty of amazing and insightful examples, plugins,

and extensions
•	 pkgs: Packaged up Ext JS modules used when building Ext JS

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[15]

•	 resources: Dependencies of the Ext JS library, such as CSS and images
•	 src: The complete source code for Ext JS
•	 test: The test suite for Ext JS
•	 welcome: Miscellaneous image files

When you're ready to host your page on a web server, the adapter and resources
folders will need to be uploaded to the server in addition to the ext-all.js and
ext-all-debug.js files.

Including Ext JS in our pages
Before we can use Ext JS in our pages, we need to reference the Ext JS library files.
To do this, we need to include a few of the files provided in the SDK download in
the HEAD portion of our HTML page. In our simple pages, we will not use a doctype.
Ext JS supports running with no doctype (quirks mode), across all browsers.

<html>
<head>
 <title>Getting Started Example</title>
 <link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
 <script src="lib/extjs/adapter/ext/ext-base.js"></script>
 <script src="lib/extjs/ext-all-debug.js"></script>
</head>
<body>
 <!-- Nothing in the body -->
</body>
</html>

The path to the Ext JS files must be correct and is relative to the location of our
HTML file. These files must be included in the order shown. A theme CSS file
may be included after the ext-all.css file to customize the look of the UI.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[16]

What do those files do?
We have included the following three files, which Ext JS requires to run in our page:

•	 ext-all.css: A stylesheet file that controls the look and feel of Ext JS
widgets. This file must always be included as-is, with no modifications. Any
changes to the CSS in this file would break future upgrades. If we decide that
the look and feel of Ext JS needs to be adjusted, another stylesheet containing
the overrides should be included after the ext-all.css file.

•	 ext-base.js: This file provides the core functionality of Ext JS. It's the
foundation upon which Ext JS builds its capabilities, and provides the
interface to the browser environment. This is the file that we would change
if we wanted to use another library, such as jQuery, along with Ext JS.

•	 ext-all-debug.js/ext-all.js: All of the widgets live in this file. The
debug version should always be used during development, and then
swapped out for the non-debug version for production.

Once these files are in place, we can start to actually use the Ext JS library and have
some fun.

If you are working with a server-side language such as PHP
or ASP.NET, you might choose to "include" these lines in the
header dynamically. For most of the examples in this book, we
will assume that you are working with a static HTML page.

Spacer image
Ext JS needs to use a spacer image, a 1 pixel by 1 pixel, transparent, GIF image to
stretch in different ways, giving a fixed width to its widgets. When run on modern
browsers, Ext JS uses an image encoded as a data URL—the URL begins with data:
not http:. But on legacy browsers, the default URL references a GIF at the extjs.com
website. This may not always be accessible or desirable. We can change this
to reference the image on the local server using the following code:

if (Ext.BLANK_IMAGE_URL.substr(0, 5) != 'data:') {
 Ext.BLANK_IMAGE_URL = ' lib/extjs/ resources/images/default/s.gif';
}
Ext.onReady(function(){
 // do other stuff here
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[17]

You're probably wondering why we need a spacer image at all. The user interface
of Ext JS is created using CSS, but the CSS needs underlying HTML elements to
style so that it can create the look and feel of the Ext JS components. The one HTML
element that lays out inline, and is sizeable in both dimensions across all browsers
is an image. So an image is used to size portions of the Ext JS Components. This is
a part of how Ext JS maintains its cross-browser compatibility.

Using the Ext JS library
Now that we've added the Ext JS library to our page, we can start writing the code
that uses it. In the first example, we will use Ext JS to display a message dialog.
This might not sound like much, but we need to start somewhere.

Time for action
We can play with some Ext JS code by adding a script element in the head of our
document, right after where the Ext JS library has been included. Our example
will bring up an Ext JS style alert dialog:

<html>
<head>
 <title>Getting Started Example</title>
 <link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
 <script src="lib/extjs/adapter/ext/ext-base.js"></script>
 <script src="lib/extjs/ext-all-debug.js"></script>
 <script>
if (Ext.BLANK_IMAGE_URL.substr(0, 5) != 'data:') {
 Ext.BLANK_IMAGE_URL = 'lib/extjs/resources/images/default/s.gif';
}

 Ext.onReady(function(){
 Ext.Msg.alert('Hi', 'Hello World Example');
 });
 </script>
</head>
<body>
 <!-- Nothing in the body -->
</body>
</html>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[18]

We're not going to cover exactly what our example script is doing yet. First, let's
make sure that the Ext JS library is set up properly by running this basic example.
If we open up our page in a web browser, we should be able to see an alert message
like the one shown as follows:

Just like a "real" dialog, we can drag it around, but only within the constraints of the
page. This is because this isn't a real dialog; it's a collection of DIV tags and images
put together to imitate a dialog. We can also see that the Close and OK buttons get
highlighted when we move the cursor over them—not bad for one line of code! Ext
JS is taking care of a lot of the work for us here, and throughout this book, we'll see
how to get it to do much more for us.

In this example, we start with an empty document which
contains no HTML. Ext JS does not require any pre-existing
markup, and will create it as needed. However Ext JS also has
the ability to import pre-existing markup, and use it as the
basis for new widgets. This will be discussed in Chapter 2.

The example
Let's take a look at the example code, which we just ran:

 Ext.onReady(function(){
 Ext.Msg.alert('Hi', 'Hello World Example');
 });

After referring back to our discussion of JavaScript objects earlier in this
chapter, you can see that this code fragment passes a function literal as a
parameter to Ext.onReady.

The Ext.onReady function accepts a function as its first parameter. It will call that
function when the page has fully loaded, and the HTML document is ready to be
manipulated. If you pass a function to Ext.onReady when the document is already
fully initialized, it will be called immediately.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[19]

That passed function calls a method upon the Ext.Msg object which is a pre-initialized
object which Ext JS provides to show simple dialogs.

The Ext.Msg.alert function displays a dialog with the first parameter as the title
and the second parameter as the message in the body.

Using the Ext.onReady function
Ext JS can only render widgets when the HTML document has been fully initialized
by the browser. All Ext JS pages must only begin accessing the document within
an Ext.onReady call.

We could have written the code like this:

 var mainFunction = function(){
 Ext.Msg.alert('Hi', 'Hello World Example');
 };
 Ext.onReady(mainFunction);

In this version, we can see more easily that it is a function reference which is passed
to Ext.onReady. It's slightly more longwinded this way, but while still a beginner,
this may be a useful style for us to use.

Not working?
If the library is not set up correctly, we might receive an 'Ext' is undefined error.

This message means the Ext JS library was not loaded. Usually, this is caused by
having an incorrect path to one or more of the Ext JS library files that are included
in our document. Double-check the paths to the included library files, and make
sure they are pointing to the right folders and that the files exist. If everything is in
its correct place, we should see an adapter folder along with the files ext-all.js
and ext-all-debug.js in our lib/extjs folder.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[20]

Another common problem is that the CSS file is either missing or is not referenced
correctly, which will result in a page that looks awkward, as shown in the
following example:

If this happens, check to make sure that you have extracted the resources folder
from the SDK file, and that your paths are correct. The resources folder should
reside under the lib/extjs folder.

The best way to debug failures like this is to use the Firefox browser with the
Firebug debugging add-on. This provides a display of the status of all network
requests. If any fail, then they will be highlighted in red, as follows:

Adapters
When Ext JS was first being developed (initially called "yui-ext"), it required
the YUI library to be in place to do the behind-the-scenes work. Later on, Ext
was given the option of using two other frameworks—jQuery or Prototype
with Scriptaculous (Protaculous).

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[21]

This means that if we were previously using other libraries or if we felt some other
base library was somehow superior or better suited our needs, we could continue
using that library in conjunction with Ext JS by using the appropriate adapter. Either
way, Ext JS functions the same, and all of the components will work identically, no
matter which adapter we choose.

Ext JS also has its own adapter which interfaces directly to the environment. If
you have no preference for another library or framework, then go with the Ext JS
built-in the adapter.

Using adapters
To use an adapter, we must first include the external library that we want to use, and
then include the related adapter file that is located in the adapter's folder of the Ext JS
SDK. Our example code uses the Ext JS adapter. To use any of the other libraries, just
replace the default Ext JS adapter script include line with the lines
for the specific libraries, as shown below:

Default Ext JS adapter:

<script src="lib/extjs/adapter/ext/ext-base.js"></script>

For jQuery, include the jQuery library file in the head of the document, along
with any plugins you might use:

<script src="lib/jquery.js"></script>
<script src="lib/jquery-plugins.js"></script>
<script src="lib/extjs/adapter/jquery/ext-jquery-adapter.js">
 </script>

For YUI 2, include these files in the head. The utilities file is located in the build/
utilities folder of the YUI 2 library download:

<script src="lib/utilities.js"></script>
<script src="lib/extjs/adapter/yui/ext-yui-adapter.js"></script>

For "Prototype + Scriptaculous", include the Prototype library, along with
the Scriptaculous effects in the head:

<script src="lib/prototype.js"></script>
<script src="lib/scriptaculous.js?load=effects"></script>
<script src="lib/extjs/adapter/prototype/ext-prototype-adapter.js"></
script>

After the adapter and base libraries have been included, we just need to include
the ext-all.js or ext-all-debug.js file.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[22]

Localization
Ext JS Components can be displayed in our specific language, and currently there
are over 40 translations (unfortunately, Klingon is not yet available). All of these
translations are created by the community—users like you and I who have the need
to use Ext JS Components in their own native language. The included language files
are to be used as a starting point. So we should take the language file we want to
use and copy it to our lib folder. By copying the language file to our lib folder,
we can edit it and add translated text for our custom components without it being
overwritten when we upgrade the Ext JS library files.

There are three scenarios for localization that require three separate approaches:

•	 English only
•	 A single language other than English
•	 Multiple languages

English only
This requires no modifications to the standard setup, and there are no extra files to
include because the English translation is already included in the ext-all.js file.

A language other than English
The second option requires that we include one of the language files from the build/
locale folder. These language files are named to comply with the two letter ISO
639-1 codes, for example: ext-lang-XX.js. Some regional dialects are also available,
such as a Canadian version of French and British version of English. This option
works by overwriting the English text strings present in the ext-all.js file, so
it should be included after all of the other library files, as shown below:

<link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
<script src="lib/extjs/adapter/ext/ext-base.js"></script>
<script src="lib/extjs/ext-all-debug.js"></script>
<script src="lib/extjs/build/locale/ext-lang-es.js"></script>

I have included the Spanish translations for this example. Let's see what our
test page looks like now:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[23]

Elements that are part of the UI have been localized—these generally include
calendar text, date formats, error messages, tool tip info messages, paging info,
and loading indicators. Messages that are specific to your application, such as the
Hi title and Hello World Example text, will need to be translated and added to
our copy of the ext-lang-XX.js file (where 'XX' is your two letter language code) or
added to a new language file of your own. Another method is to create a language
file of our own with just the additions and changes we need; this leaves us prepared
for upgrades and fixes in the primary language file.

Multiple languages
The third method of switching between different languages is basically the same
as the second. We would just need to add some server-side scripting to our page
to enable the switching between language files. Unfortunately, switching between
languages cannot be done entirely dynamically; any component that has already
been created must be re-created to switch languages. In other words, we can't do
it entirely in real time and watch it happen on the screen.

Ext JS online help
If you have a problem which cannot be solved by reading this book, then there
are several sources of help available at the Ext JS website.

Online API docs
The API documentation contains information about every class and every method
in the library. This is not the regular API documentation we have become used to
with many JavaScript libraries which simply informs you that a class exists, and
that a method exists.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Getting Started

[24]

Classes are fully described, and all configuration options, properties, methods, and
events are listed with each one being expandable and having a full description of its
purpose and usage. It is also a great example of a rich Ext JS application:

http://www.extjs.com/deploy/dev/docs/

The FAQ
The FAQ contains solutions for hundreds of issues which real-world Ext JS
users have encountered in the past. This is the second line of help:

http://www.extjs.com/learn/Ext_FAQ

Ext JS forum
The online community for Ext JS is full of very knowledgeable people, and often,
the Ext core developers are answering questions on the forum. The forum is the
place to go to pose your question for assistance if the answer cannot be found in
this book, in the API docs, or in the FAQ. The API docs and the FAQ are actively
maintained by volunteers, and are updated in response to frequent forum questions.

http://www.extjs.com/forum/

If you run into problems, or run up against a wall, a search of the forum is likely
to yield what you are looking for. I would suggest using the Google forum search
tool that is available in the Learn section of the Ext JS website.

http://www.extjs.com/learn/

When asking questions in the forum, be sure to include as much detail
about the error(s) as possible.

•	 Post in the Help section
•	 Use a meaningful thread title
•	 Ensure that you are using ext-all-debug.js, and position the

exact text of an error message and only the relevant portions of
your code

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 1

[25]

Summary
In this chapter, we have covered the basics of what we need to do to get Ext JS up
and running, and what a simple script looks like. It's easy to miss a minor detail
and get stuck with an error message that makes no sense. But now, you should be
prepared to conquer any initial errors that you might come across.

The example we created showcases what Ext JS excels at: providing the user
interface. We only used dialogs, but, as you now know, a few lines of code are all
that are needed to display an Ext JS widget. The main goal of this chapter was to
get Ext JS installed and working, so we can start creating some really sweet widgets
and web applications. In the following chapter we will learn how to create more
functional widgets, and how to configure them to behave exactly as we require.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS
In this chapter, we will start to use and interact with Ext JS widgets for the first
time, by creating a series of dialogs that interact with each other, the user, and the
web page. We will be using the onReady, MessageBox, and get functions to learn
how to create different types of dialogs and modify HTML and styles on our page.
Furthermore, in this chapter, we will be:

•	 Finding out how to configure Ext JS widgets easily
•	 Using dialogs to figure out what the user wants to do
•	 Dynamically changing the HTML and CSS on our page in response to the

user's inputs

We will start by covering some of the core functions of Ext JS. We will take a look
at how the example given in the Chapter 1 worked, and will expand upon it. The
following core functions of Ext JS will be used on every project that we work on
during the course of this book:

•	 Ext.Msg: This function creates application-style message boxes for us
•	 configuration objects: These define how Ext widgets will act
•	 Ext.get: This function accesses and manipulates elements in the DOM

Meet the config object
In the examples of this chapter, we will be configuring our widgets using what's
called a config object. This is the primary way to get Ext JS Components to look
and act the way we need. The config objects provide the specification of the
different options that are available for the class that is being used.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[28]

The old way
We used to call functions with a pre-determined set of arguments. This means that
we had to remember the order of the arguments every time the function was used.

var test = new TestFunction(
 'three',
 'fixed',
 'arguments'
);

This old way of using functions can create many problems:

•	 It requires us to remember the order of the arguments
•	 It does not describe what the arguments represent
•	 It provides less flexibility in dealing with optional arguments

The new way—config objects
In JavaScript, an object is simply a collection of names and values. An object
literal may be coded into a JavaScript statement just as a string literal may be:

var myObject = {
 propertyName: 'String value',
 otherPropertyName: 3.14159
};

This is an assignment statement which creates on-the-fly a new object which contains
two properties. It sets the variable myObject to reference this new object (Remember
our discussion of JavaScript assignments in Chapter 1).

By using objects to configure classes, we are able to have a greater level of flexibility,
and can tell how the class is being configured because configuration property
names are mnemonics where possible, and convey their meaning. The order of our
arguments no longer matters—firstWord could be the last item, and thirdWord
could be the first, or they could be in any random order. With the config object
method of passing arguments to our functions, the arguments no longer needs
to be tied down to a specific place.

var test = new TestFunction({
 firstWord: 'three',
 secondWord: 'fixed',
 thirdWord: 'arguments'
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[29]

This method also allows for unlimited expansion of our function's arguments.
Using fewer arguments or adding new arguments is simple. Another great result
that comes by using a config object is that the prior usage of our functions will
not be harmed by the addition or subtraction of arguments at a later point.

var test = new TestFunction({
 secondWord: 'three'
});
var test = new TestFunction({
 secondWord: 'three',
 fourthWord: 'wow'
});

Here are some key things to remember when working with an object literal:

•	 A matched pair of curly brackets encloses the literal. Within the brackets
there may be zero or more property definitions.

•	 Each property definition consists of a name/value pair, with the name and
value separated by a colon. As with regular variables, a property references
the value assigned to it which may be any type of object.

•	 Multiple properties are separated by commas.
•	 The property values can reference any type of data, including Boolean, array,

function, or even another object:

 {

 name0: true,

 name1: {

 name2: value2

 }

 }

•	 Square brackets identify an array, and simply contain a comma separated
list of objects, each of which may be of any type:
 {

 name: ['one', true, 3]

 }

It is important to think of an array as an array of references. Setting an
array item does not move data. It sets the reference at that index to point
to the specified object.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[30]

What is a config object?
If you are familiar with CSS, JSON, or the JavaScript object literal, you'll notice that
a config object looks similar to these, mostly because they are all the same type of
thing. In fact, an Ext JS config object is simply a JavaScript object literal. The point
is to give us a way to structure data so that it can easily be read by a programming
language—in our case, JavaScript.

For an example, let's take a look at the config portion of our example code:

{
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
}

Widgets and classes
Ext JS has many "widgets". As mentioned in Chapter 1, these are implemented as
classes. These include components such as a message box, grid, window, tree, form,
and pretty much everything else that serves a particular user interface function.
These will mostly be referred to as 'Components'. There are also data, utility, and
other base classes to aid with development. Methods like onReady are part of the
core functions. We only refer to classes that provide a specific user interface role
as "widgets"—like the grid that is used to present tabular data to the user.

Time for action
Let's create a new page (or just modify the 'getting started' example page) and add
the code to display a dialog when the page is ready.

In this example we will use a slightly more complex config object to describe how
we want the dialog to look and behave:

Ext.onReady(function(){

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[31]

 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
});

As we did in the previous chapter, we have passed a function which performs our
desired actions into the onReady function. We configure a dialog using a config
object. The config object used for this dialog has three elements, the last of which
is a nested object which configures the three buttons we want to be shown.

Here is how our example now looks in a browser:

This displays what appears to be a very minimal dialog, but if we start clicking
on things, the built-in functionality of Ext JS becomes apparent. The dialog can be
dragged around the screen by grabbing the title bar, just like the dialog in a typical
desktop application. There is a close button built–in, and pressing the Escape key
when the dialog has focus, or clicking on the Cancel button will close the dialog.

What just happened?
Let's take a closer look at the core Ext JS functions and Components we have
just used:

•	 Ext.onReady: This was covered in the previous chapter. This function calls
a passed-in function only when DOM is ready for use.

•	 Ext.Msg.show: This is the method used for showing a dialog in various
different ways. In this case the Ext.Msg class is a singleton that shares one
single dialog instance. It takes care of everything needed to have a simple
working dialog. There are other methods that can be used for common
dialog types, such as prompt, alert, and wait which will help us save
time. We will cover these in just a minute.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[32]

It's time to examine the code we just used to display our dialog.

 Ext.onReady(function(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
 });

Again, we have passed an anonymous function into Ext.onReady.

If we were executing a function that will be used again, then we could define
and call it like this:

 var stapler = function(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
 }

 Ext.onReady(stapler);

When we start to make our application bigger, we are not likely to use many
anonymous functions and will probably opt for creating re-usable functions
like the one above, or even larger classes made up of many functions.

The buttons config can also specify the text to display on the button.
Instead of passing a Boolean value, just pass it the text you want, for
example, {yes: 'Maybe'}, or use the constants provided by Ext JS, such
as Ext.Msg.YESNO.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[33]

More widget wonders
Let's get back to making our little application as annoying as possible by adding
an icon and buttons! This can be done by adding a style for the icon, and modifying
the config object to have an icon property, and an fn property which references a
button handler function.

First, let's discuss the CSS we need. Add the following code into the head
of the document, within a style tag:

 milton-icon {
 background: url(milton-head-icon.png) no-repeat;
 }

Also, we will make some changes to our widgets configuration. The icon property
just needs our style name as the value, milton-icon. We have also included a
function to be executed when the user clicks on any of the buttons in the dialog. This
function is created as an anonymous function, but the property could also reference
a function that was defined elsewhere, possibly as part of a class. In this case, the
function is merely used to alert the user which button was pressed, so we will keep
it as an anonymous function:

 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
 });

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[34]

In our case, the function has only one argument, which is the name of the button
that was clicked. So if our user was to click the Yes button, the btn variable would
contain a value of Yes. Using the example code, we are taking the name of the button
clicked, and passing it to alert, as the message.

The built-in functionality takes care of making sure the Cancel button, the
close icon in the upper right corner, and the Esc key are all tied together
to perform the cancel action. This is one of the many ways in which Ext JS
makes the coding of web applications easier for us.

Time for (further) action
Ok! So now we've seen how to get our Ext JS party started and ask the user a question.
Now let's see what we can do with their answers. Let's add to our dialog's function
so that we can decide what to do in response to each of the button-clicks. A switch
statement can take care of deciding what to do in each case:

fn: function(btn) {
 switch(btn){
 case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?');
 break;
 case 'no':
 Ext.Msg.alert('Milton',
 'I\'m going to burn the building down!');
 break;
 case 'cancel':
 Ext.Msg.wait('Saving tables to disk...','File Copy');
 break;
 }
}

Note how an apostrophe may be inserted into an apostrophe-delimited
string by prefixing the character with a backslash. The same principle
applies to inserting a "double" quote into a quote-delimited string.

Remember those built in dialog types I mentioned earlier? Well we just used some of
them. They offer us pre-configured dialogs which let us accomplish some common
tasks without spending time writing the config needed for each standard scenario.

Click OK and we get a prompt. A prompt is the common name for a small window
that allows you to enter a single value, and is a standard element in almost every
user interface.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[35]

Click No and we get an alert. I'm sure you are familiar with the standard alert dialog
in JavaScript. I remember the first time I used an alert dialog in JavaScript;
I was so excited to have an alert message on my home page that I made it pop up
and say "Click OK if you are a moron". Sometimes it's the little things that make us
the happiest.

Click the Cancel button (or click the close button or press the Escape key)
and we will get a wait message that's using a progress dialog.

The progress dialog we are using can be controlled by Ext JS and be notified when
it should disappear. But for the sake of simplicity, in this example, we are letting it
run forever.

Button focus and tab orders are built into Ext JS. Typically the OK or Yes
button will be the default action. So pressing Enter on our keyboard will
trigger that button, and pressing Tab will move us through the buttons
and other items in the dialog.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[36]

Lighting the fire
Now, we can start causing some reactions in our page, based on the users' responses
to the dialogs. We are going to add to our switch statement, which takes care of
a Yes button click. The prompt function can handle a third argument, which is the
function to be executed after the Yes button has been clicked. We are defining this so
that the function will check to see if the value entered into our prompt dialog is equal
to the office and then write this text to a DIV in our page if it is, and a default text
of Dull Work if it is not. The code also applies a style to the same DIV, which uses a
"Swingline" stapler background image.

case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?', function(btn,txt)
{
 if (txt.toLowerCase() == 'the office') {
 Ext.get('my_id').dom.innerHTML = 'Dull Work';
 }else{
 Ext.get('my_id').dom.innerHTML = txt;
 }
 Ext.DomHelper.applyStyles('my_id',{
 background: 'transparent
 url(images/stapler.png) 50% 50% no-repeat'
 });
 });
break;

If the user types 'the office' into the prompt box, the result will be
as shown below:

The no case will display an alert message, which also styles the document when
the No button is clicked.

case 'no':
 Ext.Msg.alert('Milton',
 'Im going to burn the building down!',
 function() {

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[37]

 Ext.DomHelper.applyStyles('my_id',{
 'background': 'transparent
 url(images/fire.png) 0 100% repeat-x'
 });
 Ext.DomHelper.applyStyles(Ext.getBody(),{
 'background-color': '#FF0000'
 });
 Ext.getBody().highlight('FFCC00',{
 endColor:'FF0000',
 duration: 6
 });
 });
break;

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[38]

The workhorse—Ext.get
Ext JS is able to work so well, because it has a foundation that provides access to
the DOM, and to many functions that allow manipulation of the DOM. These are
part of the Ext Core library. Of these functions, get is one of the most used.

Var myDiv = Ext.get('my_id');

This gives us access to an element in the document with the ID, my_id by wrapping
it in an Ext.Element object which provides cross-browser methods to work with
DOM elements. If we take a look at the first example, it is using getBody, which
retrieves the body element and applies our effect to that. Let's switch that around to
use my_id instead. But first, we will need to create a my_id element in our document:

 <div id='my_id'
 style='width:200px;height:200px;'>test</div>

If we add this to the body section of our document, and change our effect
to reference this instead of the body, then our effect will happen only to the
my_id div we created:

 Ext.get('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

If we now look at our document in a browser, we would see a 200-pixel square
box changing color, instead of the entire body of the document changing color.

Bear in mind that DOM element IDs must be unique. So once we have used my_id, we
cannot use this ID again in our document. If duplicate IDs exist in our document, then
our results will be unpredictable. When creating the DOM structure of widgets, Ext JS
creates and tracks its own IDs. It is hardly ever necessary to create them on our own.
One exception is when using HTML scaffolding—pre-existing HTML elements which
are to be imported into Ext Components.

Having duplicate IDs in our document can lead to strange behavior,
such as a widgets always showing up in the upper-left corner of the
browser, and must therefore be avoided.

Minimizing memory usage
If an element is not going to be repeatedly used, then we can avoid the caching
mechanism which Ext.get uses to optimize element lookups. We can use something
called a "flyweight" to perform simple tasks, which results in higher speed by
not clogging up the browser's memory with cached elements which will not be
needed again.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[39]

The same highlight effect we just used could be written using a flyweight instead:

 Ext.fly('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

This is used when we want to perform an action on an element in a single line
of code, and we do not need to reference that element again. The flyweight
re-uses the same memory over and over each time it is called.

A flyweight should never be stored in a variable and used again. Here is an example
of using a flyweight incorrectly:

 var my_id = Ext.fly('my_id');
 Ext.fly('another_id');
 my_id.highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

Because the flyweight re-uses the same memory each time it is called, by the time
we run the highlight function on our my_id reference, the memory has changed
to actually contain a reference to another_id.

Can we use our own HTML?
As mentioned earlier, pre-existing HTML elements may be "imported" into
Ext JS widgets.

The easiest way is to configure an Ext Panel with a contentEl.

The following page creates a Panel which uses a pre-existing HTML element
as its content by specifying the element's ID as the contentEl:

<html>
<head>
<link type="text/css" rel="stylesheet" href="../lib/extjs/
resources/css/ext-all.css"/>
<style type="text/css">
.my-panel-class {
 font-family: tahoma,sans-serif;
}
</style>
<script type="text/javascript" src="../lib/extjs/adapter/ext/
ext-base.js"></script>
<script type="text/javascript" src="../lib/extjs/ext-all.js"
></script>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[40]

<script type="text/javascript">
Ext.onReady(function(){
 new Ext.Panel({
 renderTo: Ext.getBody(),
 title: 'Panel with pre-existing content',
 height: 400,
 width: 600,
 cls: 'my-panel-class',
 contentEl: 'main-content'
 });
});
</script>
</head>
<body>
 <div id="main-content">
 <h1>This is some pre-existing content.</h1>
 This element is "imported" and used as the body of a Panel
 </div>
</body>
</html>

Another way to do this is to use the Ext.BoxComponent class to encapsulate an
existing element of a page. The BoxComponent class is a very lightweight widget which
simply manages an HTML DIV as an Ext widget. As mentioned, it will create its own
HTML structure if required, but we can configure it to use an existing element as its
main element. In the following example we use a Panel to contain the BoxComponent:

<html>
<head>
<link type="text/css" rel="stylesheet" href="../lib/extjs/resources/
css/ext-all.css"/>
<style type="text/css">
.my-panel-class {
 font-family: tahoma,sans-serif;
}
</style>
<script type="text/javascript" src="../lib/extjs/adapter/ext/ext-base.
js"></script>
<script type="text/javascript" src="../lib/extjs/ext-all.js"></script>
<script type="text/javascript">
Ext.onReady(function(){
 new Ext.Panel({
 renderTo: Ext.getBody(),
 title: 'Panel with pre-existing content',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 2

[41]

 height: 400,
 width: 600,
 cls: 'my-panel-class',
 layout: 'fit',
 items: new Ext.BoxComponent({
 el: 'main-content'
 })
 });
});
</script>
</head>
<body>
 <div id="main-content">
 <h1>This is some pre-existing content.</h1>
 This element is "imported" and used as the body of a Panel
 </div>
</body>
</html>

Both the previous examples will produce the following output:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Staples of Ext JS

[42]

Summary
Using only a few lines of code, we have created a fun program that will keep us
entertained for hours! Well, maybe not for hours, but for at least a few minutes.
Nonetheless, we have the beginnings of the basic functionality and user interface
of a typical desktop application.

We have learned the basics of using configuration objects, and I'm sure this will
make even more sense after we have had the chance to play with more of the Ext JS
widgets. But the real point here is that the configuration object is something that is
very fundamental when using Ext JS. So the quicker we can wrap your heads around
it, the better off we will be.

Don't worry if you are not entirely comfortable with the configuration object yet.
We have plenty of time to figure it out. For now, let's move on to one of my favorite
things—forms.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms
In this chapter, we will learn how to create Ext JS forms, which are similar to the
HTML forms that we use, but with a greater level of flexibility, error checking,
styling, and automated layout.

This functionality is encapsulated in the FormPanel class. This class is a panel
because it extends the Panel class, and so it can do everything a panel can do.
It also adds the ability to manage a set of input fields that make up the form.

We will use some different form field types to create a form that validates and submits
form data asynchronously. Then we will create a database-driven, drop-down Combo
Box, and add some more complex field validation and masking. We will then finish it
off with a few advanced topics that will give our forms some serious 'wow' factor.

The goals of this chapter include:

•	 Creating a form that uses AJAX submission
•	 Validating field data and creating custom validation
•	 Loading form data from a database

The core components of a form
A form has two main pieces, the functionality that performs form like actions, such
as loading values and submitting form data, and the layout portion which controls
how the fields are displayed. The FormPanel that we will be using combines these
two things together into one easy-to-use Component, though we could use the form
layout by itself if needed, which we will take a closer look at in Chapter 7.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[44]

The possibilities are endless with Ext JS form fields. Key listeners, validation,
error messages, and value restrictions are all built-in with simple config options.
Customizing a form for our own specific needs can be done easily, which is
something we will cover later on in this chapter. To start with, we will be adding
fields to a standard form. Here are some of the core form components that we will
become familiar with:

•	 Ext.form.FormPanel: A specialized Panel subclass which renders a FORM
element as part of its structure, and uses a form-specific layout to arrange
its child Components.

•	 Ext.form.BasicForm: The class which the FormPanel uses to perform
field management, and which performs the AJAX submission and
loading capabilities.

•	 Ext.form.Field: A base class which implements the core capabilities that all
form fields need. This base class is extended to create other form field types.

Extending is a major part of the Ext JS architecture, and just means
that common functionality is created in a single place and built
upon (extended) to make more specific and complex components.

Our first form
To start with, let's create a form with multiple field types, a date field, validation,
error messages, and AJAX submission—just a simple one for our first try.

For this example, our fields will be created using an array of config objects instead
of an array of instantiated Ext.form.Field components. This method will work
just the same as an instantiated component, but will take less time to code. Another
benefit which may come in handy is that a config object used to create items in
this way may be stored and reused. A basic HTML page like the one we used in
the previous example will be used as a starting point. The standard Ext JS library
files need to be included and, as with everything we create in Ext JS, our code will
need to be wrapped in the onReady function:

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: Ext.getBody(),
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[45]

 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
 }]
 });
 });

When we run this code in a browser, we end up with a form panel that looks like this:

Nice form—how does it work?
The FormPanel is very similar to an HTML form. It acts as the container for our
form fields. Our form has a url config so the form knows where to send the data
when it is submitted. As it is a Component (inherits from the Component base class),
it also has a renderTo config, which defines into which existing element the form is
appended upon creation. As we start to explore layouts in Chapter 7, the renderTo
config will be used much less often.

Child items
The items config option is an important one as it specifies all of our child
Components—in this case they are all input fields. The ability to house child
Components is inherited from the Container level of the Component family
tree—our FormPanel in this case. The items config is an array which may
reference either component config objects, or fully created Components. In our
example, each array element is a config object which has an xtype property that
defines which type of Ext JS component will be used: text, date, number, or any of
the many others. This could even be a grid or some other type of Ext JS component.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[46]

Be aware that the default xtype is a panel. Any {…} structure with no xtype
property, as an element in an items config, results in a panel at that position.

But where do xtypes come from, and how many of them are there? An xtype is
just a string key relating to a particular Ext JS Component class, so a 'textfield' xtype
refers to its Ext.form.TextField counterpart. Here are examples of some of the
form field xtypes that are available to us:

•	 textfield

•	 timefield

•	 numberfield

•	 datefield

•	 combo

•	 textarea

The key point to remember is that child items may be any class within the Component
class hierarchy. We could easily be using a grid, toolbar, or button—pretty much
anything! (Though getting and setting their values is a different story.)

This is an illustration of the power of the Component class hierarchy mentioned in
Chapter 2. All Ext JS component classes, because they share the same inheritance, can
be used as child items, and be managed by a Container object—in this case a form.

Our basic field config is set up like this:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
}

Of course, we have the xtype that defines what type of a field it is—in our case it
is a textfield. The fieldLabel is the text label that is displayed to the left of the
field, although this can also be configured to display above the field. The name
config is just the same as its HTML counterpart and will be used as the parameter
name when sending form data to the server.

The names of most of the config options for Ext components
match their counterparts in HTML. This is because Ext was
created by web developers, for web developers.

Creating the subsequent date field isn't much different from the text field we just
made. Change the xtype from textfield to datefield, update the label and name,
and we're done.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[47]

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
}

Validation
A few of our sample fields could have validations that present the users with
error indicators if the user does something wrong, such as leaving a field blank.
Let's add some validation to our first form. One of the most commonly-used types
of validation is checking to see if the user has entered any value at all. We will use
this for our movie title field. In other words, let's make this field a required one:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
}

Setting up an allowBlank config option and setting it to false (the default is true) is
easy enough. Most forms we build will have a bunch of required fields just like this.

Each type of Ext JS field also has its own set of specialized configurations that
are specific to the data type of that field. The following are some examples of
the options available:

Field Type Option Value type Description
numberfield decimalPrecision Integer How many decimal places to allow
datefield disabledDates Array An array of date strings that cannot

be selected
timefield increment Integer How many minutes between each

time option

For instance, a date field has ways to disable certain days of the week, or to use a
regular expression to disable specific dates. The following code disables every day
except Saturday and Sunday:

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[48]

In this example, every day except Saturday and Sunday is disabled. Keep in
mind that the week starts on 0 for Sunday, and ends on 6 for Saturday.

When we use other types of fields, we have different validations, like number fields
that can restrict the size of a number or how many decimal places the number can
have. The standard configuration options for each field type can be found in the
API reference.

There are many more configuration options, specific to each specialized
Ext JS Component class.
To easily find what options are available in the online documentation,
use the Hide inherited members button at the top right. This will hide
config options from the base classes of the Component's heritage, and
only show you options from the Component you are interested in:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[49]

Built-in validation—vtypes
Another more flexible type of validation is the vtype. This can be used to validate
and restrict user input, along with reporting back error messages. It will work in
just about any scenario you can imagine because it uses a function and regular
expressions to do the grunt work.

Here are some built-in vTypes that can come in handy:

•	 email
•	 url
•	 alpha
•	 alphanum

These built-in vtypes come included by default, and we can use them as a starting
point for creating our own vtypes, which we will cover in the next section.

The following is an example of an alpha vtype being used on a text field:

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director',
 vtype: 'alpha'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
 }]
 });
 });

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[50]

All we did was add a vtype to the director field. This will validate that the value
entered is composed of only alphabet characters.

Now we're starting to see that the built-in vtypes are very basic. The built-in alpha
vtype restricts our fields to alphabet characters only. In our case, we want the user
to enter a director's name, which would usually contain only alphabetic characters,
with just one space between the first and last names. Capitalizing the first characters
in the names could possibly make them look pretty. We will create our own custom
vtype soon enough, but first let's take a look at displaying error messages.

A search of the Ext JS forum is likely to come back with a vType that
someone else has created that is either exactly what you need, or close
enough to use as a starting point for your own requirements.

Styles for displaying errors
Forms are set up by default with a very bland error display which shows any type
of error with a squiggly red line under the form field. This error display closely
mimics the errors shown in programs like Microsoft Word when you spell a word
incorrectly. We do have other options for displaying our error messages, but we
will need to tell Ext JS to use them instead of the default.

One built-in option is to display the error message in a balloon using an Ext JS object
called QuickTips. This utilizes the standard squiggly line, but also adds a balloon
message that pops up when we mouse over the field, displaying error text within.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[51]

We just need to add one line of code before our form is created that will initialize
the QuickTips object. Once the QuickTips object is initialized, the form fields will
automatically use it. This is just one simple statement at the beginning of the script:

Ext.QuickTips.init();

This is all that needs to happen for our form fields to start displaying error messages
in a fancy balloon.

The QuickTips object can also be used to display informational tool tips. Add a qtip
attribute which contains a message to any DOM node in the document, and when we
hover the mouse over that element, a floating message balloon is displayed. Without
the red "error" styling shown above.

Custom validation—creating our own
vtype
In this section we will create a custom vtype to perform validation based upon
matching the input field's value against a regular expression. Don't be afraid
to experiment with regular expressions. They simply match characters in a
string against a series of patterns which represent classes of characters, or
sequences thereof.

Our vtype will check that the input consists of two words, each of which begins
with a capital letter, and is followed by one or more letters.

A hint for working with regular expressions: use the browser's
JavaScript debugging console to test regular expressions
against strings until you come up with one that works.

To create our own vtype, we need to add it to the vtype definitions. Each definition
has a value, mask, error text, and a function used for testing:

•	 xxxVal: This is the regular expression to match against
•	 xxxMask: This is the masking to restrict user input
•	 xxxText: This is the error message that is displayed

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[52]

As soon as we figure out the regular expressions we need to use, it's fairly
straightforward to create our own vType—so let's try one out. Here is a validation
for our director's name field. The regular expression matches a pair of alpha strings,
separated by a space, and each starting with a capital letter. Sounds like a good way
to validate a name—right? The Ext.apply function is just a simple way of copying
properties from one object into another—in this case from an object literal which we
create, into the Ext.form.VTypes object.

Ext.apply(Ext.form.VTypes, {
 nameVal: /^[A-Z][A-Za-z]+\s[A-Z][A-Za-z]+$/,
 nameMask: /[A-Za-z]/,
 nameText: 'Invalid Director Name.',
 name: function(v) {
 return this.nameVal.test(v);
 }
});

It's hard to look at this all at once, so let's break it down into its main parts. We first
start with the regular expression that validates the value entered into our form field.
In this case it's a regular expression used to test the value:

nameVal: /^[A-Z][A-Za-z]+\s[A-Z][A-Za-z]+$/,

Next, we add the masking, which defines what characters can be typed into our
form field. This is also in the form of a regular expression:

nameMask: /[A-Za-z]/,

Then, we have the text to be displayed in a balloon message if there is an error:

nameText: 'Invalid Director Name.',

And finally, the part that pulls it all together—the actual function used to test
our field value:

name: function(v) {
 return this.nameVal.test(v);
}

Put all this together and we have our own custom vtype without much effort
—one that can be used over and over again. We use it in just the same way as the
'alpha' vtype:

vtype: 'name'

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[53]

The result should look like this:

Even though our example used a regular expression to test the value, this is not the
only way vTypes can work. The function used can perform any type of comparison
we need, and simply return true or false.

Masking—don't press that key!
Masking is used when a particular field is forced to accept only certain keystrokes,
such as numbers only, or letters, or just capital letters. The possibilities are limitless,
because regular expressions are used to decide what keys to filter out.

This mask example would allow an unlimited string of only capital letters:

{
 xtype: 'textfield',
...
 maskRe: /[A-Z]/,
...
}

Instead of using the masking config, consider creating a vType to accomplish
your masking. If the formatting requirements should happen to change, it will
be centrally-located for easy updating.

So when the day arrives where your boss comes to you freaking out and tells you,
"Remember those product codes that I said would always be ten numbers, well it
turns out they will be eight letters instead", you can make the change to your vType,
and go play Guitar Hero for the rest of the day!

Radio buttons and check boxes
Radio buttons and check boxes can be clumsy and hard to work with in plain
HTML. However, creating a set of radio buttons to submit one of a limited set
of options is easy in Ext JS. Let's add a RadioGroup component to the form
which submits the film type of the movie being edited.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[54]

It's not a button, it's a radio button
The code below adds a set of radio buttons to our form by using the 'radiogroup'
xtype. We configure this RadioGroup to arrange the buttons in a single column.
The default xtype of items in a RadioGroup is 'radio' so we do not need to specify it:

{
 xtype: 'radiogroup',
 columns: 1,
 fieldLabel: 'Filmed In',
 name: 'filmed_in',
 items: [{
 name: 'filmed_in',
 boxLabel: 'Color',
 inputValue: 'color'
 },{
 name: 'filmed_in',
 boxLabel: 'Black & White',
 inputValue: 'B&W'
 }]
}

The RadioGroup's name allows the form to be loaded using a single property
value. The name in the individual button configs allows submission of the selected
inputValue under the correct name. These radio buttons work much like their
HTML counterparts. Give them all the same name, and they will work together
for you. The additional config for boxLabel is needed to show the informative
label to the right of the input.

X marks the checkbox
Sometimes, we need to use checkboxes for Boolean values—sort of an
on/off switch. By using the checkbox xtype, we can create a checkbox.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[55]

{
 xtype: 'checkbox',
 fieldLabel: 'Bad Movie',
 name: 'bad_movie'
}

Both the radio and checkbox have a 'checked' config that can be set to true
or false to check the box upon creation.

{
 xtype: 'checkbox',
 fieldLabel: 'Bad Movie',
 name: 'bad_movie',
 checked: true
}

Sets of checkboxes can be arranged in columns by containing them in a
CheckboxGroup. This is configured in exactly the same way that a
RadioGroup is, but the default xtype of its child items is 'checkbox'.

The ComboBox
The ComboBox class emulates the functionality of the HTML SELECT element.
It provides a dropdown box containing a list from which one value can be selected.
It goes further than simply imitating a SELECT box though. It has the ability to either
provide its list from a loaded data store, or, it can dynamically query the server
during typing to load the data store or demand to produce autosuggest functionality.

First, let's make a combo using local data from a loaded data store. To do this,
the first step is to create a data store.

A data store is a client-side analogue of a database table. It encapsulates a set of
records, each of which contains a defined set of fields. Full details about data stores
are contained in Chapter 15. There are a few different types of data stores, each of
which can be used for different situations. However, for this one, we are going to
use an Array store, which is one of the shortcut data classes we will cover in more
detail in both the Grids and Data chapters. The ArrayStore class is configured with
the field names which its records are to contain and a two-dimensional array which
specifies the data:

var genres = new Ext.data.ArrayStore({
 fields: ['id', 'genre_name'],
 data : [['1','Comedy'],['2','Drama'],['3','Action']]
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[56]

A few new config options are needed when we are setting up a combo box.

•	 store: This is the obvious one. The store provides the data which backs
up the combo. The fields of its records provide the descriptive text for each
dropdown item, and the value which each item represents.

•	 mode: This option specifies whether the combo expects the data store
to be pre-loaded with all available items ('local'), or whether it needs
to dynamically load the store, querying the server based upon the typed
characters ('remote').

•	 displayField: This option specifies the field name which provides the
descriptive text for each dropdown item.

•	 valueField: This option specifies the field name which provides the value
associated with the descriptive text. This is optional. If used, the hiddenName
option must be specified.

•	 hiddenName: This is the name of a hidden HTML input field which is used to
store and submit the separate value of the combo if the descriptive text is not
what is to be submitted. The visible field will contain the displayField.

Just like the other fields in our form, we add the combo to our items config:

{
 xtype: 'combo',
 hiddenName: 'genre',
 fieldLabel: 'Genre',
 mode: 'local',
 store: genres,
 displayField:'genre_name',
 valueField:'id',
 width: 120
}

This gives us a combo box that uses local, pre-loaded data, which is good for small
lists, or lists that don't change often. What happens when our list needs to be pulled
up from a database?

A quick way to specify a few static options for a ComboBox is to pass an
array to the store config. So if we wanted a ComboBox that had 'Yes' and
'No' as options, we would provide ['Yes','No'] as the store config value.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[57]

A database-driven ComboBox
The biggest change that needs to happen is on the server side—getting our data
and formatting it into a JSON string that the combo box can use. Whatever
server-side language is used, we will need a JSON library to 'encode' the data.
If we're using PHP 5.1 or higher, this is built in.

To check our version of PHP, we can either execute a
command in a terminal window or run a single line of PHP
code. If we have access to this command line we can run php
–v to check our version, otherwise, running a script that just
has the single line <?php phpinfo(); ?> will do the job.

This is what we would use to generate our JSON data using PHP 5.1 or higher:

<?php
// connection to database goes here

$result = mysql_query('SELECT id, genre_name FROM genres');

If (mysql_num_rows($result) > 0) {
 while ($obj = mysql_fetch_object($result)) {
 $arr[] = $obj;
 }
}
Echo '{rows:'.json_encode($arr).'}';

?>

When we use remote data, there are a few more things that need to happen back
on the JavaScript side. First, the data store needs to know what format the data is in.
When we use shortcut store classes like ArrayStore, this is implicit (It's an array).
In this example, we specify the format of the data being read by using a data
reader—in our case, it's the JSON Reader.

var genres = new Ext.data.Store({
 reader: new Ext.data.JsonReader({
 fields: ['id', 'genre_name'],
 root: 'rows'
 }),
 proxy: new Ext.data.HttpProxy({
 url: 'data/genres.php'
 })
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[58]

The data reader is configured using two config options:

•	 fields: This is an array of the field names which the records in the store
will contain. For a JSON Reader, these names are also the property
names within each row data object from which to pull the field values.

•	 root: This specifies the property name within the raw, loaded data object
which references the array of data rows. Each row is an object.

We can see the root and field properties specified in the configuration in this example
of the returned JSON data:

{rows:[
 {
 "id":"1",
 "genre_name":"Comedy",
 "sort_order":"0"
 },{
 "id":"2",
 "genre_name":"Drama",
 "sort_order":"1"
 },{
 // snip...//
 }]
}

We have also set up the proxy, a class which takes responsibility for retrieving
raw data objects. Typically this will be an HttpProxy that retrieves data from a
URL at the same domain as the web page. This is the most common method, but
there is also a ScriptTagProxy that can be used to retrieve data from a different
domain. All we need to provide for our proxy is the URL to fetch our data from.

Whenever we specify a HttpProxy we are actually using
Ajax. This requires that we have a web server running;
otherwise Ajax will not work. Simply running our code
from the file system in a web browser will not work.

Let's throw in a call to the load function at the end, so the data is loaded into our
combo box before the user starts to interact with it.

genres.load();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[59]

This gives us a combo box that's populated from our database, and should look
like this:

Another way to pre-load the data store is to set the autoLoad option to true
in our data store configuration:

var genres = new Ext.data.Store({
 reader: new Ext.data.JsonReader({
 fields: ['id', 'genre_name'],
 root: 'rows'
 }),
 proxy: new Ext.data.HttpProxy({
 url: 'data/genres.php'
 }),
 autoLoad: true
});

TextArea and HTMLEditor
We are going to add a multiline text area to our movie information form, and Ext
JS has a couple of options for this. We can either use the standard textarea that
we are familiar with from using HTML, or we can use the HTMLEditor field,
which provides simplistic rich text editing:

•	 textarea: Similar to a typical HTML textarea field
•	 htmleditor: A rich text editor with a button bar for common

formatting tasks

We will use a couple of new config options for this input:

•	 hideLabel: This causes the form to not display a label to the left of
the input field, thus allowing more horizontal space for the field.

•	 anchor: This config is not a direct config option of the Field class. It is a "hint"
to the Container (in this case a FormPanel) that houses the field. It anchors
the child item to the right or bottom borders of the container. A single
value of '100%' anchors to the right border, resulting in a full-width child
component.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[60]

{
 xtype: 'textarea',
 name: 'description',
 hideLabel: true,

 height: 100,
 anchor: '100%'
}

By changing just the xtype, as shown below, we now have a fairly simple HTML
editor with built-in options for font face, size, color, italics, bold, and so on:

{
 xtype: 'htmleditor',
 name: 'description',
 hideLabel: true,

 height: 100,
 anchor: '100%'
}

The HtmlEditor can now be seen occupying the full panel width at the bottom
of the panel:

Listening for form field events
Ext JS makes it extremely simple to listen for particular events in a Component's
lifecycle. These may include user-initiated events such as pressing a particular key,
changing a field's value, and so on. Or they may be events initiated by code, such
as the Component being rendered or destroyed.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[61]

To add event handling functions (which we call "listeners") to be called at these
points, we use the listeners config option. This option takes the form of an object
with properties which associate functions with event names.

The events available to the listeners config option of a Component
are not the same as the standard native DOM events which HTML
offers. Some Components do offer events of the same name (for example
a click event), but that is usually because they "add value" to the native
DOM event. An example would be the click event offered by the Ext JS
tree control. This passes to the listener the tree node that was clicked on.
Adding our own listeners to DOM events of the constituent element of
a Component is explained later in this chapter.

A common task would be listening for the Enter key to be pressed, and then
submitting the form. So let's see how this is accomplished:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false,
 listeners: {
 specialkey: function(field, eventObj){
 if (eventObj.getKey() == Ext.EventObject.ENTER) {
 movie_form.getForm().submit();
 }
 }
 }
}

The specialkey event is fired whenever a key related to navigation or editing
is pressed. This includes arrow keys, Tab, Esc, and Enter. When an event is fired,
the listener function associated with that event name is called.

We want to check to see if it was the Enter key that was pressed before we take
action, so we're using the event object—represented as the variable 'eventObj' in this
example—to find out what key was pressed. The getKey method tells us which key
was pressed, and the Ext.EventObject .ENTER is a constant that represents this
key. With this simple listener and if statement, the form will be submitted when we
press the Enter key.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[62]

ComboBox events
Combo boxes commonly need to have events attached to them. Let's take our genre
combo box and attach a listener to it that will run when an item in the list is selected.

First let's add a dummy item to our data as the first item in the list and call it
New Genre:

var genres = new Ext.data.SimpleStore({
 fields: ['id', 'genre_name'],
 data : [
 ['0','New Genre'],
 ['1','Comedy'],
 ['2','Drama'],
 ['3','Action']
]
});

Then, we add the listener to our combo:

{
 xtype: 'combo',
 name: 'genre',
 fieldLabel: 'Genre',
 mode: 'local',
 store: genres,
 displayField:'genre_name',
 width: 130,
 listeners: {
 select: function(field, rec, selIndex){
 if (selIndex == 0){
 Ext.Msg.prompt('New Genre', 'Name', Ext.emptyFn);
 }
 }
 }
}

The listeners object in the code above specifies a function which is to be called
when a combo item is selected. Each event type has its own set of parameters
which are passed to listener functions. These can be looked up in the API reference.

For the select event, our function is passed three things:

•	 The form field
•	 The data record of the selected combo item
•	 The index number of the item that was clicked on

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[63]

Inside our listener function, we can see which item in the list was selected. The third
argument in our listener function is the index of the item that was clicked. If that
has an index of zero (the first item in the list), then we will prompt the user to enter
a new genre using the prompt dialog we learned about in the previous chapter.
The result should look like this:

A list of valid events to listen for can be found at the bottom of the API
documentation page for each Component, along with the arguments the
listeners are passed, which are unique to each event.

Buttons and form action
Now, we have quite a complex form with only one problem—it doesn't send data
to the server, and we will want a way to reset the form, which was the actual point
behind creating our form in the first place. To do this, we are going to add some
buttons which will perform these actions.

Our buttons are added to a buttons config object, similar to the way that the
form fields were added. These buttons really only need two things: the text to be
displayed on the button, and the function (which is called the handler) to execute
when the button is clicked.

buttons: [{
 text: 'Save',
 handler: function(){
 movie_form.getForm().submit({
 success: function(form, action){
 Ext.Msg.alert('Success', 'It worked');

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[64]

 },
 failure: function(form, action){
 Ext.Msg.alert('Warning', 'Error');
 }
 });
 }
}, {
 text: 'Reset',
 handler: function(){
 movie_form.getForm().reset();
 }
}]

The handler is provided with a function—or a reference to a function—that
will be executed once the button is clicked. In this case, we are providing
an anonymous function.

Form submission
Our FormPanel has a url option that contains the name of the file that the form data
will be sent to. This is simple enough—just like an HTML form, all of our fields will
be posted to this url, so they can be processed on the server side.

movie_form.getForm().submit({
 success: function(form, action){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(form, action){
 Ext.Msg.alert('Warning', 'Error');
 }
});

Inside our Save button, we have an anonymous function that runs the following
code. This will run the actual submission function for our form, which sends the
data to the server using AJAX. No page refresh is needed to submit the form. It all
happens in the background, while the page you are looking at remains the same:

In order for our form submission to work properly, the HTML
page must be run from a web server, not the file system.

The success and failure options provided to the submit call handle the server's
response. These are also anonymous functions, but could just as easily be references
to functions created earlier on in the code.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[65]

Did you notice that the functions have a pair of arguments passed to them?
These will be used to figure out what response the server gave. But first, we
need to discuss how to provide that response on the server side.

Talking back—the server responses
When our form is submitted to the server, a script on the server side will process
the post data from the form, and decide if a true or false 'success' message should
be sent back to the client side. Error messages can be sent back along with our
response, and these can contain messages that correspond to our form field names.

When using forms and server-side validation, a success Boolean value is required.
An example of a response JSON string from the server would look like this:

{
 success: false,
 errors: {
 title: "Sounds like a Chick Flick"
 }
}

When the success property is set to false, it triggers the Ext JS form to read in the
error messages from the errors property, and apply them to the form's validation
to present the user with error messages.

Server-side validation of our form submission gives us a way to look up information
on the server side, and return errors based on this. Let's say we have a database
of bad movie names, and we don't want users to submit them to our database.
We can submit the form to our script, which checks the database and returns a
response based on the database lookup of that name.

If we wanted to filter out chick flicks the response could look something like this:

{
 success: false,
 errors: {
 title: "Sounds like a Chick Flick"
 },
 errormsg: "That movie title sounds like a chick flick."
}

The false success response triggers the form's error messages to be displayed. An
errors object is passed with the response. The form uses this object to determine
each of the error messages for the fields. A name/value pair exists in the errors
object for each form field's error.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[66]

Our example response also passes an errormsg property, which is not used by
the form, but is going to be accessed separately to present our own error message
in an Ext JS Message Box.

The error objects messages are handled automatically by the form, so let's take the
extra error message that we were passing back, and display it in a message box.

buttons: [{
 text: 'Save',
 handler: function(){
 movie_form.getForm().submit({
 success: function(form, action){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(form, action){
 Ext.Msg.alert('Warning', action.result.errormsg);
 }
 });
 }
}, {
 text: 'Reset',
 handler: function(){
 movie_form.getForm().reset();
 }
}]

Our submit form action passes information back to the success and failure
handlers. The first argument is the Ext JS form Component we were using, and
the second is an Ext JS action object. Let's take a look at what's available in the
Ext JS action object:

Option Data type Description
failureType String The type of failure encountered, whether it was on the

client or server
response Object Contains raw information about the server's response,

including useful header information
result Object Parsed JSON object based on the response from the server
type String The type of action that was performed–either submit or

load

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[67]

Now that we know what is available to the failure handler, we can set up some
simple error checking:

failure: function(form, action){
 if (action.failureType == Ext.form.Action.CLIENT_INVALID) {
 Ext.Msg.alert("Cannot submit",
 "Some fields are still invalid");
 } else if (action.failureType === Ext.form.Action.CONNECT_FAILURE)
{
 Ext.Msg.alert('Failure', 'Server communication failure: '+
 action.response.status+' '+action.response.statusText);
 } else if (action.failureType === Ext.form.Action.SERVER_INVALID)
{
 Ext.Msg.alert('Warning', action.result.errormsg);
 }
}
}

By checking the failure type, we can determine if there was a server connection error
and act accordingly, even providing details about the server's specific error message
by inspecting the result and response properties.

Loading a form with data
There are three basic ways in which forms are used in a user interface:

•	 To input data for a separate action—say, Google search
•	 To create new data
•	 To change existing data

It's the last option is what we are interested in now. To accomplish this, we need
to learn how to load that data from its source (static or database) into our user
interface—our form.

Static data load
We can take data from somewhere in our code, a variable for instance, or just plain
static text, and display it as the value in our form field by calling the setValue
method. This single line of code will set a field's value:

movie_form.getForm().findField('title').
 setValue('Dumb & Dumber');

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[68]

Once we start working with larger forms with many fields, this method becomes
a hassle. That's why we also have the ability to load our data in bulk via an AJAX
request. The server side would work much as it did when we loaded the combo box:

<?php
// connection to database goes here

$result = mysql_query('SELECT * FROM movies WHERE id = '.$_
REQUEST['id']);

if (mysql_num_rows($result) > 0) {
 $obj = mysql_fetch_object($result);
 Echo '{success: true, data:'.json_encode($obj).'}';
}else{
 Echo '{success: false}';
}

?>

This would return a JSON object containing a success property, and a data object that
would be used to populate the values of the form fields. The returned data would
look something like this:

{
 success: true,
 data:{
 "id":"1",
 "title":"Office Space",
 "director":"Mike Judge",
 "released":"1999-02-19",
 "genre":"1",
 "tagline":"Work Sucks",
 "coverthumb":"84m.jpg",
 "price":"19.95",
 "available":"1"
 }
}

To trigger this, we need to use the form's load method:

movie_form.getForm().load({
 url:'data/movie.php',
 params:{
 id: 1
 }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 3

[69]

Providing the load method with a url and params config will do the trick.
The params config represents what is sent to the server side script as post/get
parameters. By default, these are sent as post parameters.

DOM listeners
As mentioned when discussing adding listeners to Components, adding DOM event
listeners to the constituent HTML elements of a Component is a different matter.

Let's illustrate this by adding a click listener to the header of the FormPanel.
When a panel is configured with a title, an element which houses that title
is created when the Component is rendered. A reference to that element is stored
in the panel's header property.

The key point here is that no elements exist until the Component is rendered.
So we use a listener function on the render lifecycle event to add the click listener:

var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 listeners: {
 render: fuction(component) {
 component.header.addListener({
 click: function(eventObj, el) {
 Ext.Msg.alert("Click event", "Element id " +
 el.id + " clicked");
 }
 });
 }
 }

Let's take the time to read and understand that code.

We specify a listener function for the render event. The listener function is passed as a
reference to the Component which just rendered. At this point, it will have a header
property. This is an Ext.Element object which was talked about in Chapter 2.

We call the addListener method of the Ext.Element class to add our click listener
function. The parameter to this class should be familiar to you. It is a standard
listeners config object which associates an event name property with a listener
function which is called on every mouse click.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Forms

[70]

Summary
We have taken the foundation of the classic web application—forms—and injected
them with the power of Ext JS, creating a uniquely-flexible and powerful user
interface. The form created in this chapter can validate user input, load data from a
database, and send that data back to the server. From the methods outlined in this
chapter, we can go on to create forms for use in simple text searches, or a complexly
validated data entry screen.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons
The unsung heroes of every application are the simple things like buttons,
menus, and toolbars. In this chapter, we will cover how to add these items
to our applications.

By following the examples in this chapter we will learn how to use menus, both
as components in their own right—either static or floating as popups—and as
dependent menus of buttons.

We will then learn how to use toolbars, which contain buttons that call a function
on click, or that pop up a submenu on click, or cycle between several submenu
options on each click.

The primary classes we will cover in this chapter are:

•	 Ext.menu.Menu: A Container class which by default displays itself as a
popup component, floating above all other document content. A menu's
child items behave in a similar manner to buttons, and may call a handler
function on mouse click. A menu may also be used as a static component
within a page.

•	 Ext.Toolbar: A Container class which arranges its child Components
horizontally in the available width, and manages overflow by offering
overflowed Components in a popup menu.

•	 Ext.Button: The primary handler for button creation and interaction.
A Component class which renders a focusable element which may be
configured with a handler function which is called upon mouse click,
or a menu to display upon mouse click.

•	 Ext.SplitButton: A subclass of button which calls a handler function
when its main body is clicked, but also renders an arrow glyph to its
right which can display a dropdown menu when clicked.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[72]

•	 Ext.CycleButton: A subclass of SplitButton which cycles between checking
individual menu options of its configured menu on each click. This is similar
to cycling through different folder views in Windows Explorer.

•	 Ext.ButtonGroup: A Panel class which lays out child Components
in a tabular format across a configurable number of columns.

What's on the menu?
We will begin by introducing the Menu class which will be used in all
following examples.

We are going to demonstrate usage of the Menu class as both a static component
within a page, and as a popup. Both menus will be configured with the same options
by using a technique which was suggested in Chapter 2: we define a variable called
menuItems to reference an array which specifies the menu's items, and use it in
both cases.

The Menu class inherits from Container, so any menu options are child Components
specified in the items config. It also inherits the usual Component config options
such as renderTo, and the width option.

The static menu will be rendered to the document body, and in order for it
to be rendered as a visible, static element in the document, we configure it
with floating: false.

So the configuration we end up with is as follows:

new Ext.menu.Menu({
 renderTo: document.body,
 width: 150,
 floating: false,
 items: menuItems
});

The popup menu needs no extra configuring aside from its items. We do need
to decide when and where to display it. In this case we will add a contextmenu
(right click) event listener to the document, and show the menu at the mouse
event's position:

var contextMenu = new Ext.menu.Menu({
 items: menuItems
});
Ext.getDoc().on({
 contextmenu: function(eventObj) {
 contextMenu.showAt(eventObj.getXY());

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[73]

 },
 stopEvent: true
});

When we run this example, the static menu will be visible. When we right click on
the document, the result should be the two menus shown below. Notice how only
the second, popup menu has a shadow to indicate that it floats above the document.

The menu's items
The menuItems variable references an array which should be familiar by now. Just
like the items config of a FormPanel used in the previous chapter, it's a list of child
Components or config objects. In a menu, a config object with no xtype creates a
MenuItem Component. The MenuItem class accepts the following config options
in addition to those it inherits:

•	 icon: The URL of an image to display as an icon
•	 iconCls: A CSS class name which allows a stylesheet to specify

a background image to use as an icon
•	 text: The text to display
•	 handler: A function to call when the item is clicked
•	 menu: A Menu object, or Menu configuration object or an array of menu

items to display as a submenu when the item is clicked

Because a menu inherits from Container, it can accept other Components as child
items. If some complex, menu option dependent input is required, a menu may be
configured with a panel as a child item. The menu config of "Menu Option 2" we're
creating next contains a FormPanel as its sole child item:

{
 text: 'Menu Option 2',
 iconCls: 'flag-green',
 menu: {

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[74]

 plain: true,
 items: {
 xtype: 'form',
 border: false,
 bodyStyle: 'background:transparent;padding:5px',
 labelWidth: 70,
 width: 300,
 defaults: {
 anchor: '100%'
 },
 items: [{
 xtype: 'combo',
 editable: false,
 fieldLabel: 'Select',
 triggerAction: 'all',
 store: [[0, 'One or...'], [1 ,'The other']],
 value: 0,
 getListParent: function() {
 return this.el.up('div.x-menu');
 }
 }, {
 xtype: 'textfield',
 fieldLabel: 'Title'
 }],
 fbar: [{
 text: 'Submit'
 }]
 }
 }
}

The configurations in the above object will mostly be familiar by now.

There is one extra config we use for the menu which contains the FormPanel.

•	 plain: Specify as true so that the menu does not have to show the incised
line for separating icons from text

The panel within the menu has the following configs:

border: Specify as false to produce a panel with no borders.

bodyStyle: A CSS style string to apply to the document body. We want to make
it transparent to allow the menu to show, and we apply padding.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[75]

The ComboBox must render its dropdown list to the menu's element so that clicking
on the list does not trigger the menu to hide:

•	 GetListParent: This is a function which a ComboBox may be configured
with. It must return the HTML element to render the dropdown list into. By
default a ComboBox renders its dropdown into the document. We call the up
function of the Ext.Element class to find the ancestor node of the combo's
element which is a DIV which has the CSS class "x-menu".

The FormPanel as a child of a menu will display like this:

A toolbar for every occasion
An Ext JS Panel, and every Ext JS Component which inherits from the Panel class (This
includes Window, TreePanel, and GridPanel) can be configured to render and manage
a toolbar docked above, or below the panel's body—or both if really necessary. These
are referred to as the top and bottom toolbars, or tbar and bbar for short.

Panels and subclasses thereof may also be configured with a footer bar which
renders buttons right at the bottom of the panel—below any bottom toolbar.

The Toolbar class is also an Ext JS Component in its own way, and may when
necessary be used on its own, or as a child Component of any Container.

Our second example renders a toolbar standalone into the body of the document.
We will use all the main button types to illustrate their usage before moving on
to add handlers to react to user interaction. The toolbar will contain the following
child components:

•	 A basic button
•	 A button configured with a menu which is displayed when the button

is clicked
•	 A SplitButton which will display a menu only when its arrow glyph is clicked
•	 A CycleButton which on click, cycles between three different options
•	 A pair of mutually exclusive toggle buttons of which only one may be in a

"pressed" state at once

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[76]

Ext.onReady(function(){
 new Ext.Toolbar({
 renderTo: Ext.getBody(),
 items: [{
 xtype: 'button',
 text: 'Button'
 },{
 xtype: 'button',
 text: 'Menu Button',
 menu: [{
 text: 'Better'
 },{
 text: 'Good'
 },{
 text: 'Best'
 }]
 },{
 xtype: 'splitbutton',
 text: 'Split Button',
 menu: [{
 text: 'Item One'
 },{
 text: 'Item Two'
 },{
 text: 'Item Three'
 }]
 }, {
 xtype: 'cycle',
 showText: true,
 minWidth: 100,
 prependText: 'Quality: ',
 items: [{
 text: 'High',
 checked: true
 }, {
 text: 'Medium'
 }, {
 text: 'Low'
 }]
 }, {
 text: 'Horizontal',
 toggleGroup: 'orientation-selector'
 }, {
 text: 'Vertical',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[77]

 toggleGroup: 'orientation-selector'
 }]
 });
});

As usual, everything is inside our onReady event handler. The items config
holds our toolbar's entire child Components—I say child Components and not
buttons because as we now know, the toolbar can accept many different types of
Ext JS Components including entire forms or just form fields—which we will be
implementing later on in this chapter.

The result of the above code looks like this:

The default xtype for each element in the items config is
button. We can leave out the xtype config element if button
is the type we want, but I like to include it just for clarity.

Button configuration
In addition to inherited config options, a button accepts the following configurations
which we will be using in the following examples for this chapter:

•	 icon: The URL of an image to display as an icon
•	 iconCls: A CSS class name which allows a stylesheet to specify a

background image to use as an icon
•	 text: The text to display
•	 handler: A function to call when the button is clicked
•	 menu: A Menu object, or Menu configuration object, or an array of menu

items to display as a submenu when the button is clicked
•	 enableToggle: Specify as true to make a single button toggleable between

pressed and unpressed state
•	 toggleGroup: A mnemonic string identifying a group of buttons of which

only one may be in a "pressed" state at one time
•	 toggleHandler: A function to be called when a button's "pressed" state

is changed

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[78]

A basic button
Creating a button is fairly straightforward; the main config option is the text that is
displayed on the button. We can also add an icon to be used alongside the text if we
want to. A handler function is called when the button is clicked.

Here is the most basic configuration of a button:

{
 xtype: 'button',
 text: 'Button',
 handler: functionReference
}

The following screenshot shows what happens when the mouse is hovered over
the Button button:

Button with a menu
A button may be configured to act as a trigger for showing a dropdown menu.
If configured with a menu option, clicking the button displays a menu below the
button. The alignment of the menu is configurable, but defaults to being shown
below the button.

Each option within the menu may itself be configured with a menu option allowing
a familiar cascading menu system to be built very easily. The following is a config
for a button which displays a dropdown menu upon click:

{
 xtype: 'button',
 text: 'Button',
 menu: [{
 text: 'Better'
 },{
 text: 'Good'
 },{
 text: 'Best'
 }]
}

The following screenshot shows what happens when the Menu Button is clicked
on, and the mouse is hovered over the Best option:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[79]

Split button
A split button may sound like a complex component, but it is no more complex to
create than a plain button. By using a split button we get the ability to specify a click
handler which is called when the main body of the button is clicked. But we can also
configure in a menu which will be displayed when the arrow glyph to the right of
the main body is clicked.

{
 xtype: 'split',
 text: 'Split Button',
 menu: [{
 text: 'Item One'
 },{
 text: 'Item Two'
 },{
 text: 'Item Three'
 }]
}

The following screenshot shows what happens when the Split Button's arrow
glyph is clicked:

Toggling button state
Sometimes it is useful to have a button which "sticks" in the pressed state to
indicate switching some state within our app. To enable a single button to be
clicked to toggle between the pressed and unpressed state, configure the button
with enableToggle: true.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[80]

If a set of buttons are to toggleable, but only one may be pressed at once, configure
each button in that set with a toggleGroup. This is an ID string which links buttons
which enforce this rule.

Toggleable buttons may be configured with a toggleHandler function which
is called whenever the button's state changes in either direction.

{
 text: 'Horizontal',
 toggleGroup: 'orientation-selector'
}, {
 text: 'Vertical',
 toggleGroup: 'orientation-selector'
}

This code produces the pair of buttons below in which only one orientation may
be selected at once, Horizontal or Vertical:

Toolbar item alignment, dividers, and spacers
By default, every toolbar aligns elements to the leftmost side. There is no alignment
config for a toolbar, so if we want to align all of the toolbar buttons to the rightmost
side, we need to add a fill item to the toolbar. This item is sometimes referred to as
a 'greedy spacer'. If we want to have items split up between both the left and right
sides, we can also use a fill, but place it between items:

{
 xtype: 'tbfill'
}

Pop this little guy in a toolbar wherever you want to add space and it will push
items on either side of the fill to the ends of the tool bar, as shown below:

We also have elements that can add space or a visual vertical divider, like the one
used between the Menu Button and the Split Button.

The spacer adds a few pixels of empty space that can be used to space out buttons,
or move elements away from the edge of the toolbar:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[81]

{
 xtype: 'tbspacer'
}

A divider can be added in the same way:

{
 xtype: 'tbseparator'
}

Shortcuts
Ext JS has many shortcuts that can be used to make coding faster. Shortcuts are a
character or two that can be used in place of a configuration object. For example,
consider the standard toolbar filler configuration:

{
 xtype: 'tbfill'
}

The shortcut for a toolbar filler is a hyphen and a greater than symbol:

'->'

Not all of these shortcuts are documented. So be adventurous, poke around
the source code that is distributed in the src folder of the SDK download,
and see what you can find. Here is a list of the commonly-used shortcuts:

Component Shortcut Description
Fill '->' The fill that is used to push items to the right side

of the toolbar.
Separator '-' or 'separator' A vertical bar used to visually separate items.
Spacer ' ' Empty space used to separate items visually. The

space is two pixels wide, but can be changed by
overriding the style for the xtb-spacer CSS class.

TextItem 'Your Text' Add any text or HTML directly to a toolbar by simply
placing it within quotes.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[82]

Icon buttons
The standard button can be used as an icon button like the ones we see used in text
editors to make text bold or italic—simply a button with an icon and no text. Two
steps need to be taken to make an icon button—defining an image to be used as
the icon and applying the appropriate class to the button.

{
 xtype: 'tbbutton',
 cls: 'x-btn-icon',
 icon: 'images/bomb.png'
}

This could just as easily be an icon beside text by changing the style class and adding
the text config.

{
 xtype: 'tbbutton',
 cls: 'x-btn-text-icon',
 icon: 'images/bomb.png',
 text: 'Tha Bomb'
}

Another method for creating an icon button is to apply a CSS class to it that contains
a background image. With this method we can keep the references to images in our
CSS instead of our JavaScript, which is preferable whenever possible.

{
 xtype: 'tbbutton',
 iconCls: 'bomb'
}

The CSS to go along with this would have a background image defined, and the CSS
'important' flag set.

.bomb {
 background-image: url(images/bomb.png) !important;
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[83]

Button events and handlers—click me!
A button needs to do more than just look pretty—it needs to react to the user.
This is where the button's handler and events come in. A handler is a function
that is executed when a button is clicked.

The handler config is where we add our function, which can be an anonymous
function like below or a method of a class—any function will do:

{
 xtype: 'button',
 text: 'Button',
 handler: function(){
 Ext.Msg.alert('Boo', 'Here I am');
 }
}

This code will pop up an alert message when the button is clicked. Just about every
handler or event in Ext JS passes a reference to the component that triggered the
event as the first argument. This makes it easy to work with whichever component
that fired this handler, calling the disable method on it.

{
 xtype: 'tbbutton',
 text: 'Button',
 handler: function(f){
 f.disable();
 }
}

We can take this reference to the button—a reference to itself—and access all of the
properties and functions of that button. For this sample, we have called the disable
function which grays out the button and makes it non-functional.

We can have more fun than just disabling a button. Why don't we try something
more useful?

Loading content on menu item click
Let's take our button click and do something more useful with it. For this example,
we are going to add a config option named helpfile to each menu item that will
be used to determine what content file to load in the body of our page:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[84]

{
 xtype: 'tbsplit',
 text: 'Help',
 menu: [{
 text: 'Genre',
 helpfile: 'genre',
 handler: Movies.showHelp
 },{
 text: 'Director',
 helpfile: 'director',
 handler: Movies.showHelp
 },{
 text: 'Title',
 helpfile: 'title',
 handler: Movies.showHelp
 }]
}

Note the helpfile config option that we have added to each of the menu items
configs. We have made this config property up so that we have a way to store a
variable that is unique to each menu item. This is possible because config properties
can be anything we need them to be, and are copied into the Component upon
construction, and become properties of the Component. In this case, we are using
a config property as a reference to the name of the file we want to load.

The other new thing we are doing is creating a collection of functions to handle
the menu item click. These functions are all organized into a Movies object.

var Movies = function() {
 var helpbody;
 return {
 showHelp : function(btn){
 Movies.doLoad(btn.helpfile);
 },
 doLoad : function(file){
 helpbody = helpbody ||
 Ext.getBody().createChild({tag:'div'});
 helpbody.load({
 url: 'html/' + file + '.txt'
 });
 },
 setQuality: function(q) {
 helpbody = helpbody ||
 Ext.getBody().createChild({tag:'div'});
 helpbody.update(q);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[85]

 }
 };
}();

This piece of code is worth reading a few times until you understand it. It illustrates
the creation of a singleton object.

Notice that the function has () after it. It is called immediately returning an object,
instead of a class that could be instantiated.

The Movies variable is assigned to reference whatever that function returns. It does
not reference the function.

The object returned from that function contains three functions. These are the
"member functions" of the Movies singleton object. It offers utility methods which
our example code will use.

All the functions have access to the helpbody variable because they were declared
within the same function it was declared in. They can use that variable, but it is not
available to outside code. This is an important capability of singleton objects built
in this slightly confusing manner.

Form fields in a toolbar
As the Toolbar class inherits from Container, it can be used to house any Ext JS
Component. Naturally, form fields and combo boxes are very useful items to have
on a toolbar. These are added as child items just as with all Container classes we
have encountered so far:

{
 xtype: 'textfield'
}

In the same way as we created form fields in the last chapter, we add the form
fields to the items array, which will place the form fields within the toolbar.
Now let's make the form field do something useful, by having it perform
the same functionality as our help menu, but in a more dynamic way.

{
 xtype: 'textfield',
 listeners: {
 specialkey: Movies.doSearch
 }
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[86]

This listener is added directly to the form field's config. For this, we are using a
specialkey listener, which we used in the previous chapter. This is the listener
that is used to capture edit keystrokes, such as Enter and Delete among others.
The handler function will be added to our small Movies class created earlier:

doSearch : function(field, keyEvent){
 if (keyEvent.getKey() == Ext.EventObject.ENTER) {
 Movies.doLoad(field.getValue());
 }
}

Now the text field in our toolbar that enables us to type in the name of the text file
to load should look like the following. Try typing in some of the samples used in
our menu, such as director or title:

Buttons don't have to be in a toolbar
Up until now, we have been dealing with buttons in toolbars. But because buttons
are part of the Ext JS Components class hierarchy, they can be used as child items
of any Container, not just toolbars. When used outside of a toolbar, they are
themed in a slightly different way.

A button can be added to the items array, just like we would add a panel or other
child components.

new Ext.Window({
 title: 'Help',
 id: 'helpwin',
 width: 300,
 height: 300,
 items: [{
 xtype: 'button',
 text: 'Close',
 handler: function(){
 Ext.getCmp('helpwin').close();
 }
 }]
}).load("html/director.txt ").show();

The above code fragment would produce the following display:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[87]

Toolbars in panels
As mentioned at the beginning of this chapter, toolbars can be configured into
all Ext JS Panel classes (Panel, GridPanel, TreePanel, and Window) docked either
above or below the panel, body (or both)

Panel classes, such as the window and the grid, have a top and bottom toolbar
config, along with a buttons config:

•	 tbar: A toolbar, or toolbar configuration object, or an array specifying toolbar
child items. This causes a toolbar to be docked above the panel's body.

•	 bbar: A toolbar, or toolbar configuration object, or an array specifying toolbar
child items. This causes a toolbar to be docked below the panel's body.

•	 fbar: Also may be specified as buttons. A toolbar, or toolbar configuration
object, or an array specifying toolbar child items, which specifies a toolbar
to be placed into the panel's footer element.

If we wanted to place a toolbar at the top of a window, we would specify a tbar
config option which references an array of toolbar child config objects like this:

new Ext.Window({
 title: 'Help',
 width: 300,
 height: 300,
 renderTo: document.body,
 closeAction: 'hide',
 layout: 'fit',
 tbar: [{
 text: 'Close',
 handler: function(){
 winhelp.hide();
 }

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[88]

 },{
 text: 'Disable',
 handler: function(t){
 t.disable();
 }
 }]
});

When this window is activated by clicking the Director help menu entry,
this produces the following display:

Of course if we wanted that same toolbar on the bottom of the window, we
can change from a tbar to a bbar.

We can also specify a toolbar (or config of a toolbar, or toolbar's items) to
be rendered into the footer area of a panel or window. Buttons are themed
as normal buttons in a footer bar, and by default are aligned to the right:

new Ext.Window({
 title: 'Help',
 width: 300,
 height: 300,
 renderTo: document.body,
 closeAction: 'hide',
 layout: 'fit',
 fbar: [{
 text: 'Close',
 handler: function(){
 winhelp.hide();
 }
 }]
});

If the help window was configured in this way, it would display like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 4

[89]

Ext JS also has a custom toolbar for paged grids which contains all of the buttons
for moving through pages of results. We will cover this special toolbar in the grid
chapter later in this book.

Toolbars unleashed
As mentioned above, the toolbar class is a special type of Container class which
lays out its child components in a particular, preconfigured way. We can use it
to house more complex Components, and we can experiment with using different
layout types to size and arrange the child Components in different ways. Layouts
will be covered in Chapter 7, but we can see some of their power in our final
toolbar example.

In the final example, we use the hbox (horizontal box) layout to arrange ButtonGroups
across the toolbar, and force them to be vertically sized to the size of the highest one,
to produce a pleasing, even ribbon effect.

new Ext.Panel({
 title: 'Panel with heavyweight toolbar',
 renderTo: document.body,
 width: 600,
 height: 400,
 tbar: new Ext.Toolbar({
 layout: {
 type: 'hbox',
 align: 'stretchmax'
 },
 items: [{
 xtype: 'buttongroup',
 title: 'Group 1',
 columns: 1,
 items: [{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Menus, Toolbars, and Buttons

[90]

 text: 'Group 1 Button One',
 handler: handlerFn
 },{
 text: 'Group 1 Button Two',
 handler: handlerFn
 },{
 text: 'Group 1 Button Three',
 handler: handlerFn
 }]
 },{

This example will produce output like this:

This example illustrates the concept that a toolbar is a Container which may contain
any Component, and also that a ButtonGroup is a Container with the same heritage.
The first three ButtonGroups contain Buttons; the last one for a slight change of style
contains MenuItems.

Summary
In this chapter, we had the chance to play with a couple of different ways to create
toolbar items, including using a config object or its shortcut. The many options
available for toolbars make them a useful component for everything from the simplest
button bar, to a complex combination of buttons, menus, and form fields. Interacting
with the buttons, menus, and form fields is easy using the built-in handlers.

In the next chapter we will get to know one of the most powerful and useful
Components in the Ext JS Component family, The GridPanel.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids
The grid is, without doubt, one of the most widely-used components of Ext JS. We
all have data, and this needs to be presented to the end user in an easy-to-understand
manner. The spreadsheet (a.k.a. grid) is the perfect way to do this—the concept has
been around for quite a while because it works. Ext JS takes that concept and makes
it flexible and downright amazing!

In this chapter we will be:

•	 Using a GridPanel to display structured data in a user-friendly manner
•	 Reading data from the server (which provides the data from a database)

to display in the grid
•	 Working with a grid's events and manipulating the grid's features
•	 Using some advanced data formatting and display techniques for grids
•	 Paging data in a grid
•	 Exploring highly efficient grid types for displaying large datasets

We will cover how to define the rows and columns, but more importantly, we will
learn how to make the grid a very useful part of our application. We can do this by
adding custom rendered cells that contain images, and change styles based on data
values. In doing this we are adding real value to our grid by breaking out of the
boundaries of simple spreadsheet data display!

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[92]

What is a grid anyway?
Ext JS grids are similar to a spreadsheet; there are two main parts to each spreadsheet:

•	 Columns
•	 Rows

Here our columns are Title, Released, Genre, and Price. Each of the rows contains
movies such as The Big Lebowski, Super Troopers, and so on. The rows are really
our data; each row in the grid represents a record of data held in a data store.

A GridPanel is databound
Like many Ext JS Components, such as the ComboBox we worked with in Chapter 3,
the GridPanel class is bound to a data store which provides it with the data shown
in the user interface. So the first step in creating our GridPanel is creating
and loading a store.

The data store in Ext JS gives us a consistent way of reading different data formats
such as XML and JSON, and using this data in a consistent way throughout all of the
Ext JS widgets. Regardless of whether this data is originally provided in JSON, XML,
an array, or even a custom data type of our own, it's all accessed in the same way
thanks to the consistency of the data store and how it uses a separate reader class
which interprets the raw data.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[93]

Instead of using a pre-configured class such as the ArrayStore used in our ComboBox
from Chapter 3, we will explicitly define the classes used to define and load a store.

The record definition
We first need to define the fields which a Record contains. A Record is a single row
of data and we need to define the field names, which we want to be read into our
store. We define the data type for each field, and, if necessary, we define how to
convert from the raw data into the field's desired data type.

What we will be creating is a new class. We actually create a constructor which will
be used by Ext JS to create records for the store.

As the 'create' method creates a constructor, we reference the resulting function
with a capitalized variable name, as per standard CamelCase syntax:

var Movie = Ext.data.Record.create([
 'id',
 'coverthumb',
 'title',
 'director',
 'runtime',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 {name: 'price', type: 'float'},
 {name: 'available', type: 'bool'}
]);

Each element in the passed array defines a field within the record. If an item
is just a string, the string is used as the name of the field, and no data conversion
is performed; the field's value will be whatever the Reader object (which we will
learn more about soon) finds in the raw data.

If data conversion is required, then a field definition in the form of an object literal
instead of a string may contain the following config options:

•	 Name: The name by which the field will be referenced.
•	 type: The data type in which the raw data item will be converted to when

stored in the record. Values may be 'int', 'float', 'string', 'date',
or 'bool'.

•	 dateFormat: If the type of data to be held in the field is a date type, then
we need to specify a format string as used by the Date.parseDate function.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[94]

Defining the data type can help to alleviate future problems, instead of having to
deal with all string type data defining the data type, and lets us work with actual
dates, Boolean values, and numbers. The following is a list of the built in data types:

Field type Description Information
string String data
int Number Uses JavaScript's parseInt function
float Floating point number Uses JavaScript's parseFloat function
boolean True/False data
date Date data dateFormat config required to interpret

incoming data.

Now that the first step has been completed, and we have a simple Record definition
in place, we can move on to the next step of configuring a Reader that is able to
understand the raw data.

The Reader
A store may accept raw data in several different formats. Raw data rows may be in
the form of a simple array of values, or an object with named properties referencing
the values, or even an XML element in which the values are child nodes.

We need to configure a store with a Reader object which knows how to extract data
from the raw data that we are dealing with. There are three built in Reader classes
in Ext JS.

ArrayReader
The ArrayReader class can create a record from an array of values.

By default, values are read out of the raw array into a record's fields in the order
that the fields were declared in the record definition we created. If fields are not
declared in the same order that the values occur in the rows, the field's definition
may contain a mapping config which specifies the array index from which we
retrieve the field's value.

JsonReader
This JSONReader class is the most commonly used, and can create a record
from raw JSON by decoding and reading the object's properties.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[95]

By default, the field's name is used as the property name from which it takes the
field's value. If a different property name is required, the field's definition may
contain a mapping config which specifies the name of the property from which
to retrieve the field's value.

XmlReader
An XMLReader class can create a record from an XML element by accessing child
nodes of the element.

By default, the field's name is used as the XPath mapping (not unlike HTML)
from which to take the field's value. If a different mapping is required, the field's
definition may contain a mapping config which specifies the mapping from which
to retrieve the field's value.

Loading our data store
In our first attempt, we are going to create a grid that uses simple local array data
stored in a JavaScript variable. The data we're using below in the movieData
variable is taken from a very small movie database of some of my favorite movies,
and is similar to the data that will be pulled from an actual server- side database
later in this chapter.

The data store needs two things: the data itself, and a description of the data—or
what could be thought of as the fields. A reader will be used to read the data from
the array, and this is where we define the fields of data contained in our array.

The following code should be placed before the Ext JS OnReady function:

var movieData = [
 [
 1,
 "Office Space",
 "Mike Judge",
 89,
 "1999-02-19",
 1,
 "Work Sucks",
 "19.95",
 1
],[
 3,
 "Super Troopers",
 "Jay Chandrasekhar",

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[96]

 100,
 "2002-02-15",
 1,
 "Altered State Police",
 "14.95",
 1
]
 //...more rows of data removed for readability...//
];
var store = new Ext.data.Store({
 data: movieData, ,
 reader: new Ext.data.ArrayReader({idIndex: 0}, Movie)
});

If we view this code in a browser we would not see anything—that's because
a data store is just a way of loading and keeping track of our data. The web
browser's memory has our data in it. Now we need to configure the grid
to display our data to the user.

Displaying structured data with
a GridPanel
Displaying data in a grid requires several Ext JS classes to cooperate:

•	 A Store: As mentioned in Chapter 3, a data store is a client-side analogue
of a database table. It encapsulates a set of records, each of which contains a
defined set of fields. Full details about data stores are contained in Chapter 15.

•	 A Record definition: This defines the fields (or "columns" in database
terminology) which make up each record in the Store. Field name and
datatype are defined here. More details are in Chapter 15.

•	 A Reader which uses a Record definition to extract field values from a raw
data object to create the records for a Store.

•	 A ColumnModel which specifies the details of each column, including the
column header to display, and the name of the record field to be displayed
for each column.

•	 A GridPanel: A panel subclass which provides the controller logic
to bind the above classes together to generate the grid's user interface.

If we were to display the data just as the store sees it now, we would end up
with something like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[97]

Now that is ugly—here's a breakdown of what's happening:

•	 The Released date has been type set properly as a date, and interpreted
from the string value in our data. It's provided in a native JavaScript date
format—luckily Ext JS has ways to make this look pretty.

•	 The Price column has been type set as a floating point number. Note that
there is no need to specify the decimal precision.

•	 The Avail column has been interpreted as an actual Boolean value,
even if the raw data was not an actual Boolean value.

As you can see, it's quite useful to specify the type of data that is being read,
and apply any special options that are needed so that we don't have to deal
with converting data elsewhere in our code.

Before we move on to displaying the data in our grid, we should take a look
at how the convert config works, as it can come in quite useful.

Converting data read into the store
If we need to, we can convert data as it comes into the store, massage it, remove
any quirky parts, or create new fields all together. This should not be used as
a way to change the display of data; that part will be handled elsewhere.

A common task might be to remove possible errors in the data when we load it,
making sure it's in a consistent format for later actions. This can be done using a
convert function, which is defined in the 'convert' config by providing a function,
or reference to a function. In this case we are going to create a new field by using
the data from another field and combining it with a few standard strings.

var store = new Ext.data.Store({
 data: movieData,
 reader: new Ext.data.ArrayReader({id:'id'}, [
 'id',
 'title',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[98]

 'director',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 'price',
 'available',
 {name:'coverthumb',convert:function(v, rawData){
 return 'images/'+rawData[0]+'m.jpg';
 }}
])
});

This convert function when used in this manner will create a new field of data
that looks like this:

'images/5m.jpg'

We will use this new field of data shortly, so let's get a grid up and running.

Displaying the GridPanel
The class that pulls everything together is the GridPanel. This class takes care
of placing the data into columns and rows, along with adding column headers,
and boxing it all together in a neat little package.

The movie data store we created isn't much good to anybody just sitting in the
computer's memory. Let's display it in a grid by creating a simple GridPanel:

1. Let's add our data store to the following GridPanel code:
Ext.onReady(function() {…

var grid = new Ext.grid.GridPanel({

 renderTo: Ext.getBody(),

 frame: true,

 title: 'Movie Database',

 height: 200,

 width: 520,

 store: store,

 colModel: new Ext.grid.ColumnModel({

 defaultSortable: false,

 columns: [

 {header: "Title", dataIndex: 'title'},

 {header: "Director", dataIndex: 'director'},

 {header: "Released", dataIndex: 'released',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[99]

 xtype: 'datecolumn'},

 {header: "Genre", dataIndex: 'genre'},

 {header: "Tagline", dataIndex: 'tagline'}

]

 })

});

2. Bring this page up in a browser, and here's what we will see:

How did that work?
All except two of the config options used here should be familiar to us now
because they are inherited from base classes such as the panel

Believe it or not, there are only two new config options that are really essential
to make a GridPanel different from a Panel! They are:

•	 store: This references a store object which provides the data displayed
in the grid. Any changes to the store are automatically applied to the UI.

•	 ColModel: This is a ColumnModel object which defines how the column
headers and data cells are to be displayed. It defines a header for each
column, and the name of the field to display in that column.

We can almost read through the configuration like a sentence:

Render our grid into the body of the document, frame it, and give it a title of
'Movie Database'. The height will be 200 and the width 520; it will use our 'store'
data store and have the columns specified.

This again shows us the benefits of both object-based configuration, and the Ext JS
class hierarchy.

The configuration is readable, not a series of parameters whose order must
be remembered.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[100]

Also, the renderTo frame, title, height, and width options are all inherited from
base classes, and are common to all Panel classes. So we will never have to think
about these once we have mastered the Panel class.

Defining a grid's column model
The ColumnModel class encapsulates a set of column objects, each of which defines an
individual column's characteristics. This is a mirror image of the field definitions in the
Record definition which specify how to read in a field's value from a raw data object.

The ColumnModel works at the opposite end of the data flow. It defines which fields
from each record to display (you don't have to show them all), and also how the
value from each field is to be converted back into string form for display in the UI.

The ColumnModel also maintains defaults to be applied to the columns which it
manages, and offers an API to manipulate the columns, and provide information
about them.

To define our grid's columns, we configure the ColumnModel with an array of column
config objects. Each of the objects within a ColumnModel's columns array defines one
column. The most useful options within a column definition are:

•	 header: The HTML to display in the header area at the top of the column.
•	 dataIndex: The name of the record field—as defined in the Record

definition—to display in each cell of the column.
•	 xtype: The type of column to create. This is optional, and defaults to a basic

column which displays the referenced data field unchanged. But to display
a formatted date using the default date format, we can specify 'datecolumn'.
There are several other column xtypes described in the API documentation.

So a ColumnModel definition is like this:

new Ext.grid.ColumnModel({
 defaultSortable: false,
 columns: [
 {header: 'Title', dataIndex: 'title'},
 {header: 'Director', dataIndex: 'director'},
 {header: 'Released', dataIndex: 'released'},
 {header: 'Genre', dataIndex: 'genre'},
 {header: 'Tagline', dataIndex: 'tagline'}
]
})

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[101]

This will create grid column headers that look like the following. We have also
set the default of sortable for each column to false by using a master config in
the Column Model:

Here are some other useful config options for each column within the column model:

Option Description Usage
renderer Specifies a function which

returns formatted HTML to
display in a grid cell

Can be used to format the data for this column into
your preferred format. Any type of data can be
transformed. We will learn about these in the next
few pages.

hidden Hides the column Boolean value defining whether or not the column
should be displayed.

hideable Allows the UI to offer
checkboxes to hide/show
the column

If a column must not be hidden (or indeed begins
hidden and must not be shown) by the user, set this
option to true.

width Specifies the column width
in pixels

The width of the column. Default is 100 pixels;
overflowing content is hidden.

sortable Specifies whether the
column is sortable

Boolean value specifying whether or not the column
can be sorted. Overrides the defaultSortable
configuration of the ColumnModel.

Built-in column types
There are several built-in column types, all identified by their own unique xtype
which provide special formatting capabilities for cell data. The usage of these is
illustrated in the example code for this chapter.

BooleanColumn
Displays the text true or false (or the locale specific equivalents if you include the
correct Ext JS locale file) in the column's cells depending on whether the cell's field
value is true or false. It can be configured with alternative true/false display values.
Example usage:

{
 xtype: 'booleancolumn',
 header: 'Available',
 dataIndex: 'available',
 trueText: 'Affirmative',
 falseText: 'Negative'
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[102]

DateColumn
This displays the cell's field value as a formatted date. By default, it uses the
date format 'm/d/Y', but it can be configured with a format option specifying
an alternative format. The value in the column's associated field must be a date
object. Example usage:

{
 header: "Released",
 dataIndex: 'released',
 xtype: 'datecolumn',
 format: 'M d Y',
 width: 70
}

NumberColumn
Displays the cell's field value formatted according to a format string as used in
Ext.util.Format.number. The default format string is "0.00". Example usage:

{
 header: "Runtime",
 dataIndex: 'runtime',
 xtype: 'numbercolumn',
 format: '0',
 width: 70
}

TemplateColumn
Uses an Ext.XTemplate string to produce complex HTML with any fields
from within the row's record embedded.

{
 header: "Title",
 dataIndex: 'title',
 xtype: 'templatecolumn',
 tpl: '<img src="{coverthumb}" ' +
 'width="50" height="68" align="left">'+
 '<b style="font-size:13px;">{title}
'+
 'Director:<i> {director}</i>
{tagline}'
}

The tokens in the template (tpl) between braces are field names from the store's
record. The values are substituted in to create the rendered value. See the API
documentation for the Ext.XTemplate class for more information.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[103]

ActionColumn
Displays icons in a cell, and may be configurable with a handler function to process
clicks on an icon. Example illustrating arguments passed to the handler function:

{
 header: 'Delete',
 sortable: false,
 xtype: 'actioncolumn',
 width: 40,
 align: 'center',
 iconCls: 'delete-movie',
 handler: function(grid, rowIndex, colIdex, item, e) {
 deleteMovie(grid.getStore().getAt(rowIndex));
 }
}

Using cell renderers
If the built in column types cannot create the desired output in a grid cell (which
is very unlikely given the data formatting capabilities of the XTemplate class),
then we can write a custom renderer function.

We can do some pretty neat things with cell rendering. There are few limitations
to stop us from making the cell look like or contain whatever we want. All that
needs to be done is to specify one of the built-in cell formatting functions provided
by Ext JS, such as usMoney, or we can create our own cell renderer that returns a
formatted value. Let's take a look at using the built-in cell renderers first. Then we
can experiment with creating our own.

Formatting data using the built-in cell
renderers
Many built-in formatting functions exist to take care of common rendering
requirements. One that I use quite often is the date renderer:

renderer: Ext.util.Format.dateRenderer('m/d/Y')

Some of the built-in renderers include commonly-required formatting,
such as money, capitalize, and lowercase.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[104]

Here are a few of the renderers that I find most useful:

Renderer Description Usage
dateRenderer Formats a date for

display
Can be used to format the data for this column into
our preferred date display format. Any type of date
can be transformed.

uppercase
lowercase

Upper and lower
case conversion

Converts the string to completely upper or lower case
text.

capitalize Pretty text Formats a text string to have correct capitalization.

Creating lookup data stores—custom cell
rendering
We're going to start by taking the 'genre' column, which has a numeric value, and
look up that value in the genre data store we created earlier in Chapter 3 to find the
textual representation of our genre number.

First, we add a config option to the column model that tells the columns which
function to use for rendering each cell's content.

{header: 'Genre', dataIndex: 'genre', renderer: genre_name}

Now we need to create that function. The function being called by the column is
passed the value of its cell as the first argument. The second argument is a cell object,
while the third is the record for the current row being rendered, followed by row
index, column index, and the store—none of which we will use for this renderer.
So let's just specify the first argument as 'val' and leave off the rest.

function genre_name(val) {
 var rec = genres.getById(val);
 return rec ? rec.get('genre') : val;
}

The renderer function is passed the value of the current cell of data. This value can
be compared, massaged, and any actions we need can be performed on it— whatever
value is returned by the function is rendered directly to the grid cell. A queryBy
method is used to filter the data from our genre store and find the matching row of
data. It accepts a function that performs a comparison against each row of data, and
returns true to use the row that matches.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[105]

Just for good measure, here is a compacted version of the same function.
It's not as easy to read as the first version, but accomplishes the same result.

function genre_name(val){
 return genres.queryBy(function(rec){
 return rec.data.id == val;
 }).itemAt(0).get('genre');
}

Combining two columns
The lookup data store is a very useful renderer. However, it's also common for
developers to need to combine two columns to form a single cell. For example,
to perform a calculation on a pair of columns to figure out a total, percentage,
remainder, and so on, or to concatenate two or more text fields into a fancy display.

Let's just take the title of our movie, and append the tagline field underneath the
title. The first step will be to hide the tagline column, since it will be displayed along
with the title field—we don't need it shown in two places. Hiding the column can be
done in our column model, and while the column will be hidden from display, the
data still exists in our store.

{header: 'Tagline', dataIndex: 'tagline', hidden: true}

The next step is our renderer function that will take care of combining the fields.
Here we will start to use the rest of the arguments passed to the renderer function.

function title_tagline(val, x, rec){
 return ''+val+'
'+rec.get('tagline');
}

This function simply concatenates a couple of strings along with the data and returns
the modified value. I went ahead and bolded the title in this sample to provide some
contrast between the two pieces of data. As you can see, HTML tags work just fine
within grid cells. The next step would be to add the renderer config to our column
model, referencing the title_tagline function that we just created.

{header: 'Title', dataIndex: 'title', renderer: title_tagline}

This will make the Title column look like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[106]

Generating HTML and graphics
Let's get some good visuals by placing an image into each row, which will show
the cover art for each movie title. As we just found out, we can use plain HTML
within the cell. So all that needs to happen is to create a renderer that grabs our field
containing the file name of the image—we created in the store earlier—and write that
into an IMG tag as the SRC attribute.

function cover_image(val){
 return '';
}

By creating this fairly straightforward function, and setting it as the column renderer,
we have an image in our grid:

{header: 'Cover', dataIndex: 'coverthumb', renderer:
 cover_image}

If you make all these renderer additions, the grid should now look like this:

Built-in features
Ext JS has some very nice built-in features to help complete the spreadsheet-like
interface. Columns have built-in menus that provide access to sorting, displaying,
and hiding columns:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[107]

Client-side sorting
Unless specified as a server-side (remotely) sorted grid, an Ext JS grid is by default
able to sort columns on the client side. Server-side sorting should be used if the data
is paged, or if the data is in such a format that client-side sorting is not possible.
Client-side sorting is quick, easy, and built-in—just set a column's sortable config
to true:

{header: 'Tagline', dataIndex: 'tagline', id: 'tagline', sortable:
true}

We can also accomplish this after the grid has been rendered; to make this easier
and predictable we need to assign an ID to the column as shown above:

var colmodel = grid.getColumnModel();
colmodel.getColumnById('tagline').sortable = true;

Our column model controls the display of columns and column headers. If we
grab a reference to the column model by asking for it from the grid, then we can
make changes to the columns after it has been rendered. We do this by using the
getColumnById handler that the column model provides us with, and which
accepts the column ID as the argument.

Hidden/visible columns
Using the column header menu, columns can be hidden or shown. This can also be
changed at a config level, to have columns hidden by default, as shown below:

{header: "Tagline", dataIndex: 'tagline', id: 'tagline', hidden:
true}

The more exciting way is to do this after the grid has been rendered, by using the
functions Ext JS provides:

var colmodel = grid.getColumnModel();
colmodel.setHidden(colmodel.getIndexById('tagline'),true);

Grabbing a reference to the column model again will allow us to make this change.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[108]

Column reordering
Dragging a column header will allow the user to reorder the entire column into a
new order within the grid. All of this is enabled by default as part of the built-in
functionality of the grid.

Any column can be dragged to a different order in the grid. This screenshot
shows the Price column being moved to between the Title and Director columns.

We can disable this functionality entirely by setting a config option in the GridPanel:

enableColumnMove: false

This move event—and many other events in the grid—can be monitored and
responded to. For example, we could monitor the movement of columns and
pop up a message based on where the column was moved to:

grid.getColumnModel().on('columnmoved',
 function(cm,oindex,nindex) {
 var title = 'You Moved '+cm.getColumnHeader(nindex);
 if (oindex > nindex){
 var dirmsg = (oindex-nindex)+' Column(s) to the Left';
 }else{
 var dirmsg = (nindex-oindex)+' Column(s) to the Right';
 }
 Ext.Msg.alert(title,dirmsg);
 }
);

Many different events can be monitored using the same technique. The grid, data
store, and column model each have their own set of events that can be monitored,
all of which we will learn about in more detail later in this chapter.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[109]

Displaying server-side data in the grid
With Ext JS we can pull data into our web page in many ways. We started by pulling
in local array data for use in the grid. Now we are going to pull the data in from an
external file and a web server (database).

Loading the movie database from an XML file
We have this great movie database now, but each time I want to add a new movie I
have to edit the JavaScript array. So why not store and pull our data from an XML
file instead? This will be easier to update, and the XML file could even be generated
from a database query or a custom script.

Let's take a look at an example of how our XML file would be laid out:

<?xml version="1.0" encoding="UTF-8"?>
<dataset>
 <row>
 <id>1</id>
 <title>Office Space</title>
 <director>Mike Judge</director>
 <released>1999-02-19</released>
 <genre>1</genre>
 <tagline>Work Sucks</tagline>
 <price>19.95</price>
 <active>1</active>
 </row>
 <row>
 <id>3</id>
 <title>Super Troopers</title>
 <director>Jay Chandrasekhar</director>
 <released>2002-02-15</released>
 <genre>1</genre>
 <tagline>Altered State Police</tagline>
 <price>14.95</price>
 <active>1</active>
 </row>
 //...more rows of data removed for readability...//
</dataset>

The other change we would need to make is to alter the data reader, and set the
location of our XML file so that the data store knows where to fetch the data from.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[110]

There are four basic changes that need to happen when moving from local
to remote data:

•	 The url option, specifying the location of our data needs to be added—this
will replace the data option that we used to store local data

•	 The reader is changed from an ArrayReader to an XmlReader to deal
with the differences involved in reading from an XML format instead
of an array format

•	 The XmlReader is told which element contains a record or row of data by
setting the record option

•	 We will need to call the store's load function that tells our data store to pull
in the data from the file on the server and parse it into memory

var store = new Ext.data.Store({
 url: 'movies.xml',
 reader: new Ext.data.XmlReader({
 record:'row',
 idPath:'id'
 }, Movie),
 autoLoad: true
});

Try making these changes and see if your grid still works—there should
be no noticeable difference when changing data sources or formats.

Note that to make the change from local to remote data and from an array format
to an XML format, the only changes we need to make were to the data store. Ext JS
isolates these types of changes by using a common data store that is able to use an
external reader to read many formats and store them internally in the same way.

Loading the movie database from a JSON file
We're in the same boat as XML with this data format. Just changing the reader
and setting up some config options will take care of everything.

The JSON rows of data are expected to be in the form of an array of objects—our
movies.json file will therefore contain data that looks like this:

{
 success:true,
 rows:[
 {
 "id":"1",
 "title":"Office Space",

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[111]

 "director":"Mike Judge",
 "released":"1999-02-19",
 "genre":"1",
 "tagline":"Work Sucks",
 "price":"19.95",
 "active":"1"
 },{
 "id":"3",
 "title":"Super Troopers",
 "director":"Jay Chandrasekhar",
 "released":"2002-02-15",
 "genre":"1",
 "tagline":"Altered State Police",
 "price":"14.95",
 "active":"1"
 }
 //...more rows of data removed for readability...//
]
}

The main difference between setting up a JSON reader versus an XML reader, is that
the JSON reader needs to know the name of the root element that holds our array
of objects (the rows of data). So instead of specifying a record config, we need to
specify a root config:

var store = new Ext.data.Store({
 url: 'movies.json',
 reader: new Ext.data.JsonReader({
 root:'rows',
 idProperty:'id'
 }, Movie),
 autoLoad: true
});

This grid will have an identical look and the same functionality as the array
and the XML grids that we created earlier.

JSON and arrays are a format native to JavaScript called an Object Literal
and Array Literal, and will end up being the quickest formats for the data
store (JavaScript) to read, which means that our grid will be displayed
much faster than with most other formats, specifically XML.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[112]

Loading data from a database using PHP
The setup for our GridPanel stays the same. But instead of grabbing a static file with
the JSON data, we can pull the data from a PHP script that will fetch the data from a
database, and format it into JSON that Ext JS is able to read:

<?php

// connect to database

$sql = "SELECT * FROM movies";
$arr = array();

If (!$rs = mysql_query($sql)) {

 Echo "{success:false}";

}else{

 while($obj = mysql_fetch_object($rs)){
 $arr[] = $obj;
 }

 Echo "{success:true,rows:".json_encode($arr)."}";

}

?>

The PHP code used in these examples is meant to be the
bare minimum needed to get the job done. In a production
environment you would want to account for security against
SQL injection attacks, other error checking, and probably user
authentication—which the example code does not account for.

Programming the grid
Most of the code we have written so far concerns configuring the grid to be displayed.
Often, we will want the grid to do something in response to user input—interaction.
One of the common interactions in a grid is to select or move the rows of data. Ext JS
refers to this interaction and how it's handled as the "selection model". Let's see how to
set up a selection model.

Working with cell and row selections
Ext JS grids delegate the monitoring of user interaction with the grids rows, cells,
and columns to a separate selection model object. The selection model is used to
determine how rows, columns, or cells are selected, and how many items can be
selected at a time. This allows us to create listeners for these selection events, along
with giving us a way to query which rows have been selected.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[113]

The built-in selection models are:

•	 CellSelectionModel: This lets the user to select a single cell from the grid
•	 RowSelectionModel: This lets the user select an entire row, or multiple rows

from the grid
•	 CheckBoxSelectionModel: This one uses a checkbox to enable row selection

Choosing a selection model is something that depends on your project's
requirements. For our movie database, we will use a row selection model, which is
the most commonly used type of selection model, and just happens to be the default.

The selection model is defined in the GridPanel config by using the selModel config
option—the shortform sm could also be used.

selModel: new Ext.grid.RowSelectionModel({
 singleSelect: true
})

We will also pass the selection model a config that specifies single row selections
only. This stops the user from selecting multiple rows at the same time.

Listening to our selection model for selections
Listeners for a grid can be included in many different places depending on the
desired interaction. Earlier, we applied a listener to our column model because
we wanted to listen for column activity.

Here, we will add a listener to the selection model because we want to know
when a user has selected a movie.

sm: new Ext.grid.RowSelectionModel({
 singleSelect: true,
 listeners: {
 rowselect: function(sm, index, record) {
 Ext.Msg.alert('You Selected',record.get('title'));
 }
 }
})

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[114]

The above listener code will result in the following display:

Selecting a row now brings up an alert dialog. Let's take a look at what is
happening here:

•	 A listener is set for the rowselect event. This waits for a row to be selected,
and then executes our function when this happens

•	 Our function is passed a selection model, the numeric index of the row
selected (starting with zero for the first row), and the data record of the
row that was selected

•	 Using the data record that our function received, we can grab the title
of the movie selected and put it into a message dialog

Manipulating the grid (and its data) with code
There are many ways to programmatically manipulate the grid and its data.
The key is to understand how the responsibility for managing the grid is broken
down between the objects that we use to put a grid together.

In the following discussions we will show use of the store and its associated records
for manipulating the data, and use of the selection model for determining how the
user is interacting with the grid.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[115]

Altering the grid at the click of a button
Here, we are going to add a top toolbar, which will have a button that brings up a
prompt allowing the movie title to be edited. This will use a toolbar and buttons
which we explored in Chapter 4, along with the MessageBox from Chapter 2.

tbar: [{
 text: 'Change Title',
 handler: function(){
 var sm = grid.getSelectionModel(),
 sel = sm.getSelected();
 if (sm.hasSelection()){
 Ext.Msg.show({
 title: 'Change Title',
 prompt: true,
 buttons: Ext.MessageBox.OKCANCEL,
 value: sel.get('title'),
 fn: function(btn,text){
 if (btn == 'ok'){
 sel.set('title', text);
 }
 }
 });
 }
 }
}]

The result of this addition is as follows:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[116]

All we are really doing here is changing the data in the data store, which updates
the grid automatically. The data in our database on the web server has stayed the
same, and the web server has no idea whether anything has changed. It's up to us to
communicate this change to the server via an AJAX request or via some other method
we may prefer to use. This is covered in the next chapter in case you are wondering.

Let's take a quick look at what's happening here:

•	 sm: The selection model is retrieved from our grid
•	 sel: We used the selection model to retrieve the row that has been selected
•	 sel.get: Using the get method of the currently selected record, we can grab

a field's value
•	 sel.set: Using the set method of the currently selected record, we can

change a field's value

This basic method can be used to create many fun user interactions. Our limitation
is that there are only 24 hours in a day, and sleep catches up with everyone!

Advanced grid formatting
As we are in the mood to create some user-grid interactions, let us add some more
buttons that do fun stuff.

We will now add a button to the top toolbar to allow us to hide or show a column.
We will also change the text of the button based on the visibility of the column—a
fairly typical interaction:

{
 text: 'Hide Price',
 handler: function(btn){
 var cm = grid.getColumnModel(),
 pi = cm.getIndexById('price');
 // is this column visible?
 if (cm.isHidden(pi)){
 cm.setHidden(pi,false);
 btn.setText('Hide Price');
 }else{
 cm.setHidden(pi,true);
 btn.setText('Show Price');
 }
 }
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[117]

We have used a new method here—getIndexById, which, as you can imagine,
gets the column index, which will be a number from zero to one less than the total
number of columns. This number is an indicator of where that column is in relation
to the other columns. In our grid code, the column price is the fourth column, which
means that the index is three because indexes start at zero.

Paging the grid
Paging requires that we have a server-side element (script) which will break up our
data into pages. Let's start with that. PHP is well-suited to this, and the code is easy
to understand and interpret into other languages. So we will use PHP for our example.

When a paging grid is paged, it will pass start and limit parameters to the
server-side script. This is typical of what's used with a database to select a
subset of records. Our script can read in these parameters and use them pretty
much verbatim in the database query. The start value represents which row of
data to start returning, and the limit specifies how many total rows of data to
return from the starting point.

Here is a typical PHP script that would handle paging. We will name the file
movies-paging.php.

<?php

// connect to database

$start = ($_REQUEST['start'] != '') ? $_REQUEST['start'] : 0;
$limit = ($_REQUEST['limit'] != '') ? $_REQUEST['limit'] : 3;

$count_sql = "SELECT * FROM movies";
$sql = $count_sql . " LIMIT ".$start.", ".$limit;
$arr = array();

If (!$rs = mysql_query($sql)) {

 Echo "{success:false}";

}else{

 $rs_count = mysql_query($count_sql);
 $results = mysql_num_rows($rs_count);

 while($obj = mysql_fetch_object($rs)){
 $arr[] = $obj;
 }

 Echo "{success:true,results:".$results.",
 rows:".json_encode($arr)."}";

}

?>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[118]

This PHP script will take care of the server-side part of paging. So now we just need
to add a paging toolbar to the grid—it's really quite simple!

Earlier we had used a top toolbar to hold some buttons for messing with the grid.
Now we are going to place a paging toolbar in the bottom toolbar slot (mostly
because I think paging bars look dumb on the top).

The following code will add a paging toolbar:

bbar: new Ext.PagingToolbar({
 pageSize: 3,
 store: store
})

And of course we need to change the url of our data store to the url of the PHP
server-side paging code. A totalProperty is also required when paging data.
This is the variable name that holds the total record count of rows in the database
as returned from the server side script. This lets the paging toolbar figure out
when to enable and disable the previous and next buttons among other things.

var store = new Ext.data.Store({
 url: 'movies-paged.php',
 reader: new Ext.data.JsonReader({
 root:'rows',
 totalProperty: 'results',
 idProperty:'id'
 }, Movie)
});

Instead of autoLoading the store, we kick off the Store's loading process by asking
the PagingToolbar to load the first page because it knows what parameters to send,
so we do not need to pass any in a programmatic call of the store's load method.

 grid.getBottomToolbar().changePage(1);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[119]

The result will look like this:

Grouping
Grouping grids are used to provide a visual indication that sets of rows are similar
to each other, such as being in the same movie genre. It also provides us with sorting
that is confined to each group. So if we were to sort by the price column, the price
would sort only within each group of items.

Grouping store
Grouping of data by common values of one field is provided by a special data
store class called GroupingStore.

The setup is similar to a standard store. We just need to provide a few more
configuration options, such as the sortInfo and the groupField. No changes to
the actual data are needed because Ext JS takes care of grouping on the client side.

 var store = new Ext.data.GroupingStore({
 url: 'movies.json',
 sortInfo: {
 field: 'genre',
 direction: "ASC"
 },
 groupField: 'genre',
 reader: new Ext.data.JsonReader({
 root:'rows',
 idProperty:'id'
 }, Movie)
 });

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Displaying Data with Grids

[120]

We also need to add a view configuration to the grid panel. This view helps the grid
to visually account for grouped data.

 var grid = new Ext.grid.GridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:400,
 width:520,
 store: store,
 autoExpandColumn: 'title',
 colModel: // column model goes here //,
 view: new Ext.grid.GroupingView({
 forceFit: true,
 groupTextTpl: '{text} ({[values.rs.length]} {[values.rs.length
> 1 ? "Items" : "Item"]})'
 })
 });

After making the changes needed for a grouping grid, we end up with something
that looks like this:

If you now expand the context menu for the column headings, you will see a new
item in the menu labeled Group By This Field that will allow the user to change
the grouping column on the fly.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 5

[121]

Summary
We have learned a lot in this chapter about presenting data in a grid. With this
new-found knowledge we will be able to organize massive amounts of data into
easy-to-understand grids.

Specifically, we covered:

•	 Creating data stores and grids for display
•	 Reading XML and JSON data from a server and displaying it in a grid
•	 Rendering cells of data for a well formatted display
•	 Altering the grid based on user interaction

We also discussed the intricacies of each of these elements, such as reading data
locally or from a server—along with paging and formatting cells using HTML,
images, and even lookups into separate data stores.

Now that we've learned about standard grids, we're ready to take it to the next level,
by making our grid cells editable just like a spreadsheet—which is the topic of the
next chapter.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids
In the previous chapter we learned how to display data in a structured grid that users
could manipulate. But one major limitation was that there was no way for the users
to edit the data in the grid in-line. Fortunately, Ext JS provides an EditorGridPanel,
which allows the use of form field type editing in-line—which we will learn about it in
this chapter. This works much like Excel or other spreadsheet programs, allowing the
user to click on and edit cell data in-line with the grid.

In this chapter we will learn to:

•	 Present the user with editable grids that are connected to a data store
•	 Send edited data back to the server, enabling users to update server-side

databases using the Ext JS editor grid
•	 Manipulate the grid from program code, and respond to events
•	 Use tricks for advanced formatting and creating more powerful editing grids

But first, let's see what we can do with an editable grid.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[124]

What can I do with an editable grid?
The EditorGridPanel is very similar to the forms we were working with earlier.
In fact, an editor grid uses the exact same form fields as our form. By using
form fields to perform the grid cell editing we get to take advantage of the same
functionality that a form field provides. This includes restricting input, and
validating values. Combine this with the power of an Ext JS GridPanel, and
we are left with a widget that can do pretty much whatever we want.

All of the fields in this table can be edited in-line using form fields such
as the text field, date field, and combo box.

Working with editable grids
The change from a non-editable grid to an editable grid is quite a simple process
to start with. The complexity comes into the picture when we start to create a
process to handle edits and send that data back to the server. Once we learn
how to do it, that part can be quite simple as well.

Let's see how we would update the grid we created at the start of Chapter 5 to make
the title, director, and tagline editable. Here's what the modified code will look like:

var title_edit = new Ext.form.TextField();

var director_edit = new Ext.form.TextField({vtype: 'name'});

var tagline_edit = new Ext.form.TextField({
 maxLength: 45
});

var grid = new Ext.grid.EditorGridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:200,
 width:520,
 clickstoEdit: 1,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[125]

 store: store,
 columns: [
 {header: "Title", dataIndex: 'title',
 editor: title_edit},
 {header: "Director", dataIndex: 'director',
 editor: director_edit},
 {header: "Released", dataIndex: 'released',
 renderer: Ext.util.Format.dateRenderer('m/d/Y')},
 {header: "Genre", dataIndex: 'genre',
 renderer: genre_name},
 {header: "Tagline", dataIndex: 'tagline',
 editor: tagline_edit}
]
});

There are four main things that we need to do to make our grid editable. These are:

•	 The grid definition changes from being Ext.grid.GridPanel
to Ext.grid.EditorGridPanel

•	 We add the clicksToEdit option to the grid config—this option is not
required, but defaults to two clicks, which we will change to one click

•	 Create a form field for each column that we would like to be editable
•	 Pass the form fields into our column model via the editor config

The editor can be any of the form field types that already exist in Ext JS, or a custom
one of our own. We start by creating a text form field that will be used when editing
the movie title.

var title_edit = new Ext.form.TextField();

Then add this form field to the column model as the editor:

{header: "Title", dataIndex: 'title', editor: title_edit}

The next step will be to change from using the GripPanel component to using
the EditorGridPanel component, and to add the clicksToEdit config:

var grid = new Ext.grid.EditorGridPanel({
 renderTo: document.body,
 frame: true,
 title: 'Movie Database',
 height: 200,
 width: 520,
 clickstoEdit: 1,
 // removed extra code for clarity
})

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[126]

Making these changes has turned our static grid into an editable grid. We can click
on any of the fields that we set up editors for, and edit their values, though nothing
really happens yet.

Here we see that some changes have been made to the titles of a few of the movies,
turning them into musicals. The editor gets activated with a single click on the cell
of data; pressing Enter, the Tab key, or clicking away from the field will record the
change, and pressing the Escape key will discard any changes. This works just like
a form field, because, well… it is a form field.

The little red tick that appears in the upper-left corner indicates that the cell
is 'dirty', which we will cover in just a moment. First, let's make some more
complex editable cells.

Editing more cells of data
For our basic editor grid, we started by making a single column editable.
To set up the editor, we created a reference to the form field:

var title_edit = new Ext.form.TextField();

Then we used that form field as the editor for the column:

{header: "Title", dataIndex: 'title', editor: title_edit}

Those are the basic requirements for each field. Now let's expand upon this knowledge.

Edit more field types
Now we are going to create editors for the other fields. Different data types
have different editor fields and can have options specific to that field's needs.

Any form field type can be used as an editor. These are some of the standard types:

•	 TextField

•	 NumberField

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[127]

•	 ComboBox

•	 DateField

•	 TimeField

•	 CheckBox

These editors can be extended to achieve special types of editing if needed, but
for now, let's start with editing the other fields we have in our grid—the release
date and the genre.

Editing a date value
A DateField will work perfectly for editing the release date column in our grid. So
let's use that. We first need to set up the editor field and specify which format to use:

release_edit = new Ext.form.DateField({
 format: 'm/d/Y'
});

Then we apply that editor to the column, along with the renderer that we used earlier:

{header: "Released", dataIndex: 'released', renderer:
 Ext.util.Format.dateRenderer('m/d/Y'), editor: release_edit}

This column also takes advantage of a renderer, which will co-exist with
the editor. Once the editor field is activated with a single click, the renderer
passes the rendering of the field to the editor and vice versa. So when we are
done editing the field, the renderer will take over formatting the field again.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[128]

Editing with a ComboBox
Let's set up an editor for the genres column that will provide us with a list of
the valid genres to select from—sounds like a perfect scenario for a combo box.

var genre_edit = new Ext.form.ComboBox({
 typeAhead: true,
 triggerAction: 'all',
 mode: 'local',
 store: genres,
 displayField: 'genre',
 valueField: 'id'
});

Simply add this editor to the column model, like we did with the others:

{header: "Genre", dataIndex: 'genre', renderer: genre_name,
 editor: genre_edit}

Now we end up with an editable field that has a fixed selection of options.

Reacting to a cell edit
Of course, we now need to figure out how to save all of this editing that we have been
doing. I am sure the end user would not be so happy if we threw away all of their
changes. We can start the process of saving the changes by listening for particular
edit events, and then reacting to those with our own custom handler. Before we start
coding this, we need to understand a bit more about how the editor grid works.

What's a dirty cell?
A field that has been edited and has had its value changed is considered to be
'dirty' until the data store is told otherwise. Records within the data store which
have been created, modified, or deleted are tracked, and maintained in a list
of uncommitted changes until the store is told that the database has been
synchronized with these changes.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[129]

We can tell the store to clear the dirty status of a record by calling the commit
method. This signifies that we have synchronized the database, and the record
can now be considered 'clean'.

Let's imagine e as an edit event object. We could restore the edited record
to its unmodified, 'clean' state by calling the reject method:

e.record.reject();

Alternatively, we can tell the store that the database has been synchronized,
and that the changes can be made permanent:

e.record.commit();

Reacting when an edit occurs
To save our users changes to the data store, we are going to listen for an edit event
being completed, which is accomplished by listening for the afteredit event.

The listener we need is added to the grid panel:

var grid = new Ext.grid.EditorGridPanel({
 // more config options clipped //,
 title: 'Movie Database',
 store: store,
 columns: // column model clipped //,
 listeners: {
 afteredit: function(e){
 if (e.field == 'director' && e.value == 'Mel Gibson'){
 Ext.Msg.alert('Error','Mel Gibson movies not allowed');
 e.record.reject();
 }else{
 e.record.commit();
 }
 }
 }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[130]

As with other events in Ext JS, the editor grid listeners are given a function to execute
when the event occurs. The function for afteredit is called with a single argument:
an edit object, which has a number of useful properties. We can use these properties
to make a decision about the edit that just happened.

Property Description
grid The grid that the edit event happened in
record The entire record that's being edited; other column values

can be retrieved using this objects get method
field The name of the column that was edited
value A string containing the new value of the cell
originalValue A string containing the original value of the cell
row The index of the row that was edited
column The index of the column that was edited

For instance, if we wanted to make sure that movies directed by Mel Gibson never
made it into our database, we could put a simple check in place for that scenario:

if (e.field == 'director' && e.value == 'Mel Gibson'){
 Ext.Msg.alert('Error','Mel Gibson movies not allowed');
 e.record.reject();
}else{
 e.record.commit();
}

First, we check to see that the director field is the one being edited. Next, we make
sure the new value entered for this field is not equal to Mel Gibson. If either of these
is false, we commit the record back to the data store. This means that once we call
the commit method, our primary data store is updated with the new value.

e.record.commit();

We also have the ability to reject the change—sending the changed value
into the black hole of space, lost forever.

e.record.reject();

Of course, all we have done so far is update the data that is stored in the browser's
memory. I'm sure you're just dying to be able to update a web server. We will get
to that soon enough.

Deleting and adding in the data store
We are going to create two buttons to allow us to alter the data store—to add
or remove rows of data. Let's set up a top toolbar (tbar) in the grid to contain
these buttons:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[131]

var grid = new Ext.grid.EditorGridPanel({
 // more config options clipped //,
 tbar: [{
 text: 'Remove Movie'
 }]
}

Removing grid rows from the data store
Let's expand on the remove button that we just added to the toolbar in our grid.
When this button is clicked, it will prompt the user with a dialog that displays
the movie title. If the Yes button is clicked, then we can remove the selected
row from the data store, otherwise we will do nothing.

{
 text: 'Remove Movie',
 icon: 'images/table_delete.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 var sm = grid.getSelectionModel(),
 sel = sm.getSelected();
 if (sm.hasSelection()){
 Ext.Msg.show({
 title: 'Remove Movie',
 buttons: Ext.MessageBox.YESNOCANCEL,
 msg: 'Remove ' + sel.data.title + '?',
 fn: function(btn){
 if (btn == 'yes'){
 grid.getStore().remove(sel);
 }
 }
 });
 };
 }
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[132]

Let's take a look at what is happening here. We have defined some variables that we
will use to determine if there were selections made, and what the selections were:

•	 sm: The selection model is retrieved from our grid
•	 sel: We used the selection model to retrieve the row that has been selected
•	 grid.getStore().remove(sel): Passing the data store remove function

will remove that record from the store and update the grid

It's as simple as that. The local data store that resides in the browser's memory
has been updated. But what good is deleting if you can't add anything—just be
patient, grasshopper!

Adding a row to the grid
To add a new row, we use the record constructor that we create to represent a
movie object, and instantiate a new record. We used the Ext.data.Record.create
function to define a record constructor called Movie, so to insert a new movie into
the store is as simple as this:

{
 text: 'Add Movie',
 icon: 'images/table_add.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 grid.getStore().insert(0, new Movie({
 title: 'New Movie',
 director: '',
 genre: 0,
 tagline: ''
 })
);
 grid.startEditing(0,0);
 }
}

The first argument to the insert function is the point at which the record inserted.
I have chosen zero, so the record will be inserted at the very top. If we wanted to
insert the row at the end we could simply retrieve the row count for our data store.
As the row index starts at zero and the count at one, incrementing the count is not
necessary because the row count will always be one greater than the index of the last
item in the store.

grid.getStore().insert(
 grid.getStore().getCount(),
 new Movie({

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[133]

 title: 'New Movie',
 director: '',
 genre: 0,
 tagline: ''
 })
);
grid.startEditing(grid.getStore().getCount()-1,0);

Now let's take a closer look at inserting that record. The second argument
is the new record definition, which can be passed with the initial field values.

 new Movie({
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''
 })

After inserting the new row, we call the startEditing method that will activate a
cell's editor. This function just needs a row and column index number to activate
the editor for that cell.

grid.startEditing(0,0);

This gives our user the ability to start typing the movie title directly after clicking
the Add Movie button. Quite a nice user interface interaction which our end users
will no doubt love.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[134]

Saving edited data to the server
Everything we have done so far is related to updating the local data store residing in
the memory of the web browser. More often than not, we will want to save our data
back to the server to update a database, file system, or something along those lines.

This section will cover some of the more common requirements of grids used
in web applications to update server-side information.

•	 Updating a record
•	 Creating a new record
•	 Deleting a record

Sending updates back to the server
Earlier, we set up a listener for the afteredit event. We will be using this
afteredit event to send changes back to the server on a cell-by-cell basis.

To update the database with cell-by-cell changes, we need to know three things:

•	 field: What field has changed
•	 Value: What the new value of the field is
•	 record.id: Which row from the database the field belongs to

This gives us enough information to be able to make a distinct update
to a database. We communicate with the server (using Ajax) by calling
the connection request method.

listeners: {
 afteredit: function(e){

 Ext.Ajax.request({
 url: 'movie-update.php',
 params: {
 action: 'update',
 id: e.record.id,
 field: e.field,
 value: e.value
 },
 success: function(resp,opt) {
 e.record.commit();
 },
 failure: function(resp,opt) {
 e.record.reject();
 }

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[135]

 });
 }
}

This will send a request to the movie-update.php script with four parameters in the
form of post headers. The params we will pass into the request methods config as an
object, which are all sent through the headers to our script on the server side.

The movie-update.php script should be coded to recognize the 'update' action
and then read in the id, field, and value data and then proceed to update the file
system or database, or whatever else we need to do to make the update happen on
the server side.

This is what's available to us when using the afteredit event:

Option Description
grid Reference to the current grid
record Object with data from the row being edited
field Name of the field being edited
value New value entered into the field
originalValue Original value of the field
row Index of the row being edited—this will help in finding it again
column Index of the column being edited

Deleting data from the server
When we want to delete data from the server, we can handle it in very much the
same way as an update—by making a call to a script on the server, and telling it
what we want to be done.

For the delete trigger, we will use another button in the grids toolbar, along with a
confirm dialog to ask the user if they are sure they want to delete the record before
actually taking any action.

{
 text: 'Remove Movie',
 icon: 'images/table_delete.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 var sm = grid.getSelectionModel(),
 sel = sm.getSelected();
 if (sm.hasSelection()){
 Ext.Msg.show({

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[136]

 title: 'Remove Movie',
 buttons: Ext.MessageBox.YESNOCANCEL,
 msg: 'Remove '+sel.data.title+'?',
 fn: function(btn){
 if (btn == 'yes'){
 Ext.Ajax.request({
 url: 'movie-update.php',
 params: {
 action: 'delete',
 id: e.record.id
 },
 success: function(resp,opt) {
 grid.getStore().remove(sel);
 },
 failure: function(resp,opt) {
 Ext.Msg.alert('Error',
 'Unable to delete movie');
 }
 });
 }
 }
 });
 };
 }
}

Just as with edit, we are going to make a request to the server to have the row
deleted. The movie-update.php script would see that the action is delete
and the record id that we passed; it will then execute the appropriate action
to delete the record on the server side.

Saving new rows to the server
Now we're going to add another button that will add a new record. It sends
a request to the server with the appropriate parameters and reads the response
to figure out what the insert id from the database was. Using this insert id,
we are able to add the record to our data store with the unique identifier generated
on the server side for that record.

{
 text: 'Add Movie',
 icon: 'images/table_add.png',
 cls: 'x-btn-text-icon',
 handler: function() {

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[137]

 Ext.Ajax.request({
 url: 'movies-update.php',
 params: {
 action: 'create',
 title: 'New Movie'
 },
 success: function(resp,opt) {
 var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;
 grid.getStore().insert(0,
 new Movie({
 id: insert_id,
 title: 'New Movie',
 director: '',
 genre: 0,
 tagline: ''
 }, insert_id)
);
 grid.startEditing(0,0);
 },
 failure: function(resp,opt) {
 Ext.Msg.alert('Error','Unable to add movie');
 }
 });
 }
}

Much like editing and deleting, we are going to send a request to the server to have
a new record inserted. This time, we are actually going to take a look at the response
to retrieve the insert id (the unique identifier for that record) to pass to the record
constructor, so that when we start editing that record, it will be easy to save our
changes back to the server.

success: function(resp,opt) {
 var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;
 grid.getStore().insert(0,
 new Movie({
 id: insert_id,
 title: 'New Movie',
 director: '',
 genre: 0,
 tagline: ''

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[138]

 }, insert_id)
);
 grid.startEditing(0,0);
}

Our success handler accepts a couple of arguments; the first is the response object,
which has a property that contains the response text from our movie-update.php
script. As that response is in a JSON format, we're going to decode it into a usable
JavaScript object and grab the insert id value.

var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;

When we insert this row into our data store, we can use this insert id that
was retrieved.

RowEditor plugin
One of the more popular ways to edit data in a grid uses a User Extension called the
RowEditor. This extension presents the user with all the editable fields at once, along
with save and cancel buttons. This allows editing of all fields within a record before
committing all changes at once. Since this is a plugin, we simply need to include the
additional JavaScript and CSS files and configure our Grid to use the plugin.

Using this plugin requires that we include the RowEditor JavaScript file, which can
be found in the examples/ux folder of the Ext JS SDK download. Be sure to include
it directly after the ext-all.js file.

<script src="../ux/RowEditor.js"></script>

We also need to include the RowEditor styles found in the ux/css folder, (the file
is called RowEditor.css,) along with the two images needed that are found in the
ux/images folder, called row-editor-bg.gif and row-editor-btns.gif.

Now we just need to configure the EditorGrid to use this plugin.

var grid = new Ext.grid.EditorGridPanel({
 // more config options clipped //,
 title: 'Movie Database',
 store: store,
 columns: // column model clipped //,
plugins: [new Ext.ux.grid.RowEditor()]

});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[139]

From here we have the plugin in place, but it doesn't really do much as far as saving
the changes. So let's throw a writable data store in the mix to make this editor plugin
much more powerful.

Writable store
In our final example of this chapter we will combine use of the RowEditor
with a writable data store to implement full CRUD functionality for movie
database maintenance.

First, let's examine how to set up a writable data store. An Ext JS 3.0+ data store
understands four operations to perform which require synchronization with a server:

•	 Create: A record has been inserted into the data store
•	 Read: Data store needs to be filled from the server
•	 Update: A record has been modified within the data store
•	 Destroy: A record has been removed from the data store

To enable the data store to perform this synchronization, we configure it with an API
object which specifies a URL to use for each operation. In our case we use the same
PHP script passing a parameter specifying the action to perform:

api: {
 create : 'movies-sync.php?action=create',
 read : 'movies-sync.php?action=read',
 update: 'movies-sync.php?action=update',
 destroy: 'movies-sync.php?action=destroy'
},

This config option takes the place of the url config which we specified when the
store was a simple load-only store.

We also need to configure a writer which will serialize the changes back into the
format that the reader uses. In our case, we were using a JsonReader, so we use a
JsonWriter. We tell the JsonWriter to submit the full record field set upon update,
not only the modified fields because the PHP script creates an SQL statement which
sets all of the row's columns:

writer: new Ext.data.JsonWriter({
 writeAllFields: true
}),

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[140]

We configure the data store to not automatically synchronize itself with the server
whenever its data changes, as otherwise it would synchronize during row editing,
and we want to submit our changes only when we have edited the whole row:

autoSave: false,

We must not forget to handle exceptions that may happen with the complex
operations being performed by the data store. A data store may fire an exception
event if it encounters an error, and handling these errors is highly recommended.

It also relays exception events from the communication layer (The Proxy object
we mentioned in the last chapter). These will pass a type parameter which
specifies whether it was the client or the server which produced the error:

listeners: {
 exception: function(proxy, type, action, o, result, records) {
 if (type = 'remote') {
 Ext.Msg.alert("Could not " + action, result.raw.message);
 } else if (type = 'response') {
 Ext.Msg.alert("Could not " + action, "Server's response
could not be decoded");
 } else {
 Ext.Msg.alert("Store sync failed", "Unknown error");
 }
 }
}

You can test this error handling by triggering a "deliberate mistake" in the PHP
update script. If you submit one of the textual fields containing an apostrophe, the
creation of the SQL statement will be incorrect because it concatenates the statement
placing the values within apostrophes. The example will display an alert box
informing the user of a server side error in an orderly manner.

To configure the UI side of this, all we need to do is create a RowEditor, and specify
it as a plugin of the grid:

var rowEditor = new Ext.ux.grid.RowEditor({
 saveText: 'Update',
 listeners: {
 afteredit: syncStore
 }
});
var grid = new Ext.grid.GridPanel({
 renderTo: document.body,
 plugins: rowEditor,
...

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 6

[141]

The RowEditor uses the editors configured into the ColumnModel in the same way as
our previous examples did. All we need to do is specify a listener for the afteredit
event which the RowEditor fires when the user clicks the Update button after a
successful edit.

The function to make the store synchronize itself with the server is very simple:

 function syncStore(rowEditor, changes, r, rowIndex) {
 store.save();
 }

Running the final example in the chapter, and double-clicking to edit a row
will look like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Editor Grids

[142]

Summary
The Ext JS Editor Grid functionality is one of the most advanced portions of the
framework. With the backing of the Ext data package, the grid can pull information
from a remote server in an integrated manner—this support is built into the grid
class. Thanks to the numerous configuration options available, we can present this
data easily, and in a variety of forms, and set it up for manipulation by our users.

In this chapter, we've seen how the data support provided by the grid offers an
approach to data manipulating that will be familiar to many developers. The
amend and commit approach allows fine-grained control over the data that is sent
to the server when used with a validation policy, along with the ability to reject
changes. As well as amending the starting data, we've seen how the grid provides
functionality to add and remove rows of data.

We've also shown how standard Ext JS form fields such as the ComboBox can
be integrated to provide a user interface on top of this functionality. With such
strong support for data entry, the grid package provides a very powerful tool for
application builders.

For the first time in this book we have utilized a User Extension to create additional
functionality that did not previously exist in the Ext JS library. This functionality can
be easily shared and updated independent of the Ext JS library, which opens up a
huge world of possibilities.

In the next chapter, we'll demonstrate how components such as the grid can be
integrated with other parts of an application screen by using the extensive layout
functionality provided by the Ext JS framework.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts
One of those foundation classes that we have already seen in action is the Container
class. We have used panels, and panels are Containers (because they inherit from
that base class). They can contain child components. These child components may
of course be Containers themselves.

A Container delegates the responsibility for rendering its child components into its
DOM structure to a layout manager. The layout manager renders child components,
and may, if configured to do so, perform positioning and sizing on those child
components.

This is one of the most powerful concepts within the Ext JS library, and it is
what turns a collection of forms, grids, and other widgets, into a dynamic, fluid
web application which behaves like a desktop application. It takes some time to
understand this concept, so let's examine it.

What is a layout manager?
A layout manager is an object which renders child components for a Container.

The default layout manager simply renders child components serially into the
Container's DOM, and then takes no further responsibility. No sizing is performed
by the default layout manager and so if the Container ever changes size, the child
components will not be resized.

Other built-in layout managers, depending on their type and configuration, apply
sizing and positioning rules to the child components.

A layout manager may also examine hints configured into the child components to
decide how the child component is to be sized and positioned. The form and border
layout are examples of this.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[144]

To see these principles in action, let's take a look at our first example that will use
an hbox layout in our panel to arrange two child BoxComponents. The requirement
is that the two child boxes are arranged horizontally, with a 50/50 width allocation,
and they must fill the container height. The code which creates the panel is:

new Ext.Panel({
 renderTo: document.body,
 title: "I arranged two boxes horizontally using 'hbox' layout!",
 height: 400,
 width: 600,
 layout: {
 type: 'hbox',
 align: 'stretch',
 padding: 5
 },
 items: [{
 xtype: 'box',
 flex: 1,
 style: 'border: 1px solid #8DB2E3',
 margins: '0 3 0 0',
 html: 'Left box'
 }, {
 xtype: 'box',
 flex: 1,
 style: 'border: 1px solid #8DB2E3',
 margins: '0 0 0 2',
 html: 'Right box'
 }],
 style: 'padding:10px'
});

The layout configuration is an object which specifies not only which layout class is to
be used, but also acts as a config object for that class. In this case we use layout type
hbox, which is a layout that arranges child components as a row of horizontal boxes.

The configuration options are all documented in the API docs, but two that we use
here are:

•	 padding: Specifies how much internal padding to leave within the
Container's structure when sizing and positioning children. We want
them to be inset so that we can visually appreciate the structure.

•	 align: Specifies how to arrange the height of the children. 'stretch'
means that they will be stretched to take up all available height.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[145]

The hbox layout manager reads hint configurations from the child components when
arranging them. Two of the configuration options that we use here are:

•	 flex: A number which specifies the ratio of the total of all flex values to
use to allocate available width. Both children have a value of 1, so the space
allocated to each will be 1/2 of the available width.

•	 margins: The top, right, bottom, and left margin width in pixels. We want
to see a neat five pixel separation between the two child boxes.

The result of running this example is:

This simple panel is not resizable as we have constructed it. As we are using a layout
which applies rules to how child items are arranged, if the Panel were to change size,
both child items would have their sizes and positions recalculated according to the
configuration.

This is the power of the layout system which is an integral part of Container/
Component nesting: dynamic sizing.

So what layouts are available?
While designing your UI, you must first plan how you require any child components
within it to be arranged and sized.

With this in mind, you must then plan which layouts to use to achieve that goal. This
requires an appreciation of what is available. The layout types built into Ext JS will
now be discussed.

AbsoluteLayout
Type: 'absolute'. This layout allows you to position child components at X and Y
coordinates within the Container. This layout is rarely used.

AccordionLayout
Type: 'acordion'. This layout may only use panels as child items. It arranges
the panels vertically within the Container, allowing only one of the panels to be
expanded at any time. The expanded panel takes up all available vertical space,
leaving just the other panel headers visible.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[146]

Note that this layout does not by default set the child panels' widths, but allows
them to size themselves. To force it to size the child panel's widths to fit exactly
within the Container, use autoWidth: false in the layout config object.

AnchorLayout
Type: 'anchor'. This layout manager reads hints from the child components to
anchor the widths and heights of the child components to the right and bottom
Container borders. This layout reads an optional anchor hint from the child items.
This is a string containing the width anchor and the height anchor. This layout can
be quite useful for form items.

BorderLayout
Type: 'border'. This layout manager docks child components to the north, south,
east, or west borders of the Container. Child components must use a region
config to declare which border they are docked to. There must always be a region:
'center' child component which uses the central space between all docked
children. North and south child components may be configured with an initial
height. East and west child components may be configured with an initial width.

CardLayout
Type: 'card'. This layout manager arranges child components in a stack like a deck
of cards, one below the other. The child components are sized to fit precisely within
the Container's bounds with no overflow. Only one child component may be visible
(termed active) at once. The TabPanel class uses a CardLayout manager internally to
activate one tab at a time.

ColumnLayout
Type: 'column'. The ColumnLayout manager arranges child components floating
from left to right across the Container. Hints may be used in the child components
to specify the proportion of horizontal space to allocate to a child. This layout allows
child components to wrap onto the next line when they overflow the available width.

FitLayout
Type: 'fit'. This layout manager manages only one child component. It handles
sizing of the single child component to fit exactly into the Container's bounds with
no overflow. This layout is often used in conjunction with a Window Component.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[147]

FormLayout
Type: 'form'. This is the default layout for FormPanels and FieldSets. It extends
AnchorLayout, so has all the sizing abilities of that layout. The key ability of
FormLayout is that it is responsible for rendering labels next to form fields. If you
configure a field with a fieldLabel, it will only appear if the field is in a layout
which is using FormLayout.

HBoxLayout
Type: 'hbox'. This layout manager arranges child components horizontally across
the Container. It uses hints in the child components to allocate available width in a
proportional way. It does not wrap overflowing components onto another line.

TableLayout
Type: 'table'. This layout manager allows the developer to arrange child
components in a tabular layout. A wrapping <table> element is created, and
children are each rendered into their own <td> elements. TableLayout does not size
the child components, but it accepts rowspan and colspan hints from the children to
create a table of any complexity in which each cell contains a child component.

VBoxLayout
Type: 'vbox'. The vertical brother of 'hbox', this layout manager arranges child
components one below the other, allocating available Container height to children in
a proportional way.

A dynamic application layout
Our first example showed how an individual Container—a panel—which we
programmatically render can arrange its child items according to a layout.

To attain a desktop-like application layout, we will use the whole browser window.
There is a special Container class called a Viewport which encapsulates the whole
document body, and resizes itself whenever the browser changes size.

If it is configured with a size-managing layout, that layout will then apply its sizing
rules to any child components. A Viewport uses the <body> as its main element.
It does not need to be programmatically rendered.

In the remaining layout examples, we will use a Viewport to create a fully
dynamic application.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[148]

Our first Viewport
The most common layout manager used in Viewports is the border layout.
Applications frequently make use of border regions to represent header, navigation
bar, footer, etc. In our examples we will use all five regions (don't forget that only
the center region is required!).

Border layouts offer split bars between regions to allow them to be resized. It also
allows border regions to be collapsed, with the center region then expanding to fill
the free space. This offers great flexibility to the user in arranging child components.

Viewports may of course use any layout manager. However, we will be using a
border layout in our Viewports from now on.

All our regions will be panels. (Config objects with no xtype generally default to
using a panel as the child component). As with all Containers, any component can
be used as a child component. We make use of the automatic border display, and
the header element which the panel class offers.

In the child components of our border layout example, we specify several hints
for the layout manager to use. These include:

•	 region: The border to dock the child component to.
•	 split: This is only used by the border regions, not the center region. If

specified as true, the child component is rendered with a splitbar separating
it from the center region, and allows resizing. Mouse-based resizing is
limited by the minWidth/minHeight and maxWidth/maxHeight hint configs.

•	 collapsible: This is only used by border regions. It specifies that the
child component may collapse towards its associated border. If the child
component is a panel, a special collapse tool is rendered in the header. If the
region is not a panel (only panels have headers), collapseMode: 'mini'
may be used (see below).

•	 collapseMode: If specified as 'mini', then a mini collapse tool is rendered
in the child component's splitbar.

•	 margins: This specifies the margin in pixels to leave round any child
component in the layout. The value is a space-separated string of numeric
values. The order is the CSS standard of top, right, bottom, left. I recommend
use of five pixel margins between border regions to provide visual separation
for the user. Remember that where regions adjoin, only one of them needs a
margin! This is illustrated in our first example.

•	 cmargins: A margins specification to use when a region is collapsed.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[149]

Running the first Viewport example, you should see the following user interface:

Notice the margins providing visual separation of the regions. Also, notice the mini
collapse tool in the splitbar of the west region. If you resize the browser, the north
and south regions maintain their height, and east and west their width, while the
center occupies the remaining space.

Let's examine the code which created this sample layout:

var viewport = new Ext.Viewport({
 layout: "border",
 defaults: {
 bodyStyle: 'padding:5px;',
 },
 items: [{
 region: "north",
 html: 'North',
 margins: '5 5 5 5'
 },{
 region: 'west',
 split: true,
 collapsible: true,
 collapseMode: 'mini',
 title: 'Some Info',
 width: 200,
 minSize: 200,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[150]

 html: 'West',
 margins: '0 0 0 5'
 },{
 region: 'center',
 html: 'Center',
 margins: '0 0 0 0'
 },{
 region: 'east',
 split: true,
 width: 200,
 html: 'East',
 margins: '0 5 0 0'
 },{
 region: 'south',
 html: 'South',
 margins: '5 5 5 5'
 }]
});

All the child components are specified by simple config objects. They have a region
hint and they use the html config which is from the Component base class. The html
config specifies HTML content for the Component. This is just to indicate which
region is which. There are better ways for the child Panels to be given content,
which we will see later in this chapter.

Take note of how the north region has a five pixel border all around. Notice then
how all the regions under it (west, center and east) have no top border to keep
consistent separation.

Nesting: child components may be
Containers
In our third example, we will make the center region into something more useful
than a panel containing simple HTML.

We will specify the center child component as a TabPanel. TabPanel is a Container,
so it has a single child component. A panel with some simple HTML in this case!

The only difference in this example is that the center config object has an xtype
which means it will be used to create a TabPanel (instead of the default panel),
and it has an items config specifying child panels:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[151]

{
 region: 'center',
 xtype: 'tabpanel',
 activeTab: 0,
 items: [{
 title: 'Movie Grid',
 html: 'Center'
 }],
 margins: '0 0 0 0'
}

This results in the following display:

The TabPanel class uses a card layout to show only one of several child components
at once. Configure it with an activeTab config specifying which one to show initially.
In this case it's our 'Movie Grid' panel.

Of course the child component we have configured in our TabPanel is not a grid.
Let's add the GridPanel we created in Chapter 5 to our TabPanel to demonstrate
the card switching UI which the TabPanel offers:

{
 region: 'center',
 xtype: 'tabpanel',
 bodyStyle: '',
 activeTab: 0,
 items: [{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[152]

 title: 'Movie Grid',
 xtype: 'grid',
 store: store,
 autoExpandColumn: 'title',
 colModel: new Ext.grid.ColumnModel({
 columns: […] // not shown for readability
 }),
 view: new Ext.grid.GroupingView(),
 sm: new Ext.grid.RowSelectionModel({
 singleSelect: true
 })
 },{
 title: 'Movie Descriptions'
 }],
 margins: '0 0 0 0'
}

In this example, we can see that the first child component in the TabPanel's items
array is a grid. Take note of this to avoid a common pitfall encountered by first time
Ext JS users. It can be tempting to overnest child components within extra Container
layers, by placing a grid within a panel. Many that attempt to use a grid as a tab first
time end up wrapping the grid within a panel like this:

{
 xtype: 'tabpanel',
 items: [{ // Open Panel config with no layout
 items: [{
 xtype: 'grid', // Panel contains a grid
 …
 }]
 }]
}

If you read the above code correctly, you can see why it is incorrect and inefficient,
and will result in a buggy display.

Recall that the default child Component type to create if no xtype is specified is
a panel. So that single child Component of the TabPanel is a panel which itself
contains a grid. It contains a grid, but it has no layout configured. This means that
the grid will not be sized, and has an extra Component layer that serves no purpose.

This problem is referred to as overnesting and when overnesting is combined with
omission of layout configuration, results are unpredictable. Do not think of putting
a grid in a tab, think of using a grid as a tab.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[153]

Our correctly configured layout will result in the following display:

In the above example, the Viewport has sized its center child—the TabPanel—and
the TabPanel's card layout have sized its children. The grid is sized to fit as a tab.
The second tab is not functional as yet. Let's move on to that next.

Accordion layout
Now that we have a functioning application of sorts, we can demonstrate another
layout manager.

An accordion is a familiar layout pattern in modern web applications. Multiple child
components are stacked up vertically with their content areas collapsed. Only one
may be expanded at a time.

The accordion layout allows this to be set up very easily. Just use panels as children
of a Container which uses the accordion layout, and the panel's headers are used as
placeholders which may be clicked to expand the content area:

{
 xtype: 'container',
 title: 'Movie Descriptions',
 layout: 'accordion',
 defaults: {
 border: false

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[154]

 },
 items: [{
 title: 'Office Space',
 autoLoad: 'html/1.txt'
 },{
 title: 'Super Troopers',
 autoLoad: 'html/3.txt'
 },{
 title: 'American Beauty',
 autoLoad: 'html/4.txt'
 }]
}

Notice that here, we are using xtype: 'container' as the accordion. We do
not need borders, or toolbars, or a header, so we do not need the complex DOM
structure of the panel class; the simple Container will do.

The defaults config is applicable to any Container to provide default configs for child
components. In this case, because the TabPanel provides its own borders, we do not
want another layer of borders.

Running this example code and selecting the Movie Descriptions tab will result
in the following display:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[155]

Clicking the headers in the accordion expands the panel's body, and displays the
description which was loaded into the child panel using the autoLoad config option.
This option may be used to load purely decorative HTML.

Loading HTML in this way only loads HTML fragments, not full HTML
documents. Scripts and stylesheets will not be evaluated. This option
should not be used as a substitute for adding child components if
Components are really what is required.

A toolbar as part of the layout
To make the application more useful, we can add a toolbar to the user interface
to add buttons and menus. We encountered these classes in Chapter 4, Menus,
Toolbars, and Buttons.

We can use a toolbar as the north region of the Viewport. Again, note that we do
not put the toolbar inside a north region; we use it as a north region to avoid the
overnesting problem.

To ease the clarity of code which creates the Viewport, we create the config object
for the toolbar and reference it with a variable:

var toolbarConfig = {
 region: 'north',
 height: 27,
 xtype: 'toolbar',
 items: [' ', {
 text: 'Button',
 handler: function(btn){
 btn.disable();
 }
 }, '->', {
 …
};

The config object we create contains the expected region and xtype properties.
Border layout requires that border regions be sized, so we give the toolbar a height
of 27 pixels. The items in it, buttons, spacers, separators, fills, and input fields have
been covered in Chapter 4.

As with the toolbar examples in Chapter 4, the handling functions are members of a
singleton object. In this case, we have an object referenced by a var Movies which
offers methods to operate our application.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[156]

The resulting display will look like this:

Using a FormPanel in the layout
We can use that empty west region to do something useful now. We can use
a FormPanel in the west region to edit the details of the selected movie.

We will configure a listener on the rowselect event of the SelectionModel to load
the selected movie record into the FormPanel:

sm: new Ext.grid.RowSelectionModel({
 singleSelect: true,
 listeners: {
 rowselect: Movies.loadMovieForm
 }
})

The listener function is a member of the Movies object:

loadMovieForm: function(sm, rowIndex, rec) {
 editRecord = rec;
 movieForm.getForm().loadRecord(rec);
},

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[157]

The selected record is assigned to the editRecord variable which is private to the
Movies object. This is so that other member functions can use the record later.

The getForm method of the FormPanel returns the BasicForm object which manages
the input fields within a FormPanel. The loadRecord method of the BasicForm copies
values from the data fields of the record into the form's input fields, using the form
fields names to match up the data.

Our example does not handle form submission yet, but it does update the record
when you click the Submit button. The submit handler function is a member
function of the Movies singleton:

submitMovieForm: function(){
 if (editRecord) {
 movieForm.getForm().updateRecord(editRecord);
 if (store.groupField &&
 editRecord.modified[store.groupField]) {
 store.groupBy(store.groupField, true);
 }
 movieForm.getForm().submit({
 success: function(form, action){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(form, action){
 Ext.Msg.alert('Warning', action.result.errormsg);
 }
 });
 }
},

First we update the record we are currently editing using the updateRecord method
of the BasicForm. This will automatically update the movie's row in the grid.

However if we modify the field that the grid is grouped by, the store will not detect
this and regroup itself, so the above contains code to ensure that the grouping state is
kept up to date. If the store is grouped and the modified property of the record (see
the API docs for the Record class) contains a property named after the store's group
field, then we explicitly tell the store to regroup itself. As usual, a modification of the
store causes automatic update of the grid UI.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[158]

If we change the genre of the first movie, and Submit it, the resulting display will
look like this:

The form you see above shows how the FormLayout class will render labels
attached to its child components. The FormLayout class injects into each child
component, a reference to the Component's <label> element.

FormPanels, and all Containers which use FormLayout may be configured with
options which modify how labels are displayed.

These configuration options are read from the
Container's config, not the layout config object.

•	 hideLabels: Set to true to hide all field labels in the Container.
•	 labelWidth: The width in pixels to allow for labels. All labels within

the Container will be of this width.
•	 LabelSeparator: A string specifying a separator to be appended to the end

of each label. This defaults to ":". To indicate that no separator is required,
specify this as new String().

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[159]

•	 labelAlign – A string, one of "left", "right" or "top". It specifies whether
to align the label text left justified towards the left margin of the Container,
right justified towards the input field, or above the field.

•	 LabelPad: Defaults to 5. The left padding in pixels to apply to field labels.

This example also illustrates the inheritance of the FormLayout manager. It inherits
from and illustrates the abilities of AnchorLayout.

AnchorLayout
One very dynamic and useful layout is the anchor layout, which is enabled by
default within a form panel—we used this layout unknowingly in the Chapter 3. It is
used to allow the form fields within the form panel to expand and contract based on
the size of that panel. Until now we have only used it to control width and it is only
percentage based, but it is much more flexible than that.

The single line input fields in the example form use only a width anchor. They are
configured with

anchor: '100%'

This means that the child component always occupies the full container width.
You can verify this by dragging the west region's splitbar.

We can also use the anchor layout to adjust the height of the textarea in our 'Movie
Information Form' so it fills the remaining space. By measuring the used space, and
setting that as the amount of space to subtract, we get a textarea that sizes itself to the
available space. We will also want to remove the fixed height that was set earlier.

{
 xtype: 'textarea',
 name: 'description',
 hideLabel: true,
 emptyText: 'Description',
 labelSeparator: '',
 anchor: '100% -185'

}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[160]

I have also added an 'emptyText' config to this field to give it a label of sorts. The
anchor can be specified in either pixels or percentage—if pixels, then the field will
be sized to 100 percent of the container, minus the amount of pixels specified,
positive numbers will add pixels. Percentage numbers are based on the size of
the entire container.

This layout uses the available height. A more reliable way of doing this which does
not use hardcoded values is illustrated in the next example.

More layouts
In our final example we add some more interactivity to the application, which
demonstrates the dynamic nature of Ext JS layouts. We also add some further nested
layouts to illustrate that nesting of Containers can be continued to any depth.

In this example we add another child item to the TabPanel. Because we do not need
a header, or borders or toolbars, we add a Container:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[161]

{
 xtype: 'container',
 title: 'Nested Layout',
 layout: 'border',
 items: [{
 region: 'north',
 height: 100,
 split: true,
 margins: '5 5 0 5',
 html: 'Nested North'
 },{
 region: 'center',
 html: 'Nested Center',
 margins: '0 5 5 5'
 }]
}

We choose a border layout with only two child panels as the regions. They are
configured with margins to achieve visual separation, and separated by a splitbar.
To make more use of these panels, remember that they can be configured with a
layout, and child items of their own.

Vbox layout
In this last example, the west FormPanel is now configured with two child
components. It uses the vbox layout manager to distribute its available vertical
space between them:

layout: {
 type: 'vbox',
 align: 'stretch',
 padding: 5
},

The align config specifies that all child components are to be stretched to the full
width of the Container. The padding config specifies the internal padding width
of the Container to separate its contents from its border.

The top Component is a Container which uses layout: 'form' to render the
single line input fields with their labels. This takes up whatever height it needs.
Its autoHeight config means that it will not be sized by any layout manager.

The second Component is the TextArea and is configured with flex: 1 which
means that it is allocated any remaining vertical space.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[162]

Hbox layout
Let's play with the hbox layout and a pair of grids by laying them out horizontally.
One of the items will take 25 percent of the space, and the other will take the
remaining 75 percent. We can construct this type of layout using the hbox layout
and flex config option in each panel within this layout.

{
 title: 'Filter Test',
 xtype: 'container',
 layout: 'hbox',

 align: 'stretch',

 items: [{
 autoHeight: true,
 border: false,
 flex: 1,

 title: 'Genre Filter',
 xtype: 'grid',
 columns: [{header: 'Genre',dataIndex: 'genre',id: 'genre'}],
 store: genres,
 autoExpandColumn: 'genre'
 },{
 autoHeight: true,
 border: false,
 flex: 3,

 title: 'Movie Filter Results',
 ref: 'filteredGrid',
 xtype: 'grid',
 store: store,
 autoExpandColumn: 'title',
 columns: [
 /* movie grid column model */
]
 }]
}

The flex number we define represents the distribution of space for each panel within
the total available area, so if we have 1 in the first panel, and 3 in the second, then
the 1 would represent 25 percent of the space, and 3 would represent 75 percent.
This could easily be changed to thirds instead of quarters by changing the 3 to 2.
Whatever the total number is, Ext JS will take care of dividing up the space properly.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[163]

The example above would result in a layout that looked like the following:

Our next important config is align, which sounds a bit different than it actually
is. This represents where the panels will vertically align themselves, if within a
horizontal layout, and vice versa. Here are the options available for the align config:

Option Layout Description
left VBox This is the default alignment, which stacks all the items

against the left side of the container.
center VBox Aligns all items in the center of the container.
stretch VBox/HBox Stretches all items to fill the space available
stretchmax VBox/HBox Stretches all the items to the width/height of the largest

item.
top Hbox Stacks all the items against the top edge of the container.
middle HBox Aligns all items in the middle of the container.

Most of the times I find myself using the stretch align option. There is also a pack
config that can be used to align items in the same direction of the layout, so for
instance a Hbox layout with the pack set to 'start' would align all our items to the
left side of the container.

Dynamically changing components
The user interactions available in this example illustrate how we can programmatically
manipulate layouts and child items.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[164]

We have configured rowclick and rowdblclick event listener into the grid:

listeners: {
 rowdblclick: Movies.showFullDetails,
 rowclick: Movies.showFullDesc
},

The handlers are methods of the Movies singleton object. We want the single click
handler to only perform its functionality if not followed quickly by another click
(a double click gesture).

To do this, the Movies singleton creates a DelayedTask which is configured with
the method to load the movie information panel. The click handler function
schedules this to execute with a 200 millisecond delay.

The double click handler cancels that task before performing its functionality .
It also illustrates how we can add new Components to existing Containers:

showFullDetails : function(grid, rowIndex){
 showDescTask.cancel();
 if (moreInfo.isVisible()){
 moreInfo.collapse();
 }
 var record = store.getAt(rowIndex),
 tabId = 'movie-desc-' + record.id,
 movieTab = mainTabPanel.getComponent(tabId);
 if (!movieTab) {
 movieTab = mainTabPanel.add({
 id: tabId,
 title: record.get("title"),
 closable: true,
 autoLoad: 'html/'+record.id+'.txt'
 });
 }
 mainTabPanel.setActiveTab(movieTab);
},

The showFullDetails method collapses the moreInfo panel to release more space
to the center region. It then generates an ID for the movie information tab based
upon the clicked movie's ID. Then it looks up that ID from the TabPanel using the
getComponent method. If nothing was found, then it adds a new panel config object
to the TabPanel configured with the generated ID, the movie title, and an autoLoad
URL. Then it asks the TabPanel to activate that tab.

Basically, this shows the movie description, but it does not create a new tab every
time you click the movie.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 7

[165]

Adding new components
Several Ext JS layout managers allow new child components to be added even
after they are rendered. These include:

•	 AbsoluteLayout
•	 AccordionLayout
•	 AnchorLayout
•	 CardLayout
•	 ColumnLayout
•	 ContainerLayout
•	 FormLayout
•	 HBoxLayout
•	 VBoxLayout

New child components can be appended to a Container using the add method,
or inserted within existing child components using the insert method.

To illustrate this, the first button in the toolbar in this example adds a new single
line input to the FormPanel to allow editing of the movie's price:

addPriceInput: function(btn) {
 btn.disable();
 var fieldCtr = movieForm.getComponent('field-container');
 fieldCtr.add({
 xtype: 'numberfield',
 fieldLabel: 'Price',
 anchor: '100%',
 name: 'price',
 minValue: 10,
 allowNegative: false
 });
 movieForm.doLayout();
}

Many new child components can be added or inserted at one time. The Container's
DOM is only updated when the Container's doLayout method is called.

The Container class's doLayout method uses the Container's layout manager to
ensure that all child components are rendered and sized according to configuration.

In this case, the whole movieForm needs to be laid out because the field container
will change height.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Layouts

[166]

Summary
In this chapter we learned of the importance of layout managers to the Container/
Component nesting scheme.

We learned how different layout managers use different rules, and read different
hint configs from child components to lay out child components.

We learned how to nest Containers to any level.

We also learned how to add new Components to existing Containers.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees
Hierarchical data is something that most developers are intimately familiar with. The
root-branch-leaf structure is the underlying feature for many user interfaces, from the
file and folder representations in Windows Explorer to the classic family tree showing
children, parents, and grandparents. The Ext.tree package enables developers to
bring these data structures to the user with only a few lines of code, and provides for
a range of advanced cases with a number of simple configuration options.

Although the default Ext JS icon set shows tree nodes as files and folders, you are not
restricted to the file system concept. The icons and text of the items, or nodes in your
tree, can be changed based on the dynamic or static data used to populate it—and
without requiring custom code. How about a security screen showing permission
groups containing a number of users, with icons showing a photo of each user, or a
gallery showing groups of photos, or image previews in the icons? Ext JS's tree classes
put all of these scenarios within your grasp. In this chapter, you will learn about:

•	 Creating and configuring an Ext.tree instance
•	 Populating an Ext.tree with various types of data
•	 Dragging and dropping tree nodes
•	 Sorting & filtering a tree
•	 Creating context menus to provide options on nodes
•	 Customizing an Ext.tree in advanced scenarios

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[168]

Planting for the future
Ultimately, the Ext JS tree doesn't care about the data you're displaying, because
it's flexible enough to deal with any scenario that you can come up with. Data can
be instructed to load upfront, or in logical bursts, which can become a critical
feature when you've got a lot of information to load. You can edit data directly in
the tree, changing labels and item positions, or you can modify the appearance of
the overall tree or of each individual node, all of which will contribute to a
customized end user experience.

The Ext JS tree is built on top of the Component model, which underlies the whole
Ext JS framework. This means that developers receive the benefits of working with
the familiar Component system, that users get a consistent and integrated interface
experience, and that you can be sure your tree will work seamlessly with the rest of
your application.

From tiny seeds...
In this chapter, we'll see how you can build a tree from first principles with a minimal
amount of code. We'll also discuss the unique data structure that is used to populate
the tree, and the way in which clever use of that data can let you harness important
configuration options. The Ext JS tree natively supports advanced features such as
sorting, and drag-and-drop, so we'll be discussing those as well. But if you need a
truly highly customized tree, we'll also explore the way in which configuration
options, methods, and events can be overridden or augmented to provide it.

The tree itself is created via the Ext.tree.TreePanel class, which in turn contains
many Ext.tree.TreeNodes classes. These two classes are the core of the Ext JS tree
support, and as such will be the main topics of discussion throughout this chapter.
However, there are a number of other relevant classes that we'll also cover. Here's
the full list from the Ext.tree package:

Classes Description
AsyncTreeNode Allows TreeNode children to be loaded asynchronously
DefaultSelectionModel Standard single-select for the TreePanel
MultiSelectionModel Provides support for multiple node selection
RootTreeNodeUI Specialized TreeNode for the root of TreePanel
TreeDragZone Provides support for TreeNode dragging
TreeDropZone Provides support for TreeNode dropping
TreeEditor Allows node labels to be edited
TreeFilter Filter support for TreePanel child nodes

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[169]

Classes Description
TreeLoader Populates a TreePanel from a specified URL
TreeNode The main class representing a node within a TreePanel
TreeNodeUI Provides the underlying renderer for the TreeNode
TreePanel A tree-like representation of data—the main tree class
TreeSorter Supports sorting of nodes within a TreePanel

Ouch! Fortunately, you don't have to use all of them at once. TreeNode and
TreePanel provide the basics, and the rest of the classes are bolted on to provide
extra functionality. We'll cover each of them in turn, discussing how they're used,
and showing a few practical examples along the way.

Our first sapling
By now, you're probably thinking of the various possibilities for the Ext JS tree, and
want to get your hands dirty. Despite the fact that the Ext.tree classes are some of
the most feature-rich available in the framework, you can still get everything up and
running with only a few lines of code.

In the examples that follow, we'll assume that you have a blank-slate HTML page
ready and waiting, with all of the Ext JS dependencies included. Most of the code
we will use builds on what came before, to make sure that we're only working with
bite-sized pieces. Bear this in mind when you look at them in isolation.

It is best practice to put the JavaScript in a separate file and wrap it in an Ext.
onReady call. However, you can also do it according to your individual coding style.

Preparing the ground
First, we need to create a containing <div> element on our HTML page. We will be
rendering our TreePanel into this container. So we have to set it to the size we want
our tree to be:

<div id="treecontainer" style="height:300px; width:200px;"></div>

The JavaScript for the tree can be broken down into three parts. Firstly, we need
to specify the manner in which it's going to be populated. The Ext.tree.
TreeLoader class provides this functionality, and here we're going to use it
in the simplest manner:

var treeLoader = new Ext.tree.TreeLoader({
 dataUrl:'http://localhost/samplejson.php'
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[170]

The dataUrl configuration parameter specifies the location of the script that is going
to supply the JavaScript Object Notation (JSON) used to populate our tree. I'm not
going to get into the details of the structure of JSON now; let's save that for later. The
dataUrl parameter is also aliased as the url parameter, which you may prefer to use
for consistency with other parts of Ext JS.

Each tree requires a root node, which acts as a great-granddaddy for all of its
descendants. To create that root node, we use the Ext.tree.AsyncTreeNode class:

 var rootNode = new Ext.tree.AsyncTreeNode({
 text: 'Root'
 });

The reason we're using AsyncTreeNode, rather than the basic TreeNode that is also
available, is because we're fetching our nodes from the server and are expecting child
nodes to be populated branch-by-branch rather than all at once. This is the most
typical scenario for a tree.

AsyncTreeNode uses AJAX on-the-fly to ensure your users aren't waiting
too long for your data to load and for the first nodes to be rendered.

Finally, we create the tree itself, using the Ext.tree.TreePanel class:

 var tree = new Ext.tree.TreePanel({
 renderTo:'treecontainer',
 loader: treeLoader,
 root: rootNode
 });

This is just a matter of passing the root node and the TreeLoader in as configuration
options, as well as using the renderTo config to specify that we'd like the TreePanel
rendered into our treeContainer element.

Again, you should remember that you need to wrap all of this code in a call to
Ext.onReady, to make sure that the DOM is available when our code runs.

A tree can't grow without data
We've seen that it only takes eleven lines of code to create a tree interface using
Ext JS. You can see an example of the finished product here:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[171]

I guess it doesn't look like much, but we've got quite a bit of functionality for our 11
lines of code. We've got a consistent and attractive look and feel, with asynchronous
remote loading of child nodes. To be fair, it's not as simple as that, because we
skimmed over a crucial part of building an Ext JS tree—the data.

JSON
The standard TreeLoader supports JSON in a specific format—an array of node
definitions. Here's a cut-down example:

[
 { id: '1', text: 'No Children', leaf: true },
 { id: '2', text: 'Has Children',
 children: [{
 id: '3',
 text: 'Youngster',
 leaf: true
 }]
 }
]

The text property is the label of the node as it appears in the tree. The id property is
used to uniquely identify each node, and will be used to determine which nodes are
selected or expanded. Using the id property can make your life a whole lot easier if
you're using some of the advanced features of the TreePanel, which we'll see later.
The children property is optional. The leaf property can be thought of as marking
a node as either a folder or a file. As a leaf, the file is contained within the folder.
In the tree, leaf nodes will not be expandable and won't have the plus icon that
identifies folders.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[172]

A quick word about ID
By default, TreeNodes are assigned an automatically-generated ID, meaning that the
ID configuration property is actually optional. The generated ID is a text string in the
form ynode-xx, with xx being replaced by a number. IDs can be useful for retrieving
a node you have previously referenced. However, it is quite likely that you'd want
to assign the ID value yourself. Whenever you expand a node with children to
trigger an asynchronous load of data from the server, your server script needs to
know exactly which node was clicked in order to send its children back. By explicitly
setting the ID, you'll find it a lot easier to match nodes with their actions when you're
working with the server.

Extra data
Although the id, text, and leaf properties are the most commonly used properties,
the way in which they are populated by JSON isn't exclusive to them. In fact, any
configuration property of a TreeNode can be initialized by JSON, which will prove
to be a useful trick when we begin to explore the other features of the tree. You're
also able to include application-specific data; perhaps your nodes are products
and you want to hold the price of them. Any property that isn't recognized as a
TreeNode config option will still be included on the TreeNode.attributes
property for later access.

XML
With Ext JS 3.0, loading XML into your tree is now handled by an official extension
to the framework. This means that while you don't get the same level of API
documentation as you would with a fully integrated part of Ext JS, XML loading is
still a properly supported feature.

The XmlTreeLoader class is the extension in question, and in its simplest form can
be used in exactly the same way as a standard TreeLoader. Given the following
XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<nodes>
 <node text="No Children" id="1" leaf="true" />
 <node text="Has Children" id="2" leaf="false">
 <child text="Youngster" id="3" leaf="true" />
 </node>
</nodes>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[173]

We can simply create an XmlTreeLoader as follows:

var treeLoader = new Ext.ux.tree.XmlTreeLoader({
 dataUrl:'http://localhost/samplexml.php'
});

This can slot into our previous example without changing any of the rest of the code.

In most situations, you're not going to have XML that's structured like this, so the
XmlTreeLoader class does provide a means to use any kind of XML document in
a tree. By overriding the processAttributes method of the XmlTreeLoader, you
can examine each XML node as it's being processed and tweak the corresponding
TreeNode. As with JSON, extra attributes on an XML node get added as attributes
on the tree node for easy access and additionally, any inner text of an XML node
gets added as the innerText attribute. For example:

Ext.CustomXmlTreeLoader = Ext.extend(Ext.ux.tree.XmlTreeLoader, {
 processAttributes : function(node){
 // prefix the node ID to the node text
 node.text = node.id + " " + node.text;
 // OR the XML node contents added as innerText attrib
 node.text = node.innerText;
 // OR extra XML attrib added as a node attrib
 node.text = node.appSpecificValue;
 }
});

Using an XmlTreeLoader in your code makes building trees with XML just as easy
as it is with JSON.

Tending your trees
We're now going to discuss the main features that you can bolt on to your tree to
make it a little bit more useful. Drag-and-drop, sorting, and node editing, are the
kinds of things that lift the TreePanel from being a clever way of displaying data,
to being a great way of manipulating it.

Drag and drop
Ext JS takes care of all of the drag-and-drop UI for you when you're using a
TreePanel. Just add enableDD: true to your configuration, and you'll be able
to rearrange nodes with a drop target graphic, and add them to folders, with
a green plus icon to indicate what you're about to do.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[174]

The TreePanel doesn't care about just its own nodes. If
you've got more than one TreePanel on the page, then you
can happily drag-and-drop branches or leaves between them.

But that's only half the story. When you refresh your page, all of your rearranged
nodes will be back to their starting positions. That's because the TreePanel doesn't
automatically know how you want to persist your changes, and in order to educate
it, we've got to hook into some events.

The beforemovenode event of the TreePanel fires at just the right time for us—after
the mouse button is released to signify we want to do a drop, but before the TreePanel
UI is updated to reflect that. We are most likely to add code such as the following to
tell the server about node move events:

tree.on('beforemovenode', function(tree, node,
 oldParent, newParent, index) {
 Ext.Ajax.request({
 url: 'http://localhost/node-move.php',
 params: {
 nodeid: node.id,
 newparentid: newParent.id,
 oldparentid: oldParent.id,
 dropindex: index
 }
 });
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[175]

Augmenting our previous code, we're adding a new event handler for the
beforemovenode event. The handler function is called with a few useful arguments:

•	 tree: The TreePanel that raised the event
•	 node: The TreeNode being moved
•	 oldParent: The previous parent of the node being moved
•	 newParent: The new parent of the node being moved
•	 index: The numerical index where the node was dropped

We use these arguments to form the parameters of an AJAX call to the server. As
you can pull out pretty much any information you need about the current state
of the tree, your server-side script can perform any action that it needs to.

In some cases, that could include canceling the move action. If the logic you place
within the beforemovenode handler fails, you need to roll back your changes. If
you're not doing an AJAX call, this is pretty straightforward—just return false at
the end of the handler and the action will be canceled. For AJAX though, it's more
difficult, because the XMLHttpRequest happens asynchronously, and the event
handler will proceed with its default action, which is to allow the move.

In these circumstances, you need to make sure that you provide a failure handler
for your AJAX request, and pass enough information back to that failure handler
to allow it to manually return the tree to its previous state. As beforemovenode
provides a lot of information through its arguments, you can pass the necessary
data to take care of these error events.

Sorting
We can sort nodes in a TreePanel in a very flexible manner by using
the TreeSorter. Again, building on our previous code, we can create
a TreeSorter such as this:

new Ext.tree.TreeSorter(tree, {
 folderSort: true,
 dir: "asc"
});

As TreeSorter assumes a couple of defaults—specifically, that your leaf nodes are
marked with a property called leaf and that your labels are in a property called
text—we can perform an alphabetical sort very easily. The dir parameter tells the
TreeSorter to sort in either ascending (with the asc value) or descending (desc)
order, and the folderSort parameter indicates that it should sort leaf nodes that
are within folders—in other words, the whole tree hierarchy.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[176]

If you've got data that isn't simple text, you can specify a custom method of sorting
with the sortType configuration option. sortType takes a function as its value, and
that function will be called with one argument: a TreeNode.

The purpose of the sortType function is to allow you to cast a custom property of
the TreeNode—presumably something you've passed from the server and that is
specific to your business needs—and convert it to a format that Ext JS can sort, in
other words, one of the standard JavaScript types such as integer, string, or date.

This feature can be useful in cases where data passed to the tree is in a format that
isn't conducive to normal searching. Data generated by the server might serve
multiple purposes, and hence may not always be right for a particular purpose.
For example, we may need to convert dates into a standard format—from US style
MM/DD/YY to YYYYMMDD format that is suitable for sorting—or maybe we
need to strip extraneous characters from a monetary value so that it can be parsed
as a decimal.

sortType: function(node) {
 return node.attributes.creationDate
}

In the previous example, we return some custom data from our node, and because
this value is a valid JavaScript date, Ext JS will be able to sort against it. This is a
simple demonstration of how the sortType option can be used to allow the
TreeSorter to work with any kind of server data.

Editing
There are many scenarios in which editing the value of your nodes can be useful.
When viewing a hierarchy of categorized products, you may wish to rename either
the categories or the products in line, without navigating to another screen. We can
enable this simple feature by using the Ext.tree.TreeEditor class:

var editor = new Ext.tree.TreeEditor(tree);

The defaults of the TreeEditor mean that this will now give your tree nodes a
TextField editor when you double-click on their label. However, as with basic
drag-and-drop functionality, enabling this feature doesn't automatically mean that
your changes will be persisted to the server. We need to handle the event that fires
when you've finished editing the node:

editor.on('beforecomplete', function(editor, newValue, originalValue)
{
 // Possible Ajax call?
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[177]

The beforecomplete event handler gets called with three arguments:

•	 editor: The editor field used to edit the node
•	 newValue: The value that was entered
•	 originalValue: The value before you changed it

However, it is important to note that the editor parameter is no ordinary Ext.form.
Field. It is augmented with extra properties, the most useful of which is editNode,
a reference to the node that was edited. This allows you to get information such as
the node ID, which would be essential in making a server-side call to synchronize
the edited value in the database.

As with the beforemovenode event of the TreePanel, beforecomplete allows
cancellation of the edit action by returning false at the end of its handler
processing. AJAX requests will need to provide a failure handler to manually
restore the edited value.

This has been a quick overview of how to create a very simple inline editor. There are
also means of using this class to create more complicated features. The TreeEditor
constructor can take up to two optional parameters on top of the single mandatory
parameter as shown in the previous example. These are a field configuration object
and a configuration object for the TreeEditor. The field config can be one of two
things: a field config object to be applied to the standard TextField editor, or an
already created instance of a different form field. If it is the latter, it will be used
instead of the default, which means that you can add NumberField, DateField,
or another Ext.form.Field in a similar manner.

The second parameter allows you to configure the TreeEditor, and is more for
fine-tuning rather than introducing any exciting functionality. For example, we can
use cancelOnEsc to allow the user to cancel any editing by pressing the Escape key,
or use ignoreNoChange to avoid firing completion events if a value has not changed
after an edit.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[178]

Trimming and pruning
There a few other tricks that the TreePanel supports, which assist in the creation
of rich applications. Varying selection models, node filtering, and context menus
are commonly-used features in many solutions. So let's take a look at these now.

Selection models
In our previous example code, we dragged and edited TreeNodes to alter them
immediately. But nodes can also be selected for further processing. The TreePanel
uses a single selection model by default. In our previous code, we've already done
everything we need to enable node selection. As with many aspects of the tree,
simply selecting the node doesn't do anything; instead we need to hook in to
some of the features provided to manipulate the selection.

A great example of this would be to select a node and have an information panel
automatically populated with further details of that node. Perhaps you have a tree
of named products, and clicking a node will display the price and stock level of
the selected product. We can use the selectionchange event to make this happen.
Again, using our previous code as a starting point, we could add the following:

tree.selModel.on('selectionchange', function(selModel, node) {
 var price = node.attributes.price;
});

The second node argument that is passed to the selectionchange event makes it
very easy to grab any custom attributes in your node data.

What if we want to allow multiple nodes to be selected? How can we do that, and
how can we handle the selectionchange event in that configuration? We can use
Ext.tree.MultiSelectionModel when creating our TreePanel:

var tree = new Ext.tree.TreePanel({
 renderTo:'treeContainer',
 loader: treeLoader,
 root: rootNode,
 selModel: new Ext.tree.MultiSelectionModel()
 });

Configuration is as simple as that. Although handling the selectionchange event
is very similar to the default selection model, there is an important difference. The
second argument to the event handler will be an array of nodes rather than a single
node. We can see multiple selected nodes in this screenshot:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[179]

Selection models don't just expose the means of retrieving selection information.
They also allow manipulation of the current selection. For example, the
MultiSelectionModel.clearSelections() method is useful for wiping the
slate clean after you have finished handling an event involving multiple nodes.
DefaultSelectionModel has methods (selectNext and selectPrevious)
for navigating the tree, moving up or down the node hierarchy as required.

Round-up with context menus
We've already covered a lot of the functionality that the TreePanel can provide,
so let's consolidate a little bit with a practical example. Adding a context menu that
appears when you right-click a TreeNode is a trivial task with Ext JS. However, it can
be an extremely useful means of adding shortcuts to your interface. We'll be building
on the code that has been used in the previous sections. First, let's create the menu,
and then we'll hook it up to the TreePanel:

var contextMenu = new Ext.menu.Menu({
 items: [
 { text: 'Delete', handler: deleteHandler },
 { text: 'Sort', handler: sortHandler }
]
});
tree.on('contextmenu', treeContextHandler);

The TreePanel provides a contextmenu event which fires when the user right-clicks
on a node. Note that our listeners are not anonymous functions as they have been in
the previous examples—instead they have been split off for easy reading.

First, the treeContextHandler that handles the contextmenu event:

function treeContextHandler(node) {
 node.select();
 contextMenu.show(node.ui.getAnchor());
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[180]

The handler gets called with a node argument, so we need to select the node to allow
us to act upon it later. We then pop up the context menu by calling the show method
with a single parameter that tells the pop-up menu where to align itself—in this case
it's the text of the TreeNode we've clicked on.

Handling the menu
We've got two context menu entries—Delete and Sort. Let's first take a look
at the handler for Delete:

function deleteHandler() {
 tree.getSelectionModel().getSelectedNode().remove();
}

Using our previous knowledge of selection models, we get the node that we selected
in the treeContextHandler, and simply call its remove() method. This will delete
the node and all of its children from the TreePanel. Note that we're not dealing
with persisting this change to the server, but if this was something that you needed
to do, TreePanel has a remove event that you could use a handler for to provide
that functionality.

The handler for our Sort menu entry is given here:

function sortHandler() {
 tree.getSelectionModel().getSelectedNode().sort(
 function (leftNode, rightNode) {
 return (leftNode.text.toUpperCase() < rightNode.text.
toUpperCase() ? 1 : -1);
 }
);
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[181]

Again, we use the selection model to get the selected node. Ext JS provides a sort
method on the TreeNode that takes a function as its first parameter. This function
gets called with two arguments: the two nodes to compare. In this example, we are
sorting by the node's text property in descending order, but you can sort by any
custom node attribute you like.

You can use this sorting method in conjunction with a TreeSorter
without issues. That's because TreeSorter only monitors the
beforechildrenrendered, append, insert, and textchange
events on the TreePanel. Any other changes will be unaffected.

The Delete context menu action will completely remove the selected node from the
TreePanel, while the Sort action will order its children according to their text label.

Filtering
The Ext.tree.TreeFilter class is marked as "experimental" in Ext JS 3.0, so I'm
going to touch upon it only briefly, however it has been in the framework since Ext
JS 2.0 so I wouldn't shy away from using it. TreeFilter is here to stay. It's designed
for scenarios where the user needs to search for nodes based on a particular attribute.
This attribute could be the text, the ID, or any custom data that was passed when
the node was created. Let's take the context menu that we just built and use it to
demonstrate filtering. First, we have to create the TreeFilter:

var filter = new Ext.tree.TreeFilter(tree);

You need to go back to the configuration for the context menu and add a new entry
to the items configuration property:

{ text: 'Filter', handler: filterHandler }

We now need to create a filterHandler function that performs the filter action:

function filterHandler() {
 var node = tree.getSelectionModel().getSelectedNode();
 filter.filter('Bee', 'text', node);
}

As with our other handler functions, we start by getting the currently selected node
in the tree, and then call the filter function. This function takes three arguments:

•	 The value to filter by
•	 The attribute to filter on; this is optional and defaults to text
•	 The starting node for the filter

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[182]

We pass the selected node as the starting node for the filter, which means that the
node we right-clicked on in order to pop up the menu will have its children filtered
by the specified value.

Our aardvark, bee, and cockroach examples don't really require this level of filtering,
but there are other situations in which this could prove to be a useful user feature.
Online software documentation, with multiple levels of detail, could be represented
in a tree and a TreeFilter could be used to search by topic. In a more advanced
scenario, you could use checkboxes or pop-up dialogs to get the user's input for
the filter, providing a much more flexible experience.

The roots
Although we've demonstrated a number of powerful techniques using the Ext tree
support, its real strength lies in the wealth of settings, methods, and hook points that
the various classes expose. We've already reviewed a number of ways of configuring
the TreePanel and TreeNode classes, which give access to a number of powerful
features. However, there are more configuration options that can be used to tweak and
enhance your tree, and we're going to review some of the more interesting ones now.

TreePanel tweaks
By default, there are a number of graphical enhancements enabled for the TreePanel
which, depending on your application requirements, may not be desirable. For
example, setting animate to false will prevent the smooth animated effect being
used for the expansion and contraction of nodes. This can be particularly useful in
situations where nodes will be repeatedly expanded and collapsed by a user and
slower animated transitions can be frustrating.

As TreePanel extends from Ext.Panel, it supports all of the standard Panel features.
This is easy to remember, because it means that support for toolbars at the top and the
bottom (via the tbar and bbar config options), separate header and footer elements,
and expand/collapse functionality for the Panel are all supported. The TreePanel
can also be included in any Ext.ViewPort or Ext.layout.

Cosmetic
In terms of purely cosmetic options, TreePanel provides the lines option, which
when set to false will disable the guidelines that show the hierarchy of the
TreeNodes within the panel. This can be useful if you're creating a very simple
tree for which lines would just clutter the interface.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[183]

hlColor is applicable for drag-and-drop enabled trees, and controls the start color
for the fading highlight (supplied as a hex string, such as 990000) which is triggered
when a node is dropped. This can be completely disabled by setting dlDrop to
false. Setting trackMouseOver to false will disable the highlight that appears
when you hover over a node.

Tweaking TreeNode
In many cases, you won't be manually creating TreeNodes, other than your root
node, so you might think that the configuration options aren't of much use to you.
Not so, because it's not just the id and text properties from your JSON that are
used when generating nodes—any property in your JSON that matches with a
config option on the TreeNode will be used to create the node. Say you have
a JSON that is like this:

[
 { text: 'My Node', disabled: true, href: 'http://extjs.com'}
]

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[184]

You'll get a node that starts off as disabled, but when enabled will act as a link
to the Ext JS website.

This feature is extremely useful for passing application-specific information to your
TreeNodes. For example, your server logic may dictate that particular nodes cannot
have children. Setting allowChildren: false means that the node can't be used as a
drop target for a node that is being dragged. Similarly, you can set individual nodes
to be disallowed for dragging by using the draggable: false option. We can set the
status of a checkbox on the node by using checked: true. In fact, simply specifying
the checked option—whether true or false—will cause the checkbox to appear
next to the node. These configuration options allow you to set the behavior of your
nodes based on some server logic, but do not require any manual handling in order
to see your preferences enacted.

There are a few other useful configuration options available for TreeNode. You can
provide custom icons by using the icon option, or provide a CSS styling hook by
using the cls option. The qtip option lets you provide a pop-up tooltip, perhaps
providing a description of the node, while the text label shows its name.

Manipulating
Once the TreePanel is configured, we can begin to work with its nodes. The panel
mostly allows for navigation of the hierarchy, starting at a selected node and moving
to a parent or child, or up and down the current branch. We can also select nodes or
expand them by their path, which could be used to search for specific nodes.

The expandAll and collapseAll methods are pretty self-explanatory, and can be
useful for resetting the tree to a default state. Each method takes a single Boolean
parameter to state whether the change should be animated or not.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[185]

The expandPath method's first parameter is the "path" of a node. The path uniquely
identifies the node within the hierarchy, and takes the form of a string which fully
qualifies the location of a node in the tree. For example, a path could look like this:

/n-15/n-56/n-101

Here, we have a representation of the location of the node with the ID n-101.
n-15 is the root node, with a child n-56; and n-101 is in turn a child of n-56. If
you're familiar with XPath, then this notation will be well-known to you. If you're
not familiar with XPath then you can think of it as a postal address or a web IP
address—a unique way of referring to this node.

By passing this value to expandPath, the tree will drill down to the specified node,
expanding branches as necessary. Imagine the following code:

Ext.Msg.prompt('Node', 'Please enter a product name',
 function(btn, text){
 if (btn == 'ok'){
 var path = GetNodePathFromName(text);
 tree.expandPath(path);
 }
});

The GetNodePathFromName function could parse the node path string and and
return the node ID, enabling quick navigation of the tree based on the user's input.
Alternatively, TreePanel.getNodeById could be used in a similar way. Rather than
expanding the node, further manipulation could occur.

In some circumstances, you may need to perform the reverse action, that is, you have
a node but you need to get the path for it. TreeNode.getPath is provided for just
this purpose, and can be used as a means of storing the location of a node.

Further methods
The TreeNode has a number of other useful methods as well. We've already
covered sort and remove, but now we can add some basic utility methods such
as collapse and expand, enable and disable, as well as some handy extras such
as expandChildNodes and collapseChildNodes, which can traverse all child
nodes of an arbitrary root, and change their expansion states. The findChild and
findChildBy methods allow both simple and custom searching of child nodes, as
shown in the following example where we search for the first node with a price
attribute of 300:

var node = root.findChild('price', 300);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[186]

In some cases you may need to mass-manipulate the attributes of your node
hierarchy. You can do this by using the TreeNode.eachChild method:

root.eachChild(function(currentNode) {
 currentNode.attributes.price += 30;
});

As the first parameter to eachChild is a function, we can perform any logic that
is required of our application.

Event capture
We've already demonstrated a couple of methods of watching for user interaction
with the tree, but there are many events available as hooks for your custom code.
Earlier, we discussed the use of the checked configuration option on a TreeNode.
When the node checkbox is toggled, the checkchange event is fired. This could
be useful for visually highlighting the check status:

tree.on('checkchange', function(node, checked) {
 node.eachChild(function(currentNode) {
 currentNode.ui.toggleCheck();
 });
}

We're propagating the check down through the children of the TreeNode. We could
also highlight the nodes in question to clearly show that their check status has
changed, or perform some other logic, such as adding information about the newly
checked nodes to an informational display elsewhere on the page.

A more common use of the TreePanel events is to verify changes or persist them
to a server-side store. For example, a tree of categorized products may have some
logical restrictions—certain bargain categories may specify the maximum price
of a product. We could use the beforeappend event to check for this:

tree.on('beforeappend', function(tree, parent, node) {
 return node.attributes.price < parent.attributes.maximumPrice;
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 8

[187]

This example demonstrates a pattern that you have seen throughout Ext JS—returning
false from an event handler will cancel the action. In this case, if the price of the node
being added is greater than the maximumPrice assigned to its parent, the function will
return false, and the node will not be added.

Remembering state
In many applications, TreePanel instances are used as navigation aids, showing a
hierarchical structure, with its nodes being HTML links to node detail pages. In this
scenario, if a user wishes to view multiple node detail pages, one after the other, the
default behavior of the TreePanel can lead to frustration. This is because the tree
doesn't save its state between page refreshes, so any expanded node will be rendered
as collapsed when the user navigates back to the page. If the user needs to drill down
to the branch they are interested in every time they navigate back to the tree, they are
quickly going to lose patience with the interface. To try and avoid this situation, we
can use some of Ext's state management features.

StateManager
Now that we have a good grasp of the way we can manipulate the TreePanel,
working out how we can save and restore its state should be fairly straightforward.
Essentially, what we need to do is record each expansion of a TreeNode, and when
the page reloads, "playback" those expansions. We can use Ext.state.Manager with
a CookieProvider to store our expansion. We can initialize this with:

Ext.state.Manager.setProvider(new Ext.state.CookieProvider());

This is standard fare for setting up a state provider. We now need to establish
exactly what we're going to store, and the logical choice would be the path of the last
expanded node. This means that we can simply expand out that path and present
the user with the last part of the hierarchy they were interested in. Here's a naive
implementation of that idea:

tree.on('expandnode', function (node){
Ext.state.Manager.set("treestate", node.getPath());
});

In this code, we simply handle the expandnode event of the TreePanel to record the
path, using TreeNode.getPath, of any node that is expanded. As we overwrite that
value on each expansion, the treestate should hold the path of the last node that
was expanded. We can then check for that value when the page is loaded:

var treeState = Ext.state.Manager.get("treestate");
if (treeState)
 tree.expandPath(treeState);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS Does Grow on Trees

[188]

If treestate has previously been recorded, we use that to expand the tree out
to the last-expanded node.

Caveats
As mentioned, this is a naive implementation. It doesn't handle cases where the
user expands, collapses a node, and then navigates away and back. In such cases,
the collapse of the node wouldn't be saved. So when we restore the state, the user
will see it expanded again. By handling the collapsenode event, we could take
this issue into account. We also have a problem with the expansion of multiple
nodes. If more than one branch is expanded our code will only expand the one the
user clicked most recently. Storing an array of expanded nodes is one approach that
could address this shortcoming.

Summary
Getting a feature-rich tree interface such as Ext.tree.TreePanel up and running in
eleven lines of code is pretty impressive, and we've shown that it is possible. Over
and above that, this chapter has demonstrated that the strength of the TreePanel is
not simply in its ease of use, but in the way we can use its wealth of configuration
options to deliver application-specific functionality.

The use of asynchronous loading is an important feature of the TreePanel, because
it provides a way of consuming large amounts of dynamic data in a scalable fashion.
It's also handled transparently by Ext.tree, which means that the implementation
is as beneficial for the developer as it is for the end user. And no matter what
backend you're using, a custom Ext.tree.TreeLoader can consume JSON
and XML in any format.

Despite all of their power, the Ext.tree classes still manage to feel pretty
lightweight in use. It's easy to tame that power by using the configuration options,
the methods, and the events that the TreePanel and TreeNode provide, but it's not
just about these classes. TreeSorter and TreeNodeUI are key parts of the puzzle,
adding functionality and allowing customization for a standardized look and feel.

As the Ext.TreePanel extends the Panel, which in turn extends the BoxComponent,
we get all of the strong component and layout support that comes from a full-fledged
Ext JS component. BoxComponent support will be particularly interesting as we move
forward, because it means that trees can easily be included in various configurations
within an Ext.Window, which just happens to be our next topic.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs
In the olden days of the Web, users of traditional backend systems would spend
their time crunching data in list and form-based interfaces. Pick an item from a list
of customer orders, then navigate to a detail form, rinse, and repeat. The trouble is
that we're talking about thousands of entries in a list, and lots of detail in the forms.
The chances are that in our customer order example, we might even need sub-forms
to show all of the information that is available, and each time we move to another
screen we're refreshing the whole page and getting the entire data all over again.

That's fine; it's how the Web works. But in a data processing scenario, where
your users are going back and forth throughout the day, there's a real benefit in
optimizing the speed at which screens appear and data is refreshed. As we've
seen, the Ext JS grid plays a key part in this, by bringing AJAX-powered paging
and sorting of Grid Views into play, to replace the old-style static lists.

Now we're going to take a look at the other part of the puzzle—Ext JS window and
dialog support. These classes allow developers to present any kind of information
to their users, without forcing the users to navigate to another screen. By popping
up as an overlay on top of the current page, a window, or dialog can present detailed
data in the form of grids, tree, images, and text. We can also use them in a simplified
form to show informational alerts or to quickly capture user data.

•	 Understand the difference between Ext.Window and Ext.MessageBox
•	 Use built-in Ext JS methods to show familiar popups
•	 Use Ext.MessageBox to create customized popup dialogs
•	 Create Ext.Windows with Layouts and child Components
•	 Tweak the configuration of a window for advanced usage
•	 Use Window Managers in multi-window applications

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[190]

Opening a dialog
In this chapter, we'll talk about the main Ext.Window and Ext.MessageBox classes,
both of which have extensive applications in our enhanced user interface. While the
Window itself is designed to be a flexible, multipurpose component, the MessageBox
is a more focused solution. It is used in a similar way as standard JavaScript pop ups
such as alert and prompt, albeit with many more behavioral and presentational
options available for it.

Ext.Window is another fully-blown Ext.Container, giving it a wealth of underlying
settings which will be familiar from the other parts of the Ext JS framework. It also
hints at the types of interfaces that we can build in a window, given that we can set
the internal layout of a Container to a range of different options.

We're also going to cover some extra classes which help us to manipulate multiple
windows: Ext.WindowGroup and Ext.WindowManager. In advanced applications,
we can use more than one window to present drill-down views of information, or
we can allow the user to view more than one record at a time in separate windows.
Window groups assist with these applications, giving us the power to act upon
many windows at once.

Despite the fact that dialogs build on Ext.Window, we're going to address dialogs
first. That's because the dialogs abstract away many of the powerful options of
Ext.Window, making it a cut-down version of the superclass.

Dialogs
As previously mentioned, dialogs can be likened to the prompt and alert functions
that are available in most browser implementations of JavaScript. Although the
appearance of those pop ups is controlled by the browser and the operating system,
and their behavior is limited to the most common cases, these restrictions don't apply
to the Ext JS dialogs.

Although the dialog class is actually Ext.MessageBox, Ext JS provides
a shorthand version—Ext.Msg. This shorthand version can make your
code a little more concise, but it's up to you which one you use, as they're
both functionally equivalent.

Let's take a look at the ready-made pop ups that Ext JS makes available to us.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[191]

Off the shelf
We've talked about how Ext provides a replacement for the JavaScript alert,
so let's have a look at that first:

Ext.Msg.alert('Hey!', 'Something happened.');

The first thing to notice is that Msg.alert takes two parameters, whereas the
standard alert takes only one. The first allows you to specify a title for the alert
dialog, and the second specifies the body text. The previous code results in a
messagebox as follows:

As you can see, it performs very much the same function as a standard alert but with
that familiar Ext JS look and feel. We can also convey a little bit more information by
using the title bar. Showing Msg.alert doesn't temporarily halt script execution in
the same way that a normal alert will; be aware of this when using the Ext version.
Later, we'll look at ways to use callbacks to replicate that halt functionality should
you need it.

You can only use a single Ext.MessageBox at a time. If you try to pop
up two boxes at the same time, the first will be replaced by the second.
So in some cases, you'll want to check for the presence of an existing
dialog in case you inadvertently overwrite the message it is presenting.

Let's take a look at another replacement, the Ext.Msg.prompt. This allows the
capture of a single line of text in the same way the JavaScript prompt does.
However, instead of simply returning a value, it gives you a few more options.
Here's a comparison of doing the same thing with each method:

var data = prompt('Tell me something');

Ext.Msg.prompt('Hey!', 'Tell me something', function(btn, text){
 if (btn == 'ok'){
 var data = text;
 }
}, this, false, '');

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[192]

Again, Msg.prompt allows you to pass a title as the first argument, and the body
text is the second. The third argument is a callback function that will be called when
a button—either OK or Cancel—is clicked in the prompt. The callback has two
arguments: the button that was clicked and the text that was provided by the user.
You can use these as demonstrated in the example code.

Note the other three options that come after the callback function are scope, multiline,
and initial value, respectively. The multiline argument is interesting—accepting a
Boolean value, it allows a more flexible capture of text than the standard prompt.

Confirmation
Our final replacement messagebox is for the confirm pop up, which allows the user
to choose between confirming an action or rejecting it. The code should be pretty
familiar by now:

Ext.Msg.confirm('Hey!', 'Is this ok?', function(btn, text){
 if (btn == 'yes'){
 // go ahead and do more stuff
 } else {
 // abort, abort!
 }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[193]

Again we're using the title, body text, and callback arguments that we saw in the
Msg.prompt, so there are no surprises here. An interesting difference between
this and the standard confirm is that whereas the standard confirmation gives the
options OK and Cancel, the Ext JS one gives the user the choice of Yes and No. This
is arguably a better default, particularly when you use a question in the body text of
the confirm messagebox.

It's all progressing nicely
There's a fourth standard messagebox which is included with Ext JS—one that isn't
just a replacement for a basic JavaScript pop up. This is the progress dialog. Ext.
Msg.progress isn't designed to be used independently like the other Ext message
boxes, and doesn't need user input. In fact,you could trigger it like this:

Ext.Msg.progress('Hey!', 'We\'re waiting...', 'progressing');

But then you're going to be waiting for a while, because you'll get a modal dialog
which never progresses anywhere. The first two arguments are the title and body
text as in the previous examples, while the third is the text that will appear in the
progress bar.

So, if we don't want to be stuck with an eternal progress bar, how can we get things
moving? The Ext.Msg.updateProgress method is provided just for this purpose.
Here's an example which illustrates its use:

var count = 0;

var interval = window.setInterval(function() {
 count = count + 0.04;

 Ext.Msg.updateProgress(count);

 if(count >= 1) {
 window.clearInterval(interval);
 Ext.Msg.hide();
 }
}, 100);

This is a very contrived example, in which we're calling updateProgress every 100
milliseconds via a timer, and incrementing the progress using the count variable every
time. The first argument to updateProgress is a value between zero and one, with
zero representing start and one representing finish, the second allows you to update
the progress bar text, and the third lets you change the body text. Updating the text can
be handy if you'd like to provide additional feedback to the user, even if this is just to
show a percentage representation—"x% complete"—of the current progress.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[194]

Back in our example code, note that you must also call Ext.Msg.hide in order
to clear the progress dialog from the screen—updateProgress doesn't handle this
for you, even if you set the current progress to a value greater than one.

The four included message boxes—alert, prompt, confirm, and progress—are the
foundation of the Ext JS dialog support, but we can also tweak their functionality
to support some custom scenarios.

Roll your own
The four methods for creating message boxes that we've just covered, alert,
prompt, confirm, and progress, are essentially shortcuts to a fifth method: Ext.
Msg.show. This method takes a configuration object as its single argument, and the
configuration options within this object allow the creation of a messagebox that
supports all of the features available via our shortcut methods. The simplest example
of this method is as follows:

Ext.Msg.show({
 msg: 'AWESOME.'
});

This is a closer replication of the JavaScript alert than the standard Ext JS one—but
it's not as functional. Something a little better would be:

Ext.Msg.show({
 title: 'Hey!',
 msg: 'Icons and Buttons! AWESOME.',
 icon: Ext.MessageBox.INFO,
 buttons: Ext.MessageBox.OK
});

Now we've got our title back as well as our button, but there's an icon as well.

The means of configuring buttons and icons is interesting: pass in one of the
constants that Ext JS provides, and you'll get a pre-configured button or a CSS
class that shows an icon. Here's the list of the icon constants:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[195]

•	 Ext.Msg.ERROR
•	 Ext.Msg.INFO
•	 Ext.Msg.QUESTION
•	 Ext.Msg.WARNING

And the button constants:

•	 Ext.Msg.CANCEL
•	 Ext.Msg.OK
•	 Ext.Msg.OKCANCEL
•	 Ext.Msg.YESNO
•	 Ext.Msg.YESNOCANCEL

This variety of ready-made options provides you with a fair bit of flexibility when
it comes to the appearance of your message boxes, but we can go further. As
mentioned, the icon constants are simply strings representing CSS class names.
For example, Ext.Msg.QUESTION provides the ext-mb-question string. This ties
in to the Ext JS stylesheets and provides the styles for a question icon. The logical
conclusion is that we can provide our own strings in place of these constants,
allowing full customization of the icon areas.

The button constants are a bit less flexible, and contain object literals specifying
how the dialog buttons should be displayed. For example, Ext.Msg.YESNOCANCEL
contains the following (represented in JavaScript Object Notation for easy reading):

{ cancel:true, yes: true, no:true }

This is to specify that all of the yes, cancel, and no buttons should be included.
You can use this to selectively turn off particular buttons, but you can't change the
order or add new buttons in this manner. This means that providing custom button
definitions in this way is of limited use.

In addition to accepting the Ext.Msg button constants, the show method
options will also accept a standard Ext JS button configuration object.

However, we can tweak the dialog in other ways. It's possible to supply Ext.Msg.
show with width and height options to restrict the dimensions of your pop up. This
could be handy in a situation where you have a long message to display and would
like to prevent it from stretching to one long line across the screen.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[196]

The show configuration object also allows us to use the cls option to specify a CSS
class to apply to the container of the dialog. A developer could use this to target any
child objects of the container by using custom CSS rules, potentially paving the way
for multiple dialogs that have totally different appearances. Do you need to provide
a bright-pink pop up for your users? This configuration option allows you to do this.

Behavior
So far, the configuration options for Ext.Msg.show have addressed appearance,
but there are a few options that can also adjust behavior. If we use the progress
property, then we can replicate the standard Ext JS progress dialog:

Ext.Msg.show({progress:true});

By using this in tandem with other options such as title and msg, you can create
a custom progress dialog.

Similarly, the prompt and multiline options allow the creation of a custom
input pop up:

Ext.Msg.show({prompt:true, multiline:true});

Here, we create a pop up that accepts multiple lines of input. But by omitting
the multiline value or setting it to false, we can limit the pop up to a single
line. Again, using the other configuration options for Ext.Msg.show allows us
to expand this sample code into a fully-featured input dialog.

Another option that changes the default behavior of a pop up is modal. This option
allows you to specify whether the user can interact with the items behind the pop
up. When set to true, a semi-transparent overlay will prevent interaction.

As we have discussed earlier, the Ext.Msg pop ups don't block script execution
in the same way as standard JavaScript pop ups. This means that we need to use
a callback to trigger code after the dialog is dismissed. We can do this using show
fn configuration option, which gets called with two arguments: the ID of the button
that has been clicked, and the text entered into the text field in the dialog (where
the dialog includes an input field). Obviously, for a simple alert prompt, you're not
going to receive any text back, but this function does provide a consistent means
of consuming callbacks across the whole range of dialogs that you can build using
Ext.Msg.show.

We briefly touched on the fact that the Ext.Msg messageboxes are actually
customized Ext.Window. If you think we're able to tweak Ext.Msg a lot…wait
till you see what Ext.Window can let us do.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[197]

Windows
Any computer user will be familiar with the concept of windows: informational
panels that appear on the screen to provide more data on the current user's actions.
We can replicate this concept using the Ext.Window class, a powerful component
that supports many advanced scenarios.

Starting examples
We can open a window using a very minimal amount of code:

var w = new Ext.Window({height:100, width: 200});
w.show();

Running this gives you an empty pop up window that in itself is…well, completely
useless; but it does show off a few of the interesting default features of an Ext.
Window. Straight out of the box, without any configuration, your window will be
draggable, resizable, and will have a handy close icon in the upper right corner of
the dialog box. It's still not a very impressive demonstration, however, because our
window doesn't actually show anything.

The easiest way to populate a window is by using plain old HTML. Here's an
extended example that demonstrates this feature:

var w = new Ext.Window({
 height: 150, width: 200,
 title: 'A Window',
 html: '<h1>Oh</h1><p>HI THERE EVERYONE</p>'
});
w.show();

We've added two new configuration options here. First, a title option that allows
you to set the text in the title bar of the window, and second, an html option that
accepts a string of raw HTML that will be displayed in the window.

The use of this approach is immediately apparent—we can go back to basics and
inject whatever HTML we require directly into the content area of the window. This
allows us to tweak our window right down to the markup level, and provide lots
of CSS hooks for styling. Even so, it's not the truly integrated experience that we've
come to expect from Ext JS. However, another configuration option lets us take a
more familiar approach.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[198]

Paneling potential
Remember that Window is a subclass of Panel, and Panel has all kinds of interesting
tricks up its sleeve. The items configuration option accepts an array of configuration
objects or component instances:

var w = new Ext.Window({
 items:[
 { xtype: 'textfield', fieldLabel: 'First Name'},
 new Ext.form.TextField({fieldLabel: 'Surname'})
]
});
w.show();

In the previous example we have added two textfields, the first one using "lazy"
xtype initialization, and the second one using standard object initialization. These
two items will be added to the window's internal panel, but the manner in which
they are displayed can be controlled based on the window's layout property.

Layout
Ext JS defines a number of layout models within the Ext.layout package, and
each of these layouts is used with a panel to allow the components within it to be
arranged in a specific manner. In our previous example, we showed how we can
add a couple of textboxes to a window, but we can also enhance the appearance
of the window simply by using the appropriate layout. In this case, we need Ext.
layout.FormLayout, which provides support for field labels and the general
spacing and positioning you'd expect from an edit form:

var w = new Ext.Window({
 layout: 'form',

 items:[
 { xtype: 'textfield', fieldLabel: 'First Name'},
 new Ext.form.TextField({fieldLabel: 'Surname'})
]
});
w.show();

We use the layout configuration option to specify that we want to use a form layout,
and immediately the difference in appearance becomes clear. In the next screenshot,
the first dialog box does not use a layout, and the second one does:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[199]

This is not a feature of Ext.Window; it comes straight from the Ext.Container
superclass. But the fact that Window supports this feature is extremely important for
an application developer—especially when you consider how long it would take to
create a rich form using our previous HTML injection technique. The other layouts
within the Ext.layout package provide many more approaches to windows design,
expanding the scenarios that a window can support.

Configuration
In addition to the various ways of filling the window's content area, we also have
a great deal of flexibility when it comes to the appearance and behavior of each
pop up. There are many configuration options provided by the Ext.Window
superclass hierarchy, which starts with Ext.Panel, while also having a wealth
of options of its own.

When I'm cleaning windows
In our very first window example, I demonstrated how we get a number of great
features for free—resizing, dragging, and a close button. In some situations you
may prefer to prevent this behavior with the configuration option resizable set to
false. Dragging is often just a matter of preference, and in most cases there's little
harm in leaving it enabled. That said, there are times when it's simply not a necessary
functionality, so I prefer to disable it by using the draggable option set to false.

var w = new Ext.Window({
 height:50,
 width: 100,
 closable: false,
 draggable: false,
 resizable: false
});
w.show();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[200]

When using a form window, it's often preferable to have text buttons explaining
that different actions will, for example, either save a record, or cancel any changes
that have been made, and in such cases, the close icon can be disabled by having
the closable option set to false. There's a second option that gives a little bit more
control over this behavior: closeAction can be set to either hide or close, with
hide simply causing the window to vanish, but not destroying it, and close actually
removing the window from the DOM. This is an important difference if you think
you're going to be re-using the window later, as simply hiding and re-showing it is
more efficient than re-creating the window every time.

The extras
With the default functionality under control, we can begin to review the ways we
can further tweak and augment the features of the Ext.Window. We've already
demonstrated the use of the height and width options that set the fixed dimensions
of the window and crop any content that exceeds these dimensions.

We do have another option. The autoHeight and autoWidth config settings, which
are both Booleans, allow you to fill your window with components without having
to worry about ensuring that your height and width values are absolutely correct.
This is a really useful tool during development; when it's unlikely that you know the
exact dimensions of whatever you're creating, just set autoHeight and autoWidth
to true and forget about it. Even better, these options can be used separately, so that
you can set your width, but have the height automatically calculated. This is useful
if you're putting dynamic content into a window, because you will need to make
sure that it doesn't stretch the window off the sides of your screen.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[201]

Desktopping
The most pervasive example of a windowing system is the computer desktop, with
multiple windows representing applications or elements of the filesystem. In such
systems, users are allowed to hide windows for later use, or minimize them; they're
also able to expand windows to fill the screen, or maximize it (also referred to as
maximizing the window). These are familiar terms, and are of course supported by
Ext.Window via the maximizable and minimizable Boolean configuration options.

These features are disabled by default, but they are fully-featured and work in much
the same way as their desktop equivalents. When set to true, new icons appear
in the upper right of the window that are similar in appearance to the ones on the
Windows operating system. Maximizable allows the window to be expanded to fill
the whole of the browser viewport, as expected, but minimizable is a little trickier.
Ext JS doesn't know where you want the window to vanish to—on the Windows
operating system it would be the task bar, but for other operating systems it could
be somewhere else. So you've got to provide the minimize functionality yourself.
Ext only gives you the icon and a minimize event that must be handled in a manner
appropriate to your application. Later in this chapter, we'll provide a brief example
on how this can be achieved using the events available for the Ext.Window class.

Further options
Ext JS Windows support another means of cutting down the real-estate of your
window, and this is built right into the framework. The collapsible Boolean adds
another button to the upper right of the window and allows the user to shrink it
down to cause only the title bar to be shown. A second click expands the window
back to its original state.

We can also use the expandOnShow configuration to specify that a hidden window will
always be expanded to its full dimensions when it is shown. This is useful for windows
that have been previously hidden and need to be brought back to the user's attention.

Framing our window
Along with the standard title bar and body content area, we also have the ability to
add further content areas to a window. Some of these areas can be fully customized,
and some are a little bit more restrictive, but together they provide yet another
method for creating functional windows.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[202]

Every window has the built-in capability to add toolbars to the top and the bottom,
thanks to its Ext.Panel inheritance. These toolbars can include any valid toolbar
items, be it buttons, menus, or text. In addition, we can use the footer element
to contain some further buttons via the buttons configuration option.

Depending on your requirements, you may choose to use one or more of these
content areas to provide tools allowing your users to manipulate and consume
the information within the window. A typical example would be to create a window
with a form layout, which then includes the Save and Cancel buttons within the
footer. This reflects the typical style of a data entry form, and will be positioned
automatically by Ext JS with little configuration being required.

Manipulating
When our windows are on-screen, we have a range of methods that we can use to
change their position, appearance, and behavior. In fact, we've already used one of
these methods in our examples—show—which is used to display the window in the
first place. Although we've always used show in its most simple form, it can take up
to three arguments—all of which are optional.

myWin.show('animTarget', function() { alert('Now Showing'); }, this);

Firstly, we can specify an element, or the ID of an element, to form the starting point
from which the window should animate when opening. This cosmetic effect can also
be specified using the animateTarget configuration option. The second argument
is a callback function, fired when the rendering of the window is complete, and the
third argument is simply the scope for the callback. It turns out the show method isn't
that basic after all!

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[203]

The obvious companion to show is hide. Indeed, it takes the same arguments,
and will cause the window to vanish from the screen for later use. If you're sure
that you don't want to use the window later then it's probably better to use the close
method, which will remove it from the DOM and destroy it.

The functionality delivered by the close and hide methods have already been
demonstrated—it is provided by the window's close icon. There are a few more
methods that allow programmatic control over items, that we've already covered,
such as the minimize and maximize methods. This basic functionality is augmented
by the restore method, which is used after maximize to return the window to its
previous dimensions, and toggleMaximize, which is simply a shortcut to switch
between maximize and restore. And in terms of setting the window back to its
defaults we can also use the center method, which sets the window in the middle
of the browser's viewport.

We can further manipulate the position of our windows: alignTo allows a developer
to programmatically move a window next to a specified element. This method has
three parameters:

•	 The element to align to—as a string or full element
•	 The position to align with—as detailed in the Element.alignTo

documentation, and briefly discussed in Chapter 10, Effects
•	 A positioning offset, specified as an [x,y] array

This method is useful when you have an application with a dynamic
workspace—you need to ensure that your windows appear in the correct place
in relation to other items being displayed. A useful compliment to this feature is
the anchorTo method, which takes the same arguments and allows a window to
remain anchored to another element, even when the browser window has been
resized or scrolled.

While many of the Ext.Window methods simply give a developer access to existing
functionality via their code, there are a few additional ones that provide for
advanced scenarios or for features that would be laborious to code by hand.

Events
Pretty much all of the actions we've covered so far have their own events that serve as
hooks for your custom code. Minimize is one which we've explicitly mentioned earlier,
because you have to handle this event if you want the minimize icon to do anything.
Ideally, you'd expect the window to be stored in some kind of 'taskbar'-style area for
later retrieval.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[204]

var w = new Ext.Window({
 height: 50,
 width: 100,
 minimizable: true
});
w.on('minimize', doMin);
w.show();

In the previous example, we're creating a new window, which we set as
minimizable, and then add an event listener for the minimize event. We then
show the window on the screen. Our doMin event handling function looks like this:

function doMin() {
 w.collapse(false);
 w.alignTo(document.body, 'bl-bl');
}

We simply tell our window to collapse down to the title bar (passing in a parameter
of false simply indicates that we don't want to animate the collapse) and then use
the alignTo method, which we've discussed previously. With the parameters we've
chosen, the window's bottom left will be aligned to the bottom left of the document
body—just like the first window in a taskbar would be.

Of course, with further windows, you'd end up with an overlapping stack in
the bottom-left; not ideal for a real world application. However, it does show
how the minimize event can be handled, and can be used as an alternative to
the collapse method.

State handling
State handling with windows is a relatively simple process. Windows are fully
integrated with the standard Ext JS state management facilities via the stateful
configuration flag. Assuming that we want to track the position, minimize status,
size, and z-order of a window through page refreshes and user sessions, we can use
code such as this:

var w = new Ext.Window({
 stateId: 'myWindowStateId' // a unique stateId is always required
 stateful: true,
 stateEvents:['resize'] // track the resize event
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[205]

We use the stateEvents option to set an array of window events, which will cause
the component to save its state. Unlike state handling with the TreeNodes in Chapter
8, Ext JS Does Grow on Trees, we don't need to hook into the beforestatesave event
this time around. The window component will look after itself, and automatically set
its configuration to reflect its previous state.

Window management
In a rich Internet application, it can be desirable to allow the user to have many
windows open simultaneously, reviewing a variety of information without having
to navigate to separate pages. Ext JS allows for this: you can create any number
of non-modal windows and manipulate them as you see fit. However, we face a
problem when using a multitude of windows—how do we manage them as a group?
For example, the users may wish to clear their workspace by minimizing all open
windows. We can achieve this functionality, and more, by using a window group.

Default window manager behavior
When you create an Ext.Window, it will automatically be assigned to a default Ext.
WindowGroup which, by default, can always be referred to via the Ext.WindowMgr
class. However, you can create as many additional WindowGroups as your application
requires, assigning windows to them via the manager configuration option.

Why would your application require a method of grouping windows? Well, multiple
windows are affected by z-order, in that they can be stacked on top of each other.
We can use WindowMgr.bringToFront to bring a particular window to the top of
the stack, perhaps if it has been updated with new information and we want to
draw the user's attention to this. In some situations, this would be the same as using
Ext.Window.toFront. However, the WindowMgr approach will respect the z-order
grouping of individual WindowGroups, and so is a safer method when building a
large application with many windowing options.

The grouping and z-ordering of windows is a confusing topic, so let's put these
advanced features into a real-world context.

Multiple window example
We're going to build a very basic simulation of a customer service application. Our
user will be the supervisor of a live chat system, where customers who are online
can ask questions and get answers straight away. The supervisor will take some of
these questions, but they also monitor the status of other agents who are dealing
with customer sessions. We'll only be interested in the windowing aspect of this
application, so it's going to be filled with a lot of dummy data to illustrate our point.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[206]

Here's a screenshot of a simple application developed to support this:

The lists have deliberately been left plain to avoid the need for extra JavaScript
code—an application such as this could really benefit from grids or data views
displaying the sessions and agents, but we really don't need them just to demonstrate
our windowing code.

We're going to use a JavaScript object literal to structure our example. Here's the shell:

var customerService = {

 sessionsGroup : null,
 agentsGroup : null,

 init : function() {
}
};
Ext.onReady(customerService.init, customerService);

We have a couple of local variables that will hold our window groups, and an empty
init function that gets called, with the customerService object as its scope, from
the Ext.onReady statement. Now that we've got our JavaScript skeleton, we need
to take a look at the markup that is going to power our customer service app:

<div id="mySessions">
 <h2>My Sessions
 <button id="hideSessions">Hide All</button>
 <button id="tileSessions">Tile</button>
 </h2>
 <div id="s-p1">
 <h3>Bill</h3>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[207]

 <p>Started at 12:31pm</p>
 <div class="content"></div>
 </div>
</div>
<div id="agents">
 <h2>Agents
 <button id="hideAgents">Hide All</button>
 <button id="tileAgents">Tile</button>
 </h2>
 <div id="a-h1">
 <h3>Heidi</h3>
 <p>Is dealing with 3 sessions...</p>
 <div class="content"></div>
 </div>
</div>

This is the HTML that will go straight into the body of our document. We've got two
main containers—mySessions and agents—which then contain h2 tags with a few
buttons, and some div tags. For example, within mySessions, we have the div #s-p1,
containing an h3, a paragraph, and another div with the content class. The #s-p1
div is one of many that could appear within mySessions, these divs being named
as #s-xxx, with xxx being a unique identifier for that session.

Within agents, we have a similar structure with slightly different IDs—for example,
the agent divs are named as #a-xxx. The various IDs in HTML are extremely
important for our JavaScript, as they'll be used to hook up event handlers, as
we'll see in a moment. Let's take a look at our full init function (note that each
code snippet will build on what came before).

init : function() {
 var s = Ext.select;
 var g = Ext.get;
 this.sessionsGroup = new Ext.WindowGroup();
 this.agentsGroup = new Ext.WindowGroup();

 s('#mySessions div').on('click', this.showSession, this);
 s('#agents div').on('click', this.showAgent, this);
}

The first two lines of the previous block of code are just shortcuts to clean up our
code—we're storing references to the Ext functions in a variable with a smaller
name. Nothing fancy about it. The next two lines see us creating two distinct
window groups—one that will hold our session information windows, and one
for the agent information windows.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[208]

The next few lines make more sense given the HTML we discussed previously.
We use our shortcut to Ext.select to add event listeners to all of the divs within
#mySessions—handled by the showSession function—and within #agents—handled
by showAgent. The third argument to the on function ensures that we maintain scope
when the handlers are called. Let's take a look at the showSession function:

showSession : function(e){
 var target = e.getTarget('div', 5, true);
 var sessionId = target.dom.id + '-win';
 var win = this.sessionsGroup.get(sessionId);

 if(!win) {
 win = new Ext.Window({
 manager: this.sessionsGroup,
 id: sessionId,
 width: 200,
 height: 200,
 resizable: false,
 closable: false,
 title: target.down('h3').dom.innerHTML,
 html: target.down('.content').dom.innerHTML
 });
 }

 win.show();
 win.alignTo(target);
}

There's a lot happening here. The first line ensures that our target variable contains
the session div that was clicked on, regardless of whether it was actually one of the
session's child elements that was clicked. We then store a unique sessionId by
taking the ID of the target session div and appending -win to it. Finally, we check
if the session window group already has a reference to the window that we're
about to create, by looking it up using the unique sessionId.

If the window doesn't exist then we need to create it. Most of the configuration
options shown will be familiar from earlier in this chapter, but take note of our
explicit assignment of the sessionsGroup as the managing group for this window.
We're also using the sessionId as the ID for the window rather than relying on the
automatically-generated ID that will be used by default. With the title and html
options, we're using the Ext.Element DOM traversal facilities to assign the text of
the session div's h3 and div.content elements respectively.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[209]

We're now sure that the win variable holds a valid reference to a window, so we
can go ahead and show the window. After we do so, we want to align it with the
div that was clicked to show it, so the window's alignTo function is called. That's
a whistle-stop tour of the showSession function. The showAgent function is almost
identical, but refers to agentsGroup rather than sessionsGroup. Together these two
functions make sure that our session and agent windows pop up successfully, so
it's now time to take a look at how our WindowGroups can be used to manage
them as a unit.

Customer service WindowGroups
We can add two lines to our init function that use window groups to perform
a clearout of our customer service workspace:

g('hideSessions').on('click', this.sessionsGroup.hideAll);
g('hideAgents').on('click', this.agentsGroup.hideAll);

We can add event listeners to our hideSessions and hideAgents buttons that are
directly handled by the hideAll functions of the sessionsGroup and agentsGroup.
This short code snippet allows us to hide all of the agent or session windows with
a click on the associated button. In a similar vein, we're going to add a couple more
event listeners to our other buttons that will cause our windows to be tiled across
the screen—organized into an easy overview:

g('tileAgents').on('click', this.tileAgents, this);
g('tileSessions').on('click', this.tileSessions, this);

This time the events are handled by tileAgents and tileSessions that look
like this:

tileAgents : function(e) {
 this.sessionsGroup.hideAll();
 this.tile(this.agentsGroup);
},
tileSessions : function(e) {
 this.agentsGroup.hideAll();
 this.tile(this.sessionsGroup);
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Windows and Dialogs

[210]

Again, we call the hideAll function to make sure that the other set of windows
is cleared from the screen. When we've prepared the workspace, we can then pass
the relevant window group to the tile function:

tile : function(group) {
 var previousWin = null;
 group.each(function(win){

 if(previousWin) {
 if(win.getEl().getWidth() + previousWin.getEl().getRight() >
 Ext.getBody().getWidth()) {
 win.alignTo(document.body, 'tl-tl',
 [0, previousWin.getEl().getHeight()]);
 } else {
 win.alignTo(previousWin.getEl(), 'tl-tr');
 }
 } else {
 win.alignTo(document.body, 'tl-tl');
 }

 previousWin = win;
 });
}

The key here is the WindowGroup.each function, which allows us to loop through
every window assigned to the group and perform further actions and calculations.
In this case, if it's our first iteration, then we align the window to document.body.
For further iterations, the windows are aligned to the previous window in the
loop, taking care to add a vertical offset if the window would have pushed off
the rightmost side of the screen.

hideAll and each are useful ways of manipulating multiple windows. In this
example, we've shown how two distinct groups of windows can be handled
with very little coding overhead.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 9

[211]

Summary
The Ext.Window is one of the most fundamental aspects of a rich Ext JS application.
Many of the other big components within the framework, such as the grid and tree,
can display information in an easily consumable and browsable manner, but
the chances are that if you need to display or manipulate a record with a lot of
information, do so without disrupting the user's workflow by navigating to a
different page, you're going to want to use a window.

The great thing is that Window is flexible enough to slot straight into any application
you may want to build with it. For ultimate power, simply fill it with custom
HTML, or to create an integrated experience use Ext components. The fact is that the
window subclasses panel provides you with the ability to construct complex pop
ups by using the most suitable Ext.layout—be that of a form, or an accordion, or
whatever—and have it look and feel the same as the rest of your application.

Although windows and dialogs will most likely have a place in your application,
they should be used with care. There's a tendency to identify a requirement for
displaying extra information and simply popping it up in the user's face; it could be
that a less disruptive interface would be more suitable. Ultimately, Window and Msg
sit alongside the other parts of Ext JS as tools that can be easily integrated into any
application that requires them.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory
With the 3.x branch of the Ext JS library, charting was introduced in the form
of a Flash file that renders different types of charts based on the configuration
we provide. This Flash file is part of the YUI library.

In this chapter we are going to start off with a basic pie chart, and move on to more
complicated charts from there. For me, the pie chart is the easiest to set-up, and some
of the others such as line or bar can take more configuration and data manipulation
to get a basic chart displayed. We will chart various data points from our grid of
movies that we finished up with in Chapter 7 (Layouts) and create some imaginary
data to play with the more advanced features of charting.

In this chapter we will learn to:

•	 Place a chart within our layout/application
•	 Load charts with data from a data store
•	 Create custom-styled charts

Just another component
Because of Ext JS's standardized component hierarchy, charts will slot easily into
your application with no fuss. All chart classes extend the BoxComponent base
class, and so may simply be used as child components of containers.

And providing the data for them to analyze is simple too. Charts are backed by
a standard Ext JS data store, a class which we already know about. We just need
to inform a chart which fields of the store's record it will be working with.

Future versions of Ext JS will eliminate the usage of Flash for creating charts,
and replace it with solutions based upon web standards such as SVG and VML.
However, because of the separation of the data from the presentation, and the strong
component hierarchy, this will mean minimal changes to application code. The new
charts will still use familiar data stores, and will still be regular components.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[214]

There are a handful of charts built right into Ext JS, along with a base class that could
be used to create other charts that might be supported by the YUI Chart Flash file.
Additional information about the YUI Charting library can be found on its web site.
The reference material found on the YUI Charting site (http://developer.yahoo.
com/yui/charts/) can be particularly useful for styling charts.

The following chart types are built into the Ext JS library:

•	 Pie
•	 Bar
•	 Line
•	 Column
•	 Stacked bar
•	 Stacked column

The first chart we create—the pie—we simply need to add a PieChart component to
our layout within a panel, bind it to our store, and setup some basic config options.

What the flash?
Behind the creation of the Flash elements used in Ext JS Charts is the swfobject library.
Sitting on top of the swfobject library is the FlashComponent class which normalizes
the swfobject methods into a class that the Ext JS containers can deal with. We will
not need to use this class directly, but it is always a good thing to know what we
are dealing with.

One thing we will want to do before using the charts is set the Chart URL. This is a
path that is set to the location of the charts.swf file that comes with Ext JS located
in the resources folder. By default the Charts URL is set to a charts.swf file that is
hosted on Yahoo's servers. This is similar to the spacer image URL that we had to
set in Chapter 2.

Ext.chart.Chart.CHART_URL = '../resources/charts.swf';

Now the charts will use a local resource instead of pulling down the charts.swf
from Yahoo every time.

If charts are being used on an Intranet application that
does not have external Internet access, then the Chart
URL must be set, otherwise charts will appear blank.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://developer.yahoo.com/yui/charts/
http://developer.yahoo.com/yui/charts/

Chapter 10

[215]

Setting the Chart URL to a local resource also allows us to use images in the styling
of the charts without having to create a crossdomain.xml file. If for some reason we
needed to use the Yahoo hosted version of charts.swf and are styling the charts
with images, then a simple crossdomain.xml file should be created and placed in
the root of our web site. The file contents should look like this:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/
dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="yui.yahooapis.com"/>
</cross-domain-policy>

A slice of data—pie charts
In order to create a pie chart summarizing the genre makeup of our movie collection,
we need to go through our data store that contains our movie data and summarize
the data into another store that is used just for the chart. Of course if we already
have summarized data in a store, this step is not needed, and the store can be
used directly in the chart and shared between components.

The first thing we need to do is create a store for our chart to use:

var chartStore = new Ext.data.JsonStore({
 fields: ['genre','total'],
 root: 'data'
});

A very basic Json store with two fields will work just fine, since all we need to do is
store the genre name, and a count of how many movies are in each genre. We are
going to massage the data that exists in our movie database store to get the summary
data to populate our PieChart's store. A little function should do the job just fine.

var loadPieChartFn = function(s){
 var tmpData = {}, genreData = [];
 s.each(function(rec){
 var genre = genre_name(rec.get('genre'));
 (tmpData[genre])? ++tmpData[genre] : tmpData[genre] = 1;
 });
 for (genre in tmpData){
 genreData.push({
 genre: genre,
 total: tmpData[genre]
 });
 }
 chartStore.loadData({data:genreData});
};

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[216]

This function takes a store as the only argument (which is always the first argument
passed to a store's listeners) and summarizes the data, updating our pie chart with
the summarized data. It loops through the five rows of the movie store, and creates
a new data store containing three rows:

We also need to make sure the chart store is updated when the movie store is
updated—tie them together. To do this we just need to call this function whenever
the store is changed:

listeners: {
 load: loadPieChartFn,
 add: loadPieChartFn,
 remove: loadPieChartFn,
 update: loadPieChartFn,
 clear: loadPieChartFn
}

Easy as pie, now our chart store is tied to our movie store.

Chart in a layout
To add the chart to our layout we are going to split up the west region used in our final
example in Chapter 7 making it into a border layout with a north and center region
within it. This west region previously just contained our movie form. The movie form
will become the new center region and our pie chart will be in a north region.

{
 region: 'west',
 layout: 'border',
 xtype: 'container',
 split: true,
 width: 250,
 minSize: 250,
 split: true,
 margins: '0 0 5 5',
 collapseMode: 'mini',
 items: [{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[217]

 region: 'north',
 items: // chart is the sole item,
 split: true,
 height: 250
 }, movieForm]
}

Now we have a split up west region with a 250 pixel tall panel in the north position
where we can place our pie chart. The pie chart will need to be added as one of the
items of this north panel; since it is a BoxComponent type, it cannot be used directly
in layouts but instead has to be nested in a panel or rendered directly to a dom node.
Well go ahead and do the following.

Pie chart setup
The next step is to tell the pie chart what store to use and which fields in the store
hold the data it needs.

The config options we need to add to our pie chart to get it plumbed up are the store
of course, along with dataField and categoryField. The dataField is set to the name of
the field that holds our genre count, and the categoryField is the field that holds the
name of the genre.

{
 region: 'north',
 items: {
 xtype: 'piechart',
 store: chartStore,
 dataField: 'total',
 categoryField: 'genre'
 },
 split: true,
 height: 250
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[218]

This will produce a nice simple pie chart integrated into our layout.

Our pie chart is quite simple now; the default settings have some generic colors
for the slices, and no labels or legend, along with a basic mouseover. Let's go
ahead and fix this chart up so it looks presentable.

Styling the pie slices
The overall styling in the charts is done through the extraStyle config option, which
is an object that contains all of the settings that determine what color, font, sizing
and such are used in our charts, along with animation and positioning of different
elements of the chart. We can also override the default styles by setting the chartStyle
config, but we will cover that in more detail later in this chapter. For now, let's
modify the extraStyle config to keep the styles on a per chart basis.

We will also be styling the series, which is the display portion of each segment of
data. In this case, the series refers to each of the slices in the pie. Now pie charts have
very few options, so don't expect a huge change. We'll start by adding a
legend using the legend config object.

{
 xtype: 'piechart',
 store: chartStore,
 dataField: 'total',
 categoryField: 'genre',
 extraStyle: {
 padding: 2,
 animationEnabled: true,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[219]

 legend: {
 display: 'bottom'
 }
 }
}

The display config option accepts either 'left', 'right', 'top', or 'bottom' as the value,
placing the legend accordingly, which is all it takes to get a legend up and going. While
we were at it, I also added padding of two pixels. This padding is the space around the
edges of the pie chart, bringing the chart closer to the edges of its container, along with
enabling animation, which makes the pie pieces animate to different sizes when the
values change. We end up with a chart that looks like the following:

Another chart styling we will want to adjust is the series styles. These series styles
apply to the individual points of data represented in the chart. Since there can be
multiple series in one chart (not in the pie chart though), this config accepts an array.
Each object in the array has a style config, which is another object containing the
styles for that series.

{
 xtype: 'piechart',
 store: chartStore,
 dataField: 'total',
 categoryField: 'genre',
 series: [{
 style:{
 showLabels: true,
 colors:[0x953030, 0xFF8C40, 0xFFDB59, 0x8DC63F, 0xFFFFFF]
 }
 }],
 extraStyle: {
 padding: 2,
 animationEnabled: true,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[220]

 legend: {
 display: 'bottom'
 }
 }
}

The showLabels config is pretty self explanatory; just set it to true to show the
percentage labels on the pie pieces. With the colors config we just need to set a color
that is used for each piece of the pie chart. These colors can be defined as a hex number
like in the example above or a hex string like we often use in HTML and CSS.

This change results in a much better looking pie chart:

A nice fall theme makes me want to carve a pumpkin, eat some candy, then go
outside and rake leaves. Much better than the default hospital colors! With this set
of colors we created, if there are more than five data points—since we only defined
five colors—the colors will repeat.

More details on styling can be found in the YUI Charts
basic styling section of their site: http://developer.
yahoo.com/yui/charts/#basicstyles

Bar and column charts
Why don't we move on to the bar and column charts, where we can re-use the same
data, displaying it in a bar or column format instead of a pie? For the most part,
these charts display data in the same fashion, so we can re-use the same store
without change.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[221]

Both the bar and column charts are set up the same way since they are just horizontal
and vertical versions of the same chart. We will need to set the xField or yField
depending on the chart type, just like we had set the dataField and categoryField
in the pie chart.

{
 xtype: 'barchart',
 store: chartStore,
 xField: 'total',
 series: [{
 yField: 'genre',
 style:{
 color:0x953030
 }
 }]
}

This will give us a simple bar chart showing the summary of genres, though the
grid lines will look a little funny, since they are automatically calculated by the YUI
Charts Flash file, which doesn't always get things right. To get the grid lines to make
sense, we need to set up a xAxis with a NumericAxis that will set the grid lines at
whatever interval we tell it to.

{
 xtype: 'barchart',
 store: chartStore,
 xAxis: new Ext.chart.NumericAxis({majorUnit: 1}),
 xField: 'total',
 series: [{
 yField: 'genre',
 style:{
 color:0x953030
 }
 }]
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[222]

The majorUnit setting defines the distance between the full height grid lines,
and the minorUnit setting added later will set the small ticks along the bottom
edge. This will give us a bar chart like the one shown as follows:

From bar to column
Switching out a bar chart for a column chart just involves changing the xtype
and switching the x's to y's and vice versa.

{
 xtype: 'columnchart',
 store: chartStore,
 yAxis: new Ext.chart.NumericAxis({majorUnit: 1}),
 yField: 'total',
 series: [{
 xField: 'genre',
 style:{
 color:0x953030
 }
 }]
}

This change results in a column chart as follows:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[223]

Add some style
Now that we have learned how easy it is to go from bar to column, let's get back
to our bar chart and do some styling. We can style both the x and y axis separately
using the xAxis and yAxis objects in the extraStyles object.

{
 xtype: 'barchart',
 …
 extraStyle: {
 padding: 2,
 animationEnabled: true,
 xAxis: {
 majorGridLines: {
 color: 0xEBEBEB
 },
 minorTicks: {
 color: 0x0000ff
 }
 },
 yAxis: {
 labelRotation: -45
 }
 }
}

Setting both the majorGridLines and minorTicks color properties inside the xAxis to
a very light grey will mute the colors of the grid lines in our bar chart. The yAxis gets a
labelRotation of -45, which is the number of degrees off vertical to rotate the text.

This results in a chart like the following:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[224]

Many more styles are available for the charts, so take a look into the
documentation provided by Yahoo on their YUI Charts reference site.

Stack them across
Sometimes we need to display multiple values that relate to the same data point, or
need to be grouped together for some reason or another. For these cases we can use
the StackedBarChart or StackedColumnChart. In order to experiment with these
types of charts, we will need to sample our data a bit differently so we can pull
together more series of data.

What we're going to do is group our movies by their release year, and see how
many movies fall into each genre per year. For this, let's create another function to
transform the data into our chartStore along with adding some new fields to our
charts store to hold the counts from each genre.

 var chartStore = new Ext.data.JsonStore({
 fields: ['year','comedy','drama','action'],
 root: 'data'
 });

Now the data transformation function needs to count all genres separately
and record the number of movies in each genre grouped by year.

var loadChartFn = function(s){
 var tmpData = {}, yearData = [];
 s.each(function(rec){
 var genre = genre_name(rec.get('genre')),
 rel_year = rec.get('released').format('Y');
 if(!tmpData[''+rel_year]){
 tmpData[''+rel_year] = {Comedy:0,Drama:0,Action:0};
 }
 tmpData[''+rel_year][genre]++;
 });
 for (year in tmpData){
 yearData.push({
 year: year,
 comedy: tmpData[year].Comedy,
 drama: tmpData[year].Drama,
 action: tmpData[year].Action
 });
 }
 chartStore.loadData({data:yearData});
};

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[225]

This will convert the data like so:

Get to the stacking
Now that we have multiple points of data, we need to add more objects to the
series array—one for each of the data points, comedy, drama, and action. We're
also adding a new option to the series items called displayName, which will be
used in the legend we are going to add to this chart later on.

series: [{
 xField: 'comedy',
 displayName: 'Comedy',
 style:{
 color:0x953030
 }
},{
 xField: 'drama',
 displayName: 'Drama',
 style:{
 color:0xFF8C40
 }
},{
 xField: 'action',
 displayName: 'Action',
 style:{
 color:0xFFDB59
 }
}]

Changing the xtype on our chart to a stackedbarchart from barchart and adding
a stackingEnabled flag set to true will complete the process, giving us a nicely
stacked bar chart.

xAxis: new Ext.chart.NumericAxis({majorUnit: 1, minorUnit: .25,
stackingEnabled: true})

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[226]

This produces a chart that will look like the following:

Of course I took this opportunity to also enable the legend on the bottom, since it
was not entirely clear looking at the chart what the three stacked colors represented.
Just like we did in our first pie chart, setting the legend to display 'bottom' in the
extraStyle config is all we need, since we set displayName earlier in the series
(without the displayName set, the legend would display 0, 1, and 2).

extraStyle: {
 ...
 legend: {
 display: 'bottom'
 }
}

Turning this same chart into a non-stacked bar chart with multiple series just
involves removing the stackingEnabled config in the xAxis (or setting it to false).

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[227]

Charting lines
The line chart can be used in much the same way as a column chart, however there
is no bar variation of the line chart, as it can only draw lines horizontally. Switching
the xtype to 'linechart' and swapping the x's for y's and vice versa will give us a line
chart. Also remember to remove the stackingEnabled option, as this is not compatible
with line charts.

{
 xtype: 'linechart',
 store: chartStore,
 yAxis: new Ext.chart.NumericAxis({majorUnit: 1, minorUnit: .25}),
 xField: 'year',
 series: [{
 yField: 'comedy',
 displayName: 'Comedy',
 style:{
 color:0x953030
 }
 },{
 ...
 }],
 extraStyle: {
 padding: 2,
 animationEnabled: true,
 yAxis: {
 majorGridLines: {
 color: 0xEBEBEB
 },
 minorTicks: {
 color: 0xEBEBEB
 }
 },
 xAxis: {
 labelRotation: -45
 },
 legend: {
 display: 'bottom'
 }
 }
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[228]

With these simple changes, we now have a line chart that looks like so:

It would appear from this graph that I consistently added comedies to my movie
collection. Note that the Drama and Action lines overlap, causing the Drama line
to be hidden below Action.

Tooltips
By default, a very generic tooltip exists on the chart, but we have the ability to
change this to whatever we want using the tipRenderer config. The tipRenderer
accepts a function as the value, which needs to return a text string to use for the
tooltip text. The default is this boring information, which is nothing we can't glean
from the chart itself. I want more.

Tooltips can be styled just like the other components of a chart
using the options available in the extraStyles config object.

What if we were informed by the tooltip which movie titles made up the data at this
particular point on the chart? Now that would be useful. Our function just needs to
return a string; other than that requirement we can do whatever we need to, like in
this case where we will loop through our movies to get the titles of each movie in the
appropriate genre, filmed in the corresponding year.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[229]

{
 xtype: 'linechart',
 ...
 tipRenderer : function(chart, record, index, series){
 var genre = series.displayName,
 genre_id = genres.getAt(genres.find('genre',
genre)).get('id'),
 year = record.get('year'),
 movies = [];

 store.each(function(rec){
 if(rec.get('genre') == genre_id &&
rec.get('released').format('Y') == year){
 movies.push(rec.get('title'));
 }
 });

 if (movies.length) {
 return movies.join(', ');
 }else{
 return 'None';
 }
 }
}

The tipRenderer function is called with four arguments passed, the chart, current
record of the charts store, the index of the series, and the specific series config. We
can use this information to get the details we want from the other stores, which
results in a tooltip like the following:

Now we know which movies make up the statistics for the points on the chart.
Very useful information now!

A real world example
For the last example we will use some real-world data and create a simple version
of a commonly used application.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[230]

The dataset is taken from a cyclist racing a 10 mile time trial. Every two seconds his
bike computer records a GPS location, and the racer's heart rate. It records current
speed in meters per second based upon elapsed time and GPS fix. The recorded
data is provided as an XML file containing a series of trackpoints:

<Trackpoint>
 <Time>2010-08-03T18:11:35.000Z</Time>
 <Position>
 <LatitudeDegrees>53.060790784657</LatitudeDegrees>
 <LongitudeDegrees>-1.0703133791685104</LongitudeDegrees>
 </Position>
 <AltitudeMeters>66.4000015258789</AltitudeMeters>
 <DistanceMeters>4.050000190734863</DistanceMeters>
 <HeartRateBpm>
 <Value>89</Value>
 </HeartRateBpm>
 <Extensions>
 <TPX>
 <Speed>4.057000160217285</Speed>
 </TPX>
 </Extensions>
</Trackpoint>

We will create a line chart tracking speed and heart rate to help the cyclist's coach
plan his training.

First we define a TrackPoint record definition which extracts the data from
the above XML element:

var TrackPoint = Ext.data.Record.create([
 { name: 'lon', mapping: 'Position/LongitudeDegrees', type: 'float'
},
 { name: 'lat', mapping: 'Position/LatitudeDegrees', type:
'float'},
 { name: 'elevation', mapping: 'AltitudeMeters', type: 'float' },
 { name: 'distance', mapping: 'DistanceMeters', type: 'float' },
 { name: 'time', mapping: 'Time', type: 'date', dateFormat: 'c' },
 { name: 'heartRate', mapping: 'HeartRateBpm>Value', type: 'int' },
 { name: 'speed', mapping: 'Extensions/TPX/Speed', type: 'float',
 convert: function(v) {
 return v * 2.23693629; // Metres/sec to miles/hour
 }
 },
 { name: 'elapsed', mapping: 'Time', type: 'date',
 convert: (function() {
 var start;

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[231]

 return function(v, raw) {
 v = Date.parseDate(v, 'c');
 if (!start) {
 start = v;
 }
 return new Date((v.getTime() - start.getTime()));
 }
 })()
 }
])

The mapping configs specify an Xpath to the element containing the field's value.
Where a field must be calculated, we configure a convert function which is passed
the mapped value, and the raw data element.

After loading the store, we extract the GPS fixes to create a Google map using one
of the many user extension classes available for Ext JS.

To create a multi-line chart, we must define a series definition for each line:

 heartRateSeries = {
 yField: 'heartRate',
 style: {
 color: 0xff1100,
 size: 8
 }
 },
 speedSeries = {
 yField: 'speed',
 axis: 'secondary',
 style: {
 color: 0x00aa11,
 size: 8
 }
 }

We are plotting two lines using the Y axis, while the elapsed time is on the X axis.
Each series must specify which field provides its value, and the style for the line
points. Optionally, you may specify which axis to bind the value to if, as in this case
where we are using two X axes with different measures on each. Heart rate will be
red, and speed will be green.

Then we define the axes for the chart. In our previous examples we only defined one
X axis and one Y axis. To use two we specify an axes array, and designate one as the
secondary axis:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[232]

xAxis: new Ext.chart.TimeAxis({
 title: 'Elapsed time',
 labelRenderer: function(date) {
 return date.format("H:i:s");
 }
}),
yAxes: [
 new Ext.chart.NumericAxis({
 minimum: 40,
 maximum: 220,
 title: 'Heart rate',
 position: 'left'
 }),0
 new Ext.chart.NumericAxis({
 minimum: 0,
 maximum: 40,
 majorUnit: 5,
 title: 'Speed\nMPH',
 position: 'right',
 order: 'secondary'
 })
]

To get the chart displayed in its region is all we need. The last example should
produce a display like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[233]

Dynamically changing the data store
As with all store backed widgets, changes to the data store are immediately reflected
in the user interface. This example uses a twin slider control to "zoom in" to a
particular time segment of the race. The maximum value is set to the maximum
elapsed time, and when the slider positions are changed, the data store is filtered
to filter out datapoints outside the slider's time range. The chart will change as the
slider fires its change event. To prevent too many updates during sliding, we use the
buffer option on the change listener to add a 50 millisecond delay:

timeSlider = new Ext.slider.MultiSlider({
 flex: 1,
 values: [0, 0],
 plugins : [
 Ext.ux.SliderThumbSync,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Charting New Territory

[234]

 new Ext.slider.Tip({
 getText: function(thumb) {
 var start = new Date(thumb.slider.thumbs[0].value *
1000),
 end = new Date(thumb.slider.thumbs[1].value *
1000);
 return '' + start.format("i:s") + ' to ' +
end.format('i:s') + '';
 }
 })
],
 listeners: {
 change: function() {
 var v = timeSlider.getValues();
 store.filterBy(function(rec) {
 var e = rec.get("elapsed").getTime() / 1000;
 return (e >= v[0]) && (e <= v[1]);
 });
 },
 buffer: 50
 }
})

We can also edit Trackpoints to correct any data, or remove points. For example,
we might want to remove the zero mph trackpoints from the beginning.

To facilitate this, we have enabled selection of records by using the mouse events
provided on the chart items. Ext Charts relay all the events offered by Yahoo
Charts. The event names are converted to lower case, and stripped of any
redundant 'event' suffix.

Mouse event handlers are passed an event which contains the following properties:

•	 Component: The chart firing the event
•	 index: The index of the record corresponding to the item
•	 item: The data item providing the value (The record's data object)
•	 seriesIndex: The series which rendered the item
•	 type: The event type
•	 x: The X position within the chart object
•	 y: The Y position within the chart object

We add an itemclick listener to load the associated TrackPoint record into the editing
form in the west region:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 10

[235]

listeners: {
 itemclick: function(evt) {
 editTrackpoint = store.getAt(evt.index);
 trackpointEditForm.getForm().loadRecord(editTrackpoint);
 trackpointEditForm.getForm().findField(evt.seriesIndex ?
'speed' : 'heartRate').focus();
 }
}

The editing form allows us to change certain values within the TrackPoint, and
then update the store, or to delete the TrackPoint from the store. The chart will
update immediately.

Programatically changing the styles
We can also change the displayed style of existing series in a chart. We have two
checkboxes to show and hide the heart rate trace and the speed trace. Each checkbox
is configured with a check listener which updates the style property of its associated
series definition object, and then refreshes the chart:

listeners: {
 check: function(cb, checked) {
 speedSeries.style.visibility = checked ? 'visible' :
'hidden';
 window.chart.refresh();
 }
}

Summary
In this chapter, we have seen how easy it can be to get a basic chart working, and
switching between the different chart types can also be quite easy depending on the
type of chart. We learned how to give a chart the data it needs to draw bars, lines,
and pie slices by adding a store to the chart and loading it with data. Then we styled
the chart to fit our needs. From here we now have a foundation to start graphing
more complex data into charts and if you're unlucky, you will soon be creating charts
for the company board meetings.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects
The easiest thing to do when writing a software application is to switch into
programmer mode—to focus on the code, and not on the end user experience.
The architecture of a system is extremely important, but if the user is not satisfied
with their interactions with the system, then the project can only be seen as a failure.

Ext JS contributes to solving this issue by providing many slick components that
react well to user input and maintain a consistent look and feel across the entire
framework. "Feel" is a very fuzzy word when it comes to software design; the way
a link acts when you hover over it or the way in which a window appears onscreen
can be the difference between a pleasurable experience and a confusing one.

Many of Ext JS's components have transitional animations built-in by default,
allowing you to smoothly expand a treenode rather than suddenly pop it open, or
to shrink down a window to a specified button that can be used to reactivate it later.

Features like this aren't just an added layer on top of the rest of the Ext framework;
they're baked in at a low level to provide a consistent experience for both the
developer and the end user.

In this chapter, we'll discuss:

•	 The range of built-in Ext JS options for animation and effects
•	 Creating custom animations and tweaking the existing ones
•	 Using multiple animations together
•	 Other Ext JS visual effects such as masking and tooltips

It's elementary
The Ext.Element underlies many of the feature-rich widgets in Ext JS; indeed the
Ext.Component.getEl method reflects the fact that widgets such as windows form
fields and toolbars are supported by this fundamental building block.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[238]

Ext.Element mixes many methods from Ext.Fx, the class that is designed to
provide slick transitions and animations for HTML elements and components alike.
We're going to discuss the exciting possibilities that Ext.Fx provides, and also talk
about the way in which it works together with Ext.Element.

Fancy features
Along with building blocks of animation, we're going to examine various pieces of
eye candy that you can find dotted around the Ext framework. There are a number
of classes that provide added functionality to give your users feedback or assistance
when they're using your application, and many components support these features
straight out of the box. We can also use them in a standalone manner to create
rich tooltips, mask items that are in the process of loading new data, or highlight
individual parts of the screen to draw the user's attention to them.

It's OK to love
In truth, many of the functions we're going to cover in this chapter are superficial in
nature. They add some whizz-bang transitions that are not strictly essential. There are
two lines of defense for criticism. Firstly, a good developer understands that users are
not machines—they're people—and a little bit of whizz-bang is good for everyone.
Secondly, and perhaps more scientifically, it's much better to have a transition to
signify a change than simply have something appear. A transition draws the eye
and gives the user the opportunity to consume the visual cue that was presented.

A sudden change on screen results in a "what happened" response; a smooth
transition provides a hint as to what's going on. As we tour the various features
of Ext.Fx, bear in mind that they can be used for more than just being eye-candy;
they're great for adding value to your user experience.

Fxcellent functions
Ext.Fx is presented as a standalone class, architecturally independent of Ext.
Element, but in reality it cannot be used on its own. Instead, it is automatically
mixed into the methods and properties of the Ext.Element class, so that each action
from Ext.Fx is available for each Ext.Element instance. The examples that follow
will illustrate this point.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[239]

Methodical madness
As mentioned earlier, Ext.Fx has a range of methods that are called upon to perform
the magic. Each of these methods is available for Ext.Element instances. So in the
examples that follow, we're going to assume that you have a div element with an ID
of "target" on your ready-to-go HTML page.

Fading
The term "fading" is used in Ext.Fx to refer to a change in opacity—from 100 percent
opaque to 0 percent (fade out) and vice versa (fade in). In other words,
we're making something disappear and reappear—but as this is the Effects chapter,
the transition is animated. The two methods that perform these transitions are Ext.
Fx.fadeOut and Ext.Fx.fadeIn, and both support simple zero-argument usage:

Ext.get('target').fadeOut();

window.setTimeout(function() {
Ext.get('target').fadeIn();
}, 3000);

This usage will cause the target element to fade away slowly until it is completely
invisible. The timeout happens three seconds later and causes the target to slowly
re-appear, or fade in, until it is fully visible again.

You can tweak the behavior of these methods using the endOpacity configuration
option. This allows you to specify that the element will not fade out to complete
invisibility, which can be useful if you simply want to indicate that an item is now
less important. Alternatively, you can use it to dictate that an item will not return
to total solidity:

Ext.get('target').fadeOut({endOpacity:0.25});

window.setTimeout(function() {
Ext.get('target').fadeIn({endOpacity: 0.75});
}, 3000);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[240]

In the example just given, the initially-solid item is supposed to fade out to one quarter
opacity before being restored after three seconds to only three quarters opacity.

In addition to the configuration options such as endOpacity that are specific to
individual effects methods, there are also a number of common options shared by
all Ext.Fx methods. These allow you to tweak the behavior of your effects even
further. We'll discuss these later in this chapter.

Framing
Framing is reminiscent of a video game radar "ping". It radiates out from the point
of origin, fading away with distance. A great use of this feature is to highlight a
particular element on the screen—and the Ext.Fx.frame method also allows us
to ensure that the user's attention is drawn by using multiple "pings". The simplest
way of using it is without arguments:

Ext.get('target').frame();

This causes the target element to radiate a single light blue ping to draw attention
to the element, which may be useful in some scenarios. However, to make sure that
the user knows about a more important event, we could use something like this:

Ext.get('target').frame('ff0000', 3);

The first argument is the hexadecimal color of the framing effect, in this case, an
angry red. The second argument specifies the number of times the ping is to be
repeated. So here, we're using three red pulses to indicate that something pretty
bad is about to happen:

These are the real strengths of the frame method: repetition, and the ability
to use different colors to represent different situations and priorities.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[241]

Woooo: ghosting
Ghosts!-or rather ghosting—this is the term Ext JS gives to fading an element while
it moves in a specified direction. This effect is used to give the impression that an
element is transitioning from one area to another, for example the act of paging
through a number of images could trigger ghosting when the next or previous link
is selected. The default usage of ghost causes the element to drop-down while
fading out.

Ext.get('target').ghost();

The default settings could be used to discard elements that are no longer
needed—perhaps deletion of events could be signified with a call to Ext.Fx.ghost.
As mentioned previously, we can also cater to other situations by specifying different
directions for the ghosting depending on the situation. The standard Ext.Fx anchor
points, used in animation and alignment, can also be used with the ghost method:

Ext.get('target').ghost('tr');

Here, we indicate that the target will ghost out in the direction of its upper-right
corner, but any anchor point is accepted. We'll talk more about anchoring later in
the chapter. But it is this parameter that would allow us to replicate the paging
functionality which was described earlier, that is, we can use left and right anchor
points to move the ghost in the relevant directions.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[242]

Highlighting
If you're familiar with the term "Web 2.0", then you may also have heard of the
"yellow fade technique". A quick web search will turn up numerous references
to this JavaScript technique, which became popular when Web 2.0 was first
becoming a buzzword. Typically used when an action has been completed and
the user has been redirected to a new page, this effect causes a portion of the
page—often an error message—to have its background highlighted in a different
color. The highlight slowly fades away over a few seconds. Traditionally, the
highlighted color has been a friendly yellow, but for error messages, we might favor
something stronger. Having said that, yellow is the default for Ext.Fx.highlight:

This is triggered by the following basic code:

Ext.get('target').highlight();

Ext JS takes highlighting to the next level. While the standard usage affects the CSS
background color of the target element, you can choose any CSS property, such as
the color or border color. You can also specify the endColor of the highlight. In our
second and more complex example, we can cause the text itself to start out white
and end up green:

Ext.get('target').highlight('ffffff',{
 attr: 'color',
 endColor: '00ff00'
});

This is an extremely flexible method that can be used to highlight large portions of
a page—perhaps a fieldset in a form, or just a block of text—perhaps in an online
spellchecker. The point to be noted is that we can use it to respond and react to user
input, and use its flexibility to indicate the state of our system in a noticeable manner.

Huffing and puffing
The puff method of Ext.Fx tries to replicate the look of a puff of smoke slowly
dissipating into the air. While some of the Ext.Fx effects are used to highlight areas,
puff is used to transition an element off the screen. To do this, the element expands
while becoming more transparent, eventually fading away completely. Puff doesn't
have any special options of its own, so the default usage is pretty obvious:

Ext.get('target').puff();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[243]

Puff could be used with a quick transition to dismiss a window from the workspace,
or a slower transition could illustrate the removal of an element, maybe an image from
a gallery. However, there is one important point to note about this method: when used
within the document flow, it will affect the position of the elements around it.

Although absolutely-positioned windows will not affect their surroundings, in our
gallery example, it is possible that when you use puff, you'll get unexpected results
as the expanding dimensions push your other images out of the way.

Developers who are aware of the potential side effects of using Ext.Fx.puff can
add it to their toolkit, providing another interesting method of creating dynamic
transitions in their applications.

Scaling the Ext JS heights
Scaling is one of the few Ext JS effects that have a specific use, rather than simply being
an overlay on top of another action. It changes the dimensions of an element using a
smooth transition, which has numerous applications. We can expand text areas to give
more space for user input; we can replicate, maximize, and restore effects seen in the
windowing applications; we can change the focus of a workspace by shrinking one
portion and expanding another. The basic usage of Ext.Fx.scale looks like this:

Ext.get('target').scale(50, 150);

In this example, the target element will be smoothly-scaled to a width of 50 pixels
and a height of 150 pixels. Both of these options also accept null values, which
indicate that they should not be changed. This is useful if you want to restrict
the scale only horizontally or vertically.

Ext.Fx.scale works only with those elements that have their display
style set to block, to allow the width and height changes to take effect.
Using it on inline elements won't trigger an error, but you will not see any
change in the dimensions of the element, either.

Sliding into action
Within Ext JS, sliding refers to the transition of an element into or out of view. This is
the same effect used in the Ext.Fx.ghost method, so we've seen it in action already.
But in reality, there are two methods that fall under this heading—Ext.Fx.slideIn
and Ext.Fx.slideOut.

We can use these methods to either drop out an element that is no longer required,
or introduce a new element onto the screen. An obvious application for this would
be addition and deletion of records, where new items slideIn to the list and deleted
items slideOut.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[244]

Ext.get('target').slideOut();

window.setTimeout(function() {
Ext.get('target').slideIn();
}, 3000);

In the previous example, we move the target out of view, and three seconds later
bring it back in. By default, elements will slideIn and slideOut from their top
edge, but the first argument to both functions allows you to use anchors to specify
the direction of the movement:

Ext.get('target').slideOut('tr');

Here, we dictate that the target will slideOut to the top right. As with Ext.Fx.puff,
you must be aware of the elements that surround the item you're sliding; text and
other non-absolutely-positioned elements may be pushed around during the slide.

Switching from seen to unseen
The switchOff method is another means of removing an element from the screen.
This one combines two actions: firstly the element fades slightly to acknowledge
the start of the effect, and then the element slowly collapses from the top and the
bottom until it disappears. This two-stage effect means it can be used to draw the
user's eye before the real vanishing act takes place. We can use Ext.Fx.switchOff
in the following way:

Ext.get('target').switchOff();

As you can see, there are no unique arguments for this method, so it would seem that
you're stuck with the default effect. But later we'll discuss the configuration options
that are available for all of the Ext.Fx methods—the secret to complete control over
your effects.

switchOff comes in pretty handy in situations where you'd like to cause an element
to vanish without user interaction. For example, you might have some kind of
monitoring screen on your website that displays the current visitors to your site,
and tracks them as they move between pages. When their session expires, they will
be removed from the list. Rather than simply transitioning off the screen you can
highlight to the user that this is about to happen using switchOff: a quick flash
to indicate that the action is about to occur, and then the actual collapse transition.

Shifting
The Ext.Fx.shift method may sound like a function in the same vein as ghost
and slideOut, but in actual fact it's a little different. There's no default behavior
associated with the method, so simply call it in this fashion:

Ext.get('target').shift();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[245]

This will have no effect. Instead, shift must be supplied with a literal
containing one or more values from the following:

•	 width

•	 height

•	 x

•	 y

By setting one of these values and passing it to shift, we can cause the target
element to move to the x, y coordinates and resize to the width, height
dimensions—in the smooth manner which we've come to expect of Ext.Fx.
Here's an example:

Ext.get('target').shift({
 x: 5,
 y: 300,
 width: 300,
 height: 200
});

In this example, our target element will move to a position of five pixels from
the left and 300 from the top of the viewport, and will resize to 300 x 200 pixels.
These changes happen simultaneously, with the element resizing as it moves.

Effectively, shift is a version of Ext.Fx.scale that adds the ability to reposition
the element. This is a great mechanism for re-organizing a workspace—shifting
panels of data from a place of prominence to a place more unobtrusive, and doing
so in a smooth, dynamic manner.

And now, the interesting stuff
All of the methods that we've just covered have some broad similarities. But each
of them has certain distinct differences which make them applicable as solutions for
a range of very different problems. We're now going to discuss how an extra feature
of Ext.Fx can tweak and tailor the effects that we've already reviewed.

In many of the previous examples, the functionality on offer is slightly limited.
What's been glossed over until now is that each of the methods we've discussed
also accepts a standard configuration object that provides a host of common options
to bring their full functionality to your fingertips.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[246]

The Fx is in
We've briefly touched upon the way in which anchoring options are used within
Ext.Fx; for example, methods such as a ghost accepting a string representing the
direction in which to move. Over the next few pages, we'll not only discuss this in
detail, but we'll also go over the numerous configuration options that are common
to all of the Ext.Fx methods.

Anchoring yourself with Ext
Specifying directions, anchors, alignment, and more is all based around a scheme
of anchor positions. These are used by Ext JS's animation system to determine
the direction of movement, and they have a pretty simple naming convention:

Anchor Position
String

Description

tl Top-left corner (the default)
T Center of the top edge
tr Top right corner
l Center of the left edge
r Center of the right edge
bl Bottom-left corner
b Center of the bottom edge
br Bottom-right corner

These options allow eight-way movement when using methods such as Ext.
Fx.ghost. But the same concept is seen in methods such as Ext.Element.alignTo
and Ext.Element.anchorTo, where two anchor points can be combined, and the
"?" character can be used to dictate that the alignment will be constrained to the
viewpoint.

In short, it pays to familiarize yourself with the Ext JS anchor positions, as you'll
almost certainly use them in your application—either to move elements or to
just bend them to suit your many needs. More than that, Ext.Components has
underlying elements. So you'll most likely use these features when developing
a solution with rich widgets.

Now, back to the topic at hand—taming the Ext.Fx class.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[247]

Options
As mentioned earlier, each of the Ext.Fx methods we've covered can take an optional
configuration literal as its last parameter, which provides 11 settings for tweaking
your effects. The simplest is probably duration, which specifies how long the effect
should last. This is useful for ensuring that your transitions last long enough for your
users to catch them. Although the default durations of each effect are usually pretty
sensible, there are many use cases for overriding this value. Here's an example of using
duration, and indeed the configuration option argument in general:

Ext.get('target').switchOff({
 duration: 10
});

In this example, we pass a standard object literal to the switchOff method, and the
duration property is set to 10, indicating that the switchOff should take place over
ten seconds.

With the default behavior of some of the Ext.Fx methods, you end up with some
sub-optimal transitions. For example, many of the effects that cause an element to
vanish will actually just leave a big gap where the element used to be. This is because
they complete the transition by setting the visibility of the element to hidden, rather
than removing it from the DOM or from the document flow. We can rectify this
using two more configuration options: remove and useDisplay.

The first, remove, signifies that we'd like to completely destroy the element when
the transition has completed. The second, useDisplay, means that the element
will be hidden using display:none rather than visibility:hidden, so that it
will no longer affect the nodes around it. Using remove and useDisplay together
is redundant. If the node is completely removed, it makes no difference how it's
hidden. If you're planning on re-using or re-showing the element in question, then
stick with useDisplay; otherwise you may as well be tidy (and avoid potential
memory leaks) and use remove.

The configuration options also allow us to dictate what else happens when the effect
has completed. We have two options that control the look of our element: afterCls
and afterStyle, which allow a CSS class or raw CSS rules to be applied to the
element at the end of our transition. This can be used to add a permanent change
to the element in question, perhaps highlighting it as a newly-introduced item.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[248]

We have two more options that give us the power to perform further actions when
the effect has completed: callback, which allows us to specify a function to be called
at the end of the transition, and scope, which is the scope of the callback function.
For example:

Ext.get('target').switchOff({
 callback: function() {
 alert('Effect complete!');
 }
});

The Ext.Fx class handles the queuing of effects automatically, so don't use this to
trigger another effect. Instead, use it to trigger actions associated with the animation.

Easy does it
Our next configuration option is easing. In animation terminology, easing refers to
the means by which the transition eases from a stop to movement and back to a stop
again. By default, Ext JS effects will abruptly start and stop, but by using the easing
option, we can specify how it will accelerate and decelerate at the start and end of the
effect respectively.

The easing effects supported by Ext JS vary depending
on which adapter you're using. If you're using the Ext
JS Base adapter, then you'll get the full works.

A basic example of this in action is the easeBoth value. This causes the
animation to gradually speed up and then slow down in order to provide a
smooth-looking transition:

Ext.get('target').scale(50, 150, {easing: 'easeBoth'});

Here, we're applying the easing option to the scale effect, and by using easeBoth,
we can have a less jarring movement as it progresses. There are many more
easing options:

•	 easeNone

•	 easeIn

•	 easeOut

•	 easeBoth

•	 easeInStrong

•	 easeOutStrong

•	 easeBothStrong

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[249]

•	 elasticIn

•	 elasticOut

•	 elasticBoth

•	 backIn

•	 backOut

•	 backBoth

•	 bounceIn

•	 bounceOut

•	 bounceBoth

That's a list of the options supported by Ext JS Base. Those like bounceIn provide
a bit of a spring to the effect, which is perhaps more useful in a gaming application
than in data entry, but the beauty of having such a wide choice is that you are likely
to find something that fits your requirements.

The final few configuration options apply to the way your current effect interacts with
other effects that may occur within its lifetime. For example, block will specify that
no other effects are queued up while this one is running, which is useful in scenarios
where triggering further changes could adversely affect your application's state. The
block option tells all other effects to "bide your time" until things have calmed down.

Ext.get('target').shift({
 x: 5,
 y: 300,
 width: 300,
 height: 200,
 block: true
});

Here, we see an interesting usage of the Ext.Fx.shift method, in which the
shift-specific configuration options are augmented by the common Fx ones.

We also have the stopFx and concurrent options. stopFx allows us to cancel
all effects that get triggered after this one, while concurrent specifies whether
subsequent effects will run in parallel with this one, or will be queued up until after
this one has completed. By default, they'll queue up and run in sequence, but there
are situations in which you will be able to apply multiple effects at a time, and we'll
talk more about that in the next few sections.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[250]

Multiple effects
Most of the time, you'll use effects one at a time on different elements to achieve the
look you're after, but in some circumstances, it can be useful to use multiple effects.
There are a few different ways of handling this scenario, and in the next few sections,
we're going to review these ways. We're also going to see how we can influence any
running effects from our code.

Chaining
An easy way to set up a second effect to run after your first is completed is to use
the chaining method. As each of the main Ext.Fx methods return the Ext.Element
that was the target of the effect, you can then call further Ext.Element methods,
including those provided by Ext.Fx:

Ext.get('target').slideIn().highlight();

As you can see from this example, we're calling slideIn followed by highlight,
which indicates that highlight will be added to the effects queue to run after
slideIn completes.

Queuing
Queuing is the default behavior for effects set up either by method chaining,
or by multiple calls. The following code sample is functionally identical to
our previous example:

Ext.get('target').slideIn();
Ext.get('target').highlight();

In both cases, the highlight effect will be queued up behind slideIn. This negates
the need for any complicated timing or callback-based set-ups to trigger effects that
run sequentially.

Concurrency
Although queuing is default, we also have the option of running effects in parallel
by using the previously discussed concurrent configuration option. This gives us
the opportunity to combine effects—for example, we could highlight an element
as it scales up:

Ext.get('target').scale(300, 200 ,{
 concurrent:true
}).highlight();

This provides a very powerful capacity for customization.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[251]

Blocking and Ext.Fx utility methods
There are a number of extra methods within the Ext.Fx class that aren't directly
responsible for creating effects. Instead, they can be used to manage and monitor
effects that are already in the queue. A great example of this is the stopFx method,
which is as simple as it sounds—we can call it to cancel any animations that are
currently running. It also clears the effects queue, and primes the element for user
interaction or further manipulation.

Interestingly, stopFx returns the target Ext.Element, allowing the developer
to chain up further methods. Perhaps you have set up a slideIn that is
subsequently canceled and replaced with slideOut:

Ext.get('target').stopFx().slideOut();

Such code is useful if we need to interrupt an animation to give the control back
to the user—an ability that can be crucial in giving the user the response they
require. However, in other circumstances you may want to prevent the user from
interfering with the current state of the application, and if that's the case, we have the
hasFxBlock method. Typically, this is used to make sure that the user can't queue up
the same effect many times—we can prevent additional effect calls to the element if
hasFxBlock returns true.

Elemental
As we've seen, the Ext.Element is the key to using Ext.Fx. It's important that,
when rolling your own custom versions of Ext JS, you make sure that you include
Ext.Fx if you want to be able to use its methods for Ext.Element. However, even
when used standalone, Ext.Element has a number of methods all of its own that
can provide some interesting possibilities for animation.

Making a move
There are many methods on Ext.Element that can be used to manipulate a target
element, but some of them have a free extra. Pass in a true value as the last
parameter, and the manipulation will be animated.

Ext.get('target').moveTo(300, 500, true);

In this case, the target element will move to a location 300 pixels from the left and 500
from the top of the viewport. But, because of this last parameter, it will not simply
jump to that location, but will smoothly transition to the specified point.

In addition to simply passing in true as the third parameter, we can pass in a full
configuration object instead. This uses the same animation options for Ext.Fx that
we discussed earlier in the chapter.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[252]

Ext.Element animations can be used at the same time as the ones
from Ext.Fx, but they are not guaranteed to support the queuing
features that are always available with the Ext.Fx methods.

There are many methods, such as setOpacity and scroll that can be used in
this fashion to provide the means for adding simple transitions. This is a good
foundation, which Ext.Fx builds upon.

There's another piece of the animation puzzle that we're yet to touch upon: Ext.
Element.animate. This is the generic means of applying animations to an element,
and is a shortcut to the same underlying methods that are used by all of the Ext.
Element methods that support animation.

Advanced applications of this method involve using the Ext.lib.anim entries
that register all of the stock animation types available to Ext JS, and adding new
registered animation handlers to support custom scenarios. In most cases, using
the stock Ext.Element methods or the Ext.Fx methods will be sufficient, even
for advanced cases.

Using Ext components
The animations which are available on Ext.Element are particularly interesting
when you consider that many Ext.Components, such as the Window or FormPanel,
have an underlying element as their container. This means that you can apply these
effects to full components as well as to standard elements, providing an added utility
for these methods.

Reveal all
Although we've covered Ext.Fx and the other animation techniques that Ext JS
offers in depth, we've still got a few more features to cover when it comes to showing
off with the framework. There are a number of Ext classes that provide a little extra
sparkle to the top of the standard solutions. We've got LoadMask that allows you to
mask off a portion of the screen while it's being refreshed, and QuickTip that offers
a rich, configurable tooltip system.

These classes open up a new range of options when it comes to creating compelling
user-experiences, and we're going to examine them in detail over the next few pages.
A key feature of each is that they are reasonably simple to use, which is partly the
reason why you'll want to use them in many of your Ext JS applications.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[253]

You're maskin', I'm tellin'
The Ext.LoadMask class has a couple of different use cases. We can use it
to simply display a message that keeps the user informed, or we can use it
to prevent interaction with a component that is being refreshed.

Let's look at the first scenario, which is using an Ext.LoadMask to simply overlay
an element with a message:

var target = Ext.get('target');
var mask = new Ext.LoadMask(target);
mask.show();

In the previous example, once we have obtained an element using Ext.get, we pass
it into the Ext.LoadMask constructor and call the show method on the LoadMask
instance. There is also an optional second parameter for the Ext.LoadMask
constructor, a configuration object with four properties:

Property Name Description
Msg The loading message to be displayed in the center of the mask
msgCls The CSS class to use for the loading message container
removeMask Boolean; set to True to destroy the mask after the load is complete
store Discussed later

When creating a load mask in this way, we can dismiss it by calling the mask.hide
method. Although this masking approach is pretty straightforward, it's also a little
verbose. So in some cases, it's better to use the shortcut method that Ext.Element
provides:

Ext.get('target').mask('Loading...', 'x-mask-loading');

In this example, we're explicitly passing the message text and message CSS class
as the first and second arguments respectively. This allows us to replicate the
functionality provided by a basic Ext.LoadMask call, as shown in the first example,
but they're both optional. When you're done with the mask, you can hide it by calling
the unmask method of your Ext.Element instance. If you have stored a reference to
the mask, you can call the hide method of that instance instead.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[254]

Data binding and other tales
Although it initially seems that the Ext.Element approach is better, there are
actually a few compelling reasons for using the full LoadMask. The most interesting
reason is that it can be tied to a specified Ext.data.Store instance, allowing you to
automatically mask and unmask your element based on when the store is loading.
This cuts down on your code when showing the mask, but it also negates the need to
hook up an event listener for your load complete events. Let's take a look at how this
feature can be used:

var slowStore = GetSlowStore();

var mask = new Ext.LoadMask(Ext.get('target'), {
 store:slowStore
});

slowStore.load();

We're not interested in how to create a store, so that's been hidden away in a
function call. All we care about is that our example store is going to take a couple
of seconds to finish loading. We instantiate a new LoadMask with an element as the
first constructor parameter and a configuration literal as the second one. The store
property accepts our slowStore as its value.

Now that everything's set up, we simply call the load method of the store. This
will mask over our target element, and in a few seconds when it has finished
loading, the mask will automatically be dismissed.

Considering components
As we've seen, there are a number of ways of manually masking elements,
and you could use any of these approaches to the Ext.Elements that underlie
many Ext.Components. However, it's important to note that some components
provide this functionality for you, cutting down on the code that you need to write
in order to enable this feature in your applications. For example, the Ext.grid.
GridPanel has a Boolean loadMask configuration option, which not only masks the
panel but also automatically ties in to the data source that is feeding the GridPanel.
So GridPanel has this handy feature baked right in!

QuickTipping
It's often very useful to be able to supply further information for a button or
form field, just in case your users are unclear as to its purpose. In many cases,
it's impractical to put this information inline, next to the item in question, simply
because it would make the interface highly cluttered. In this situation, tooltips are
a great alternative to inline information, and with Ext JS these little pop-up snippets
can contain any HTML that you'd like to show.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[255]

The Ext.QuickTips class is a singleton that provides a very easy method of creating
rich tooltips. It allows you to put your QuickTip setup information directly into the
markup of your page—a great method for reducing the configuration required. In
many cases, having the description text within your main HTML makes the most
sense. This approach is supported by the use of a number of extra attributes for any
HTML element that you'd like to tie the QuickTip to, with ext:qwidth, ext:qtitle
and ext:qtip being the most commonly-used:

<input type="text" ext:qtitle="Information" ext:qtip=
 "This field can contain text!" ext:qwidth="200" />

We need to activate the global QuickTips handler before this starts working:

Ext.QuickTips.init();

It's also worth mentioning that nonstandard attributes will cause your HTML
document to fail validation—so bear that in mind if your application requires valid
HTML. After completing these two steps, you'll end up with the tooltip as shown in
the following screenshot:

Along with using markup-based tooltips, we can also programmatically create more
customizable ones with the Ext.ToolTip class. This provides a range of configuration
options to change the behavior and appearance of the tooltips, and also allows you
to pull tooltip data from an external source, by using the power of AJAX.

The simplest usage of this class is as follows:

new Ext.ToolTip({
 target: 'tipTarget',
 html: 'This is where our information goes!'
});

The constructor for Ext.ToolTip accepts a configuration literal as its only argument,
and here we're using the mandatory target property to specify which element will
trigger the tooltip; in this case it will be the one with the ID tipTarget. Note that
we're using a string to refer to the ID, but in fact you can pass in an Ext.Element
reference or a standard HTML node. We're then setting the html property to the text
that we'd like to show in the tooltip. As the name of the property indicates, you can
add any extra markup you like, even images.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Effects

[256]

Ext.ToolTip has a number of other interesting options, such as the ability to tweak
the time it takes for the tooltip to appear and then vanish, by using the showDelay
and hideDelay configuration properties. This can be useful if you need the tooltip
to appear promptly when the user hovers over its associated element, or if you want
to make sure that the information is on-screen long enough to be taken in.

We've also got the ability to set the title of the tooltip in the same way as we did with
the markup-based solution, that is, by using the title option. In fact, many of the
options, such as title, come from the fact that Ext.ToolTip is a subclass of Ext.
Panel. This means that we can use features such as the autoLoad configuration
option to grab content from a URL, or use the closable option, to force the user
to dismiss the tooltip using a close widget.

A great feature introduced in Ext JS 3.0 allows anchoring of a tooltip—providing a
means of letting your tooltips actually point at the object they refer to. By using the
anchor configuration option with a value of top, the tooltip appears below the target
element with a guiding arrow protruding from the top of the tooltip element. You can
also use the anchorOffset to tweak where the arrow appears on the tooltip's edge.

This feature is only supported when you're using the tooltip inside a container that
is using the AnchorLayout layout manager, so bear that in mind when using this
anchoring technique.

QuickTips and ToolTips are great examples of Ext JS classes that aren't essential
to an application, but provide a layer of functionality that can take your solution
from something ordinary to something highly usable.

Summary
There's a fine line between visual cues and annoying effects. Although we've reviewed
many of the Ext JS features that allow you to gear your application towards either
extreme, this chapter has only been about the tools and not how you should use them.

That said, we've also looked at a couple of examples that illustrate just how useful
eye candy can be when helping out your users. By providing a little something extra
when you're deleting a record or closing a data display, you can turn a potentially
confusing experience into one that is supported by gradual changes in visual state,
rather than immediate shifts from one click to another.

The key is to ensure that those gradual changes aren't too gradual, that your
animations aren't in-your-face, and that they aren't triggered every time the user
presses a button. Software applications are about getting things done, and having
portions of the page whizzing around the screen isn't likely to help with that.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 11

[257]

Ext JS isn't just about these fancy effects, though. We've demonstrated a couple
of classes that are utility tools with style. ToolTips and LoadMasks are genuinely
useful in many scenarios, and could rarely be used in an "in-your-face" manner.

Using ToolTips can add a lot of value to a busy application, removing clutter by
moving inline text into pop ups, and providing unified and attractive assistance to
your users. Images, and even HTML links, can provide more information than could
possibly be shown next to a form field.

The other class which we covered, LoadMask, can form a critical part of a system,
ensuring not only that your users are prevented from interrupting a load operation,
but also that the mask that appears is attractive, consistent, and can contain
customized information that keeps the users informed.

In the next chapter, we're going to take a look at one of the most typical examples
of Web 2.0 glitz: drag-and-drop. In a typical Ext JS manner, we're going to see how
it's not only simple to use, but also powerful in its functionality.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop
In the world of software development, desktop applications are still number one.
Although websites and, latterly, web applications are developing rapidly using
frameworks such as Ext JS, they are yet to reach the level of complexity that we see
in our most extensive desktop programs.

Drag-and-drop, the subject matter of this chapter, is a good example of this.
Moving items across the screen using the mouse on a standard computer desktop
is all-pervasive; it is available for a great many actions and it is available in virtually
every application, even if this is in a limited form.

Part of the reason for this is that implementing drag-and-drop using JavaScript
is pretty hard. Coming up with a consistent methodology for turning any element
into a draggable widget that can then be placed on another element, have it work in
every browser, have it support scrolling, and take into account iframes is, to say the
least, problematic.

At the start of the Web 2.0 revolution, we started to see some more consistent
implementations of drag-and-drop appearing—ones that fulfilled many of the
criteria we've just outlined. But even then, the Web didn't start using it in such
a free and easy manner as the desktop, perhaps because of the poor use cases that
were used as demonstrations for this new functionality. After all, does anyone really
want to work with a drag-and-drop shopping cart system?

This chapter will cover:

•	 An overview of how drag-and-drop works in Ext JS
•	 A simple example to illustrate how to set up drag-and-drop
•	 Using drag-and-drop with Ext JS components
•	 Managing advanced drag-and-drop features such as scrolling, proxies,

and metadata

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[260]

Drop what you're doing
The implementation of drag-and-drop that Ext JS provides succeeds on many levels.
It is cross-browser and easy to use, but more importantly, it is used in multiple
widgets within the framework, such as the GridPanel and TreePanel, making it
easy to implement in useful real world applications.

In addition, the Ext.dd package contains a number of classes that allow you
to create simple drag-and-drop features with ease—shopping carts included. There
is sufficient granularity to support more advanced scenarios as well, providing you
with a means of creating custom drag-and-drop solutions that are fully integrated
into your Ext application.

In this chapter, we'll review the Ext.dd package and ways in which it can extend
your toolkit, but we'll also be looking at how to extend the drag-and-drop
functionality provided by the various Ext components.

Life's a drag
There are clearly two parts to creating a working drag-and-drop feature—the
dragging, and the dropping. As these are two separate operations, we'll handle
them separately for our simple use case.

Sourcing a solution
The first part we need to look at is the drag action. Ext will enable this using the Ext.
dd.DragSource, which actually makes the whole thing a breeze. Assume that you've
got a <div> element on your page with an ID dragMe:

new Ext.dd.DragSource("dragMe");

That's all you need to get up and running!

Try running this code and grab hold of your element. You can now drag it around
the page, but there's a little bit more to it than that. Ext JS provides a few extra
features by default, which will be demonstrated by this code.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[261]

Approximating
When you begin dragging the element, you'll see that you don't actually drag the full
element as you would in some drag-and-drop implementations that you might have
seen. Instead, Ext JS automatically provides a proxy—a lightweight representation
of whatever element you're dragging. This facility is provided by Ext in the form of
the Ext.dd.StatusProxy class.

If you're using an element with a little bit of text in it, you'll see that Ext uses that as
the contents of the status proxy, but that's as far as it goes in trying to replicate your
element when creating a visualization of the drag action. The dimensions of your
element will be discarded, and the proxy will try and fit the content in as best as it
can. But if you've got a lot of data inside your element you may find that the status
proxy is somewhat out of shape.

What's the advantage of having a status proxy, rather than just using the element
itself? Well, one thing that you'll also see from our demonstration code is that Ext
provides a small no-entry icon as you move the proxy around, which changes to a
green tick when you move the proxy over a valid drop point, as we'll see shortly.
But the great thing is that using a proxy will give you this indicator for free.

Another advantage of using the status proxy instead of the full element is that it's
much more workable, both in terms of processing power and in terms of the actual
stuff you're going to be dragging across the screen; moving a 10 column, 200 row
table isn't going to be smooth and isn't going to look good either. A status proxy
makes for a neat solution to these kinds of problems, and has some bonus features
too—as we'll see later.

Snap!
Another built-in feature of the Ext.dd.DragSource is the action that occurs
when you drop the element in a place that isn't a valid drop target—that is, when
the proxy's red no entry sign is showing. It immediately "snaps" back to where it
came from, highlighting the original element in light-blue to notify the user that it
has returned to its original position.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[262]

Drop me off
Now that we've managed to drag something around, we can move to the second
part of the plan—dropping. The idea is that we have a drop target—an element
that triggers the green tick in the proxy to signify that you can drop the proxy into it.

In order to do this, we make use of the Ext.dd.DropTarget class, in pretty much
the same way as we used DragTarget:

new Ext.dd.DropTarget("dropHere");

The DropTarget constructor accepts a mixed element object—in this case, the ID
of an element on our page—and defines that element as a valid target for any drop
operations. Running these two examples together will illustrate the changing status
of the drag proxy icon—from red to green, when it's hovering over a drop target.

But wait: nothing's happening!
The tricky thing about this kind of basic drag-and-drop is that nothing really
happens when you perform the drop action. In fact, the dragged element just snaps
back to its source just as it would if you'd dropped it when the proxy icon was red.

The trick lies in providing a function that overrides the DropTarget.notifyDrop
method. By default, this method has no implementation and simply returns false,
causing the dragged element to snap back to its source. By writing a little bit of
custom code, we can make the drop action complete in whichever way we see fit.

Why is this step necessary? Surely Ext JS should know that we want to drag
that over to there. There are so many variations of drag-and-drop that it's
impossible for Ext to understand what you're trying to do. Instead, it makes
it trivial to add your own actions to drag-and-drop operations.

We're going to take a look at some sample code that hooks into this facet of the drag-
and-drop support by creating a simple example that causes the dragged element to
be inserted within the drop target. This is probably the behavior that you expected
to see with the default setup. Although it won't be that useful within itself, it should
help fill in some of the gaps.

Assuming that we have the same code as in our previous few examples, with
a DragSource and a DropTarget, we now need to add an implementation of
notifyDrop to the DropTarget:

new Ext.dd.DragSource('drag');
new Ext.dd.DropTarget('drop', {
 notifyDrop: function() { return true; }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[263]

This simple addition, which overrides the default implementation of notifyDrop,
returns true and signifies that we do not wish the drag target to snap back to its
original position. This is enough to partially fulfill our expectations of what our
drag-and-drop code should have done in the first place. The drag source can
be released over the drop target without snapping back to its original position.
However, we do need to do a little more work to actually make the element move
into the target, and we'll look at how to do this, shortly.

Interacting the fool
While the previous examples are interesting in the abstract sense—they give us an
idea of how the Ext JS drag-and-drop system works—they aren't going to be setting
your newest development alight. For that, we need to consider how multiple drag
targets and drop targets can interact, and how we can set up more complicated
systems for dragging around items of data.

Zones of control
We've seen how to hook up a single draggable item, but often, you'll want to have a
number of elements ready to be moved around the screen. The solution here is to use
Ext.dd.DragZone and Ext.dd.DropZone to enable the movement of multiple nodes.
We're going to replicate a simple to-do list application, which will allow the user to
move items from one list to another. However, this functionality will be seriously
limited, allowing us to focus only on the relevant topics. First, we need to set up
some basic HTML:

<h1>Today</h1>
<ul id="today">
 Shopping
 Haircut

<h1>Tomorrow</h1>
<ul id="tmrw">
 Wash car

We've got two lists, one with the id of today and one with the id of tmrw. Our user
will be able to move items between the two lists to simulate reorganization of their
next few day's tasks. Our first snippet of JavaScript will use the Ext.dd.DragZone
to set these lists as containers of draggable items. Remember that your JS code needs
to go inside an Ext.onReady call.

new Ext.dd.DragZone('today');
new Ext.dd.DragZone('tmrw');

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[264]

This looks pretty straightforward, but there is one sticking point. Testing
the code at this point will highlight the fact that it doesn't actually enable any
functionality—nothing happens. Along with setting up the DragZone, we need
to explicitly say which child nodes within those DragZone instances are going
to be draggable.

Why the extra step? In complex applications, we may have many nested
child nodes. So automatically setting all of them up as draggable could
cause performance problems and unexpected behavior. Instead, we could
do so manually, avoiding these potential issues.

In order to make our list items draggable, we need to register them with
the Ext.dd.Registry:

var drags = document.getElementsByTagName('li');
for(var i =0; i< drags.length; i++){
 Ext.dd.Registry.register(drags[i]);
}

This is a pretty naïve implementation, simply registering all of the elements on
the page, but it should give you an idea of what is required. If you test the code now,
you'll see that all of the items can be dragged around as you'd expect. So we need to
move on to providing a place to drop them:

var cfg = { onNodeDrop: drop }
new Ext.dd.DropZone('tmrw', cfg);
new Ext.dd.DropZone('today', cfg);

We create a cfg object, which holds configuration data common to both of our
Ext.dd.DropZone instances. The onNodeDrop method of DropZone is called
by DropZone.notifyDrop automatically when it realizes that you've dropped
a registered node. In this case, we're pointing to a function called drop that
will override the existing, empty implementation of onNodeDrop. The new
implementation looks like this:

// dropNodeData-drop node data object
// source-drag zone which contained the dragged element
// event-the drag drop event
// dragNodeData-drag source data object
// this-destination drop zone
function drop(dropNodeData, source, event, dragNodeData) {
var dragged = source.dragData.ddel;
 var sourceContainer = source.el.dom;
 var destinationContainer = this.getEl();
 sourceContainer.removeChild(dragged);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[265]

 destinationContainer.appendChild(dragged);
 return true;
}

We use the arguments passed to this function to get hold of three elements:

•	 The item that is being dragged
•	 The list that it came from
•	 The list it's being dragged to

With this information, we can remove the item from the source list and then append
it to the destination list. We then return a value true to prevent the item's proxy
from snapping back to its point of origin.

Changing our lists
With this sample code, we've demonstrated the use of Ext JS drag-and-drop
functionality in a practical manner. It's a very simple application, of course, but
it's good. We can see how the powerful aspects of the Ext.dd package can be
applied in a straightforward manner.

Later, we'll see how many aspects of the Ext JS framework support drag-and-drop
with very little configuration, and how the knowledge of the working of underlying
classes is essential if such support is to be shaped to your requirements.

Registering an interest
We've already discussed how the child nodes of a DragZone must be registered in
the Ext.dd.Registry before they can be dragged around. This extra step can be a
little painful, and we'll see ways around this later, but for now, let's concentrate on
the advantages you get when a node is added to the Ext.dd.Registry.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[266]

In our previous examples, we used the Ext.dd.Registry.register method with
a single parameter: the element to be registered. However, register also takes a
second, optional parameter that allows you to add an extra metadata object to the
item being dragged around. This metadata can be leveraged in any way you see fit
for your application, but a possible use would be to pass "compatibility" information
to the drop event. Imagine you are producing an application that lets you assemble a
"virtual outfit" by dragging and dropping items of clothing. We could use metadata
to make sure that only items of clothing from the "summer" range can be combined,
by including range information as part of the drag data. There are many different
applications for the metadata facility, but because it's just an arbitrary object, it really
is up to you to decide how it can be used.

Although there is overhead associated with the use of Ext.dd.Registry, we've
shown that it also has important benefits, which, depending on the needs of your
application, could outweigh the hassle of writing extra registration code.

Extreme drag-and-drop
One of the great things about drag-and-drop in Ext JS is that you can use it with
many of the supplied Ext Components without having to delve into the guts of
how they work. We're going to examine the use of drag-and-drop to create a
master-detail layout with the Ext.DataView and the Ext.FormPanel. This way,
we can demonstrate the integration of drag-and-drop with commonly-used
components. Much of what we're going to cover will be familiar to you from our
previous example, but the application of that knowledge will be slightly different.

We're going to be working with some very simple HTML:

<div id="people"></div>
<div id="detail"></div>

The people <div> will contain our DataView, listing a group of people pulled from
a store. The detail <div> will contain the form that we can drag items onto.

DataView dragging
The first step is to create our Ext.DataView, and enable the dragging of its nodes.
The code to initialize the view looks like this:

var personView = new Ext.DataView({
 tpl: '<tpl for=".">' +
 '<div class="person">' +
 '<h1>{name}</h1>' +
 '<div></div>' +

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[267]

 '</div>' +
 '</tpl>',
 itemSelector: 'div.person',
 store: personStore
});
personView.render('people');

You'll notice that the implementation of the personStore isn't shown, but it needs
to have an ID, name, image, city, and country items within its records in order to
support what we're going to do. Note that within our template, we're showing a
header containing the name of the person and an image representing them.

Based on our experience with list items, we can set up a DragZone for the DataView
container, and register the <div> elements with a class person, using the Ext.
dd.Registry. If you try this approach, you'll see why it's not the right one for this
particular application—it simply doesn't work! The person nodes can't be dragged
around as you'd expect.

The reason for this lies with the Ext.dd.Registry. As the children of a DragZone
need to be registered with the Ext.dd.Registry before they can be dragged around,
we would need to ensure that every possible child—in our case the <h1> and
tags—is registered. This is clearly not a very practical solution, and so we must take
a different approach.

Dealing with drag data
We need to deal with this issue on a slightly higher level. Rather than dealing
with each individual child node, we will look at overriding the default behavior
of Ext.dd.DragZone in order to achieve our goal.

The getDragData method of the DragZone class is called whenever a mousedown
occurs within the DragZone container. This means that we can use it to listen for
the start of a drag event no matter which child node is clicked. In our circumstances,
we'll examine the target of the mousedown event and navigate up through the DOM
until we find the person node that represents the item we really want to use in our
drag operation. So the code for setting up our DragZone would look like this:

new Ext.dd.DragZone(personView.getEl(), {
 getDragData : function(e) {
 var container = e.getTarget('div.person', 5, true);
 return {
 ddel : container
 }
 }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[268]

As mentioned earlier, we get the person container node from the mousedown event, and
we use it to populate the ddel property of the object that is returned from getDragData.
Earlier in the chapter, when dealing with dropping a node onto a DropZone, we looked
at the dragData.ddel property to find the node that was being dropped. This is the
same data, but from the other point of view—this is how it gets populated.

Now we've got our DataView working as we expected, but there are a couple
of interesting additions that we can make at this point. Let's examine those now.

Proxies and metadata
When we specified the ddel property in getDragData, we were essentially
populating the proxy that was going to follow the mouse pointer as we dragged
our node around. This is a useful consideration. Consider the following code:

return {
 ddel : container.down('h1').dom
}

Now, instead of our proxy appearing as the full node, it'll only appear as the <h1>
tag within our node. When we've talked about proxies before, we've mentioned
that dragging a cut-down version of the full item can be a very useful approach,
and this is how it can be achieved when using DragZones.

We also have the option of passing extra data into the drag by using other properties
of dragData. In fact, any information that we add to the object will be available when
the item is dropped. Here's what we're going to do in our example code:

return {
 ddel : container.down('h1').dom,
 record : personView.getRecord(container.dom)
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[269]

We can actually pass the record associated with the item that was clicked as a data
item in our drag operation. This is going to come in very handy when we come to
populate our FormPanel.

Dropping in the details
This is the other side of the coin—handling the drop action that is triggered when
we release a dragged node from our DataView. The concepts behind this will be
familiar from our previous examples. We need to create a DropTarget from the
FormPanel and then override its notifyDrop method to dictate what will happen
when the drop action occurs.

Let's take a look at the code for our FormPanel:

var detailForm = new Ext.form.FormPanel({
 width: 250,
 height: 80,
 defaultType: 'textfield',
 items: [
 { fieldLabel: 'Name', name:'name' },
 { fieldLabel: 'City', name:'city' },
 { fieldLabel: 'Country', name:'country' }
]
});

This is all pretty standard stuff, but note that the names of the form fields match up
with the names of the fields in our data record that was used to populate the drag
node. We can now set up the DropTarget:

new Ext.dd.DropTarget(detailForm.body.dom, {
 notifyDrop : function(source, e, data){
 var record = source.dragData.record;
 detailForm.getForm().loadRecord(record);
 return true;
 }
});

Note that we can grab the full record straight from the dragData on the drag source,
and load it into the form. That's the strength of being able to put any data we like
into dragData, and here it shows how we can populate the form with a minimum
amount of code.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[270]

Drag-drop groups
We started off our tour of Ext.dd by looking at how individual nodes could be
moved around the screen and placed in designated containers. From there, we
described the methods used to enable dragging for many nodes at once, and how
these could be dropped within containers with child nodes.

When you're dealing with lots of draggable elements, there's a third facility that
can be used to make sure that your nodes behave in the way you'd expect:
drag-drop groups. DragSource, DragZone, DropTarget, and DropZone accept
the configuration option ddGroup that in turn accepts a string identifier indicating
which group you'd like to assign your instance to.

But what does this configuration option actually do, in practical terms, and what
new features does it provide for your applications? Well, strictly speaking, it means
that a drag-drop class instance will only be able to interact with other drag-drop
instances in the same group, but that's a rather dry way of explaining it. Let's look
at a real-world use case.

Nursing our drag-drop to health
Imagine that you have a screen in your application with four separate containers,
each of which is specified as both DragZone and DropZone. Without drag-drop
groups, the default behavior here would be that the user could drag from any one
of these defined areas to any of the other three.

In many cases, you're likely to want to limit these kinds of interactions. Let's say
that containers one and two represent today and tomorrow's appointments for a
doctor, and containers three and four are appointments for a nurse. Appointments
for the doctor can't be transferred to the nurse, and ones for the nurse can't be given
to the doctor. So the application needs to implement this restriction.

We could do this very easily by specifying a ddGroup of "doctor" for containers
one and two, and ddGroup of "nurse" for containers three and four. This would
mean that an attempt to drag a nurse appointment into a doctor container would
fail, as the nurse drag-drop objects are not allowed to interact with items outside
their own drag-and-drop groups.

This kind of advanced functionality becomes essential when you're writing
applications that make extensive use of drag-and-drop. We don't need to write
code to check whether the drop target is correct, as drag-drop groups take care
of this for us.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[271]

It's all in the details
We've had a good overview of the main classes within the Ext.dd package now. So
it's time to start looking at some of the interesting configuration options, properties,
methods, and events that allow us to tweak the behavior of the drag-and-drop classes.

Configuration
The "big four" of Ext.dd—DragSource, DragZone, DropTarget, and DropZone—are
notable within the Ext JS framework for being important classes that don't really
offer much in the way of configuration options. That's because, despite being
important, they're all relatively simple to set up: designate a linked node and
away you go. That said, we've already covered one option that all of these classes
support—ddGroup—and there are a couple more common options available.

The dropAllowed and dropNotAllowed options are both strings that dictate the CSS
classes to be passed to the drag source when the respective conditions are true. For
example, if the item is hovering over an invalid drop target, then the class specified
by dropNotAllowed will be used.

DropTarget and DropZone have the overClass option in common. This allows
you to change the CSS class applied to the drop target element when a drag source
moves over it. This is blank by default, and so is a useful method of augmenting
the graphical cue provided by the status proxy.

It's all under control
The drag-and-drop support within Ext JS is structured a little differently than the
rest of the framework. Typically, to add in your own behavior, you will handle
events that a class fires off, as we've seen when discussing the TreePanel and other
components. With Ext.dd, there are very few events to handle. Instead, a number
of abstract methods are provided for the developer to override.

Ext JS describes these methods as "abstract methods", a concept rarely
seen in Javascript as it is not strictly supported. Here, the term simply
refers to an empty implementation that needs to be replaced by the
developer in order to achieve the desired functionality.

We've already seen how the notifyDrop and onNodeDrop methods for DropZone
need to be overridden to complete the drop process, but there are plenty of other
abstract methods that we can hook in to. In fact, even for the drop action, there
are a number of similar-sounding methods available for use in certain situations:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[272]

•	 notifyDrop

•	 onContainerDrop

•	 onNodeDrop

On the face of it, all of these could apply to the same scenario: handling the action
performed when an item is dropped on a target. The trick is that the first three are
actually related. On DropZone, notifyDrop isn't actually abstract; instead, it simply
establishes whether onNodeDrop or onContainerDrop will be called. It's these two
methods that need to be overridden if you want to perform a drop action.

Managing our movement
The Ext.dd package includes a DragDropMgr class, which is generally intended
for use as an internal helper for the framework itself. However, there are a few
interesting points to note about the class. Let's briefly review the way that this
manager can fit into your own applications.

Global properties
As DragDropMgr is used to track all of the drag-and-drop manipulations that
occur, we can use it to globally change the way those manipulations are handled.
For example, the clickPixelThresh property can be changed to set the minimum
number of pixels that the mouse needs to move before a drag is initiated. This can
be useful in situations where your drag targets also accept a click event—you may
wish to increase this value to prevent accidental drags.

Similarly, the clickTimeThresh, normally set to 1000 milliseconds or 1 second,
dictates the delay time between clicking an element and starting the drag. This
could be decreased to make the start of the process seem more responsive, or
increased if it's interfering with other actions.

We can also fine-tune the way in which the drop action is handled. By default,
the drag-and-drop mode is set to POINT, where the position of the mouse pointer
is used to determine whether the object being dragged is within the drop target.
We can change this behavior to INTERSECT mode:

Ext.dd.DragDropMgr.mode = Ext.dd.DragDropMgr.INTERSECT;

This means that the edges of the drag source and drop target are used to establish
interaction. If the two items overlap them, then the drop target is considered valid.
This can be handy if the items you wish to drag are going to be large as it could
be easier for the user to simply make the edges touch rather than move the mouse
pointer directly over the target.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[273]

These properties are only likely to be used in edge cases, but would come in handy
as part of our toolkit.

Scroll management
One very slick part of the drag-and-drop puzzle that can be handled automatically
is scrolling a container while trying to drag an item into an off-screen region. The
Ext.dd.ScrollManager means that you can either drag items off bounds from the
document body, or cause an element with scrollbars to shift as you drag the elements
within it. Setting this facility up is pretty simple:

Ext.dd.ScrollManager.register('myContainer');

With this code, we've set up the myContainer element to be scroll-managed.
Note that the scrolls occur in short bursts as you reach the edges of the container.
We can tweak the behavior of the scroll as well, by setting the ddScrollConfig
of the element to be registered.

var el = Ext.get('myContainer');
 el.ddScrollConfig = {};
Ext.dd.ScrollManager.register(el);

The ddScrollConfig consists of a configuration object containing a number
of options. The bursts of scrolling are animated by default, and it can be disabled
by setting animate to false, or can have its duration changed by setting
animDuration to a value other than the default of 0.4 seconds:

el.ddScrollConfig = {
 animDuration: 0.2 // anim takes 0.2 seconds to complete
};

We can increase the frequency of scroll bursts by setting the frequency to a
millisecond value, and change the amount of pixels by which to scroll by using
the increment option. We can also control the width of the trigger area on both
the horizontal and the vertical sides by using the vthresh and hthresh options,
which are both specified as pixel numbers.

Although the Ext.dd.ScrollManager performs a simple purpose and does so
with very little code, the utility of this class should not be underestimated. Setting
up this functionality manually would be taxing, and it is such a crucial part of
drag-and-drop that without ScrollManager, we'd be hand-coding it in every
application we write. So while Ext.dd.ScrollManager is a fairly simple utility
class, it's the one that makes many common drag-and-drop scenarios a great deal
easier to develop.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[274]

Dragging within components
As we've seen previously, there are a couple of components that offer drag-and-drop
support completely out of the box. It's important to remember that these features exist.
Given our new drag-and-drop knowledge, we could implement them from scratch.
Instead, we'll quickly review the main Ext components that have this facility baked in.

TreePanel
The default Ext.TreePanel not only enables drag-and-drop via the provided
configuration option, but exposes a number of events, such as beforenodedrop,
that allow us to hook our own functionality into the component.

By using AJAX requests, we can persist the results of our drag-and-drop actions
to the server for retrieval later. If you're using multiple TreePanel instances, you
can even drag-and-drop between them, and restrict the direction of movement
using the enableDrag and enableDrop configuration options.

GridPanel
The Ext.grid.GridPanel also provides drag-and-drop support out of the box with
the use of the enableDragDrop configuration option. Setting this to true will allow
you to begin dragging rows out of your grid. But you would still need to provide a
custom DropTarget for the row destination. This could even be another GridPanel,
but it means that you'll have to leverage the knowledge you gained earlier in this
chapter to really put grid drag-and-drop to good use.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 12

[275]

The custom Ext.grid.DragZone is also provided to facilitate these actions, giving
you a shortcut to both the data being dragged and the grid that holds it. This class
means that there's a bit less heavy lifting required when you want to drag rows
within your application.

Using it in the real world
There are many cases where drag-and-drop is actually a barrier for the user—such
as when adding an action that takes longer to complete than the more standard
approach. Why drag-and-drop something when clicking it could be just as effective?
The visual cue of the drag-and-drop status proxy may look great in a screenshot, but
in a real-world situation there may be a more logical approach.

That said, the visual element of drag-and-drop is still its most important feature.
There is no better way of organizing a list or a tree of information than by pulling
it around the screen using the mouse. When completing tasks like these, a graphical
representation of what's going on will not only help your users to get the job
done more quickly, but when backed by Ext JS, could also turn out to be the least
development-intensive approach as well.

Ext.dd is a package that doesn't supply any widgets of its own. Instead it supports
other segments of the framework and works as a behind-the-scenes facilitator of
exciting end user functionality. As such, it can be a little difficult to come to grips
with it, especially as it provides a variety of approaches to solve similar issues.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Drag-and-drop

[276]

In this chapter, we've covered all of the major pieces of the Ext JS drag-and-drop
puzzle. So, when you do come up with a problem that can be tackled using
drag-and-drop, you can use DragZones, DropTargets, and StatusProxies
to achieve the look and feel that your application requires.

Summary
It feels as if our knowledge of drag-and-drop on the Web has come pretty far from
our understanding in the earlier chapters. We started off by discussing some of the
typical demonstrations of drag-and-drop, which were developed to show off the
Web 2.0 functionality. Some of those demonstrations suffered from a lack of real
utility, but they were undeniably compelling. We showed how to create a few
'fancy but pointless' effects of our own to get a grasp of the underlying concepts
of the Ext.dd package, and then quickly expanded our knowledge to harness the
drag-and-drop classes that allow our applications to take advantage of this feature.

The wide range of in-built support that Ext provides is only part of the story,
albeit a very important part. The TreePanel, for example, certainly wouldn't
be as impressive a component were it not for its ability to rearrange nodes within
a hierarchy using simple drag-and-drop. But the other part of our tale is just as
interesting—the ways in which we can customize that built-in functionality and
then replace, extend, and implement our own solutions, which would enable the
next level of desktop-like interactivity.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending
Ext JS

In this chapter, we'll discuss how we can create our own custom components
by extending the Ext JS library. We'll talk about how we can create our own
namespaces, differentiating our custom components from others. We'll also
discuss some other core object-oriented concepts (just enough to understand
what we need here) and the concept of Event-driven application architecture.

This chapter covers:

•	 Object-oriented design as applied to Ext JS library
•	 Inheritance and method overriding
•	 Defining custom namespaces
•	 Creating custom components
•	 Event-driven application architecture
•	 Xtypes
•	 Lazy instantiation on application performance
•	 Object-oriented JavaScript

Over the last several years, we've seen a drastic shift with regards to client-side
scripting in browser-based web applications. JavaScript has become the de facto
standard in client-side scripting, with support for it built into every major
browser available.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[278]

The issue in the past, with cross-browser development, has always been in each
browser's implementation of the Document Object Model. Microsoft's Internet
Explorer, having taken the majority share of the browser marketplace, helped to
gather support for a modern Document Object Model, to which all other browsers
had to adapt. However, after the release of Internet Explorer 6, Microsoft halted new
development of their browser for several years, other than to provide security fixes.
Added to this was Microsoft's play to try and create new standards. Rather than
implementing JavaScript, Internet Explorer actually implemented JScript, which
ran JavaScript files, but had a slightly different implementation that never garnered
momentum (other than in Internet Explorer), possibly because it did not adhere
to the ECMAScript standard. This created several issues. The World Wide Web
Consortium (W3C) had created a standard for the Document Object Model, which
companies like Mozilla and Opera adhered to and furthered. Yet Internet Explorer
(the dominant browser) was stagnant.

These events led to very hard times for client-side developers, as a great deal of
time and effort went into creating client-side code that was cross-browser
compliant. Netscape and Internet Explorer had been waging the browser war over
several versions, slowly growing more divergent in their standards acceptance,
with cross-browser development consistently becoming more of a challenge.
The landscape had changed, in that a large degree of client-side development
had become relegated to basic form validation and image rollovers, because few
developers were interested in investing the time and effort necessary to write large,
cross-browser compliant, client-side applications.

Enter Web 2.0. Circa 2005, the buzzword of the day was AJAX, or Asynchronous
JavaScript and XML. AJAX wasn't a new technology, but its use had been fairly
minimal and obscure. Developers with a deep knowledge of JavaScript, looking to
create greater and more dynamic websites, had begun to implement the technology
as a way of reinvigorating the client-side movement, creating richer and more
interactive user experiences.

This renewed interest in client-side scripted applications, but with the same issues
existing around cross-browser compatibility. Several cross-browser JavaScript
libraries (Dojo, Prototype, Yahoo UI, and so on) had begun life, in response to
minimizing the previous woes involved in cross-browser, client-side development.
The developers of these libraries, with their knowledge of JavaScript, had kept
pace with the changes in this language as well. JavaScript had travelled well
beyond the confines of a solely procedural scripting language, with full support
for object-oriented development. In developing their libraries, these developers
took full advantage of an object-oriented style of development that JavaScript's
prototype-based model allowed, creating small objects of functionality that could
build upon one another to provide extensive resources of reusable code.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[279]

In the coming pages, I will often use the words object and class
interchangeably, because it seems a little easier to understand.
Technically, JavaScript is a classless language, and our objects
are built with JavaScript's prototype-based programming model.

Object-oriented programming with Ext JS
Ext JS is a perfect example of this shift. The Ext JS library is an extensive collection
of packages of classes of reusable code: small pieces of functionality that can be
taken on their own, or combined to create some truly fantastic client-side magic.
An additional part of its beauty is the ability to extend the library further, creating
our own custom components as extensions of those already present. This gives us
the ability to create our own reusable pieces of code. We can write our own
objects, as extensions of the library. This means that we don't have to write all of
our functionality on our own, as much of this work has already been done for us.
We expand upon the foundation, providing our own custom functionality.

Inheritance
To gain a full understanding of what we need to do, we have to understand
one of the key concepts of object-oriented programming—inheritance.

As we write our own components, these components will usually inherit from some
other component of Ext JS, extending that component's functionality by providing
our own properties and overriding the component's existing behavior. We create a
new class, as an extension of an existing Ext JS class and inheriting that parent
class's properties and methods, which we can then override to create new
functionality without completely reinventing the wheel.

Break it down and make it simple
Confused yet? It's a lot to take in. Let's break this down into a basic example that
may clarify a few things. Say we are writing a Customer Resource Management
application for a company. This company has salespeople, who have clients
(and client contacts), and the company also has vendors that they do business
with, who also have contacts. Here we've identified three similar objects within
our application. If we take these objects down to the base level, we notice that
each of these objects is a Person (the Clients and Vendors would more clearly
be Companies):

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[280]

•	 Salesperson
•	 Client Contact
•	 Vendor Contact

Each one of these Person objects will share some basic attributes and methods,
because each person has a name, an email address, a phone number, and an
address. We'll create a quick class diagram to visually represent the Person object:

Class diagrams, and UML diagramming in general, are a great
way to visually represent different programming constructs. A
full explanation is outside the purview of this text, but I highly
recommend that you become familiar with them. Our diagrams
here show the class name, the attributes, and methods of the class.

Note that the Person object has four attributes: name, emailAddress, phoneNumber,
and address. Also note that the address attribute is, in itself, another object. We've
included some simple methods for the object as well, to get and set our attributes.

Each one of these objects also has its own object-specific properties such as a
salesPersonID, a clientContactID, or a vendorContactID.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[281]

Note that in our diagram of the SalesPerson object, you do not see any of the
Person-specific properties and methods. Because SalesPerson extends (inherits)
the Person object, all of the properties and methods of the Person object become
a part of the SalesPerson object as well. We can now create a SalesPerson.

var sp = new SalesPerson();

This creates a new instance of the SalesPerson object, with all of the attributes
and methods of the SalesPerson object, including those of the parent Person
object, by extension.

Sounds cool, but what does it mean?
By default, the SalesPerson object, being an extension of Person, allows you
to set a name to the SalesPerson in the following manner:

SalesPerson.setName('Zig Ziggler')

You don't have to reference the methods, or the attributes, by calling on
the object's (SalesPerson) parent object (Person) directly because, through
inheritance, SalesPerson is a Person.

Now, what was this overriding stuff?
Through inheritance, all of the methods and attributes of a parent object become
the child's as well. However, there will be times when you may want the child
object's method to be different from that of its parent. For example, let's say our
Person object had its own validate() method, which has validated all of the
attributes and returned its own error array, but your SalesPerson object has some
additional attributes to validate as well. By defining a validate() method within
the SalesPerson object, you are overriding the validate() method of its Person
parent object.

validate: function() {
 // Some validation code here
}

But, in this case, you would want total attribute validation; both the internal
object-specific properties, as well as those of the parent object. So here, you
would also need to call the validate() method of the parent object:

validate: function() {
 var errorArr =
ourObjects.salesperson.superclass.validate.call(this);
 // The salesperson specific validate stuff, appending the errorArr
 return errorArr;
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[282]

These are the basic pieces of OO that we need to understand so that we can begin
to create our own custom classes with Ext JS. Well, almost…

Understanding packages, classes,
and namespaces
There are a few final pieces of the object-oriented puzzle we need, in order to keep a
solid grasp of our goals. We've talked about how Ext JS is a large collection of objects
extending other objects, but it's also important to understand a few other pieces of
basic OO terminology, and how they help in keeping things organized.

Packages
A package is a collection of classes that share something in common. For instance,
the Ext.data package is a collection of classes for dealing with data, such as the
different types of data Stores, Readers, and Records. The Ext.grid package is a
collection of classes for the various grid objects, including all of the different grid
types and selection models. Likewise, the Ext.form package contains classes for
building forms, to include all of the classes of the different field types.

Classes
A class is what we call a specific JavaScript object, defining that object's attributes and
methods. Going back to our previous examples, Person and SalesPerson would both
be written as class objects, and both would probably be part of the same package.

Namespaces
Classes are a part of packages, and packages generally have their own namespace.
Namespaces are containers of logically grouped packages and class objects. As an
example, the Ext JS library falls into the Ext namespace. Forms within Ext JS fall
into the Ext.forms namespace, where forms is a package of the various classes
used to make up forms. It's a hierarchal relationship, using dot notation to separate
the namespace from the package from the class. Variables from one namespace
must be passed into another namespace, so applying a namespace helps to
encapsulate information within itself. Ext.grid, Ext.form, and Ext.data
are all custom namespaces.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[283]

What's next?
Now that we have our terminology down, and a basic understanding of these
core object-oriented concepts, we can finally get down to applying them within
the context of creating Ext JS custom components.

Ok, what do we extend?
Typically, we'll be writing an application and will see ourselves writing the same
basic piece over and over again. Or, we may be lucky to identify it early enough
that we can just choose the best piece and move forward right away. It usually
comes down to deciding which Ext JS component is the best one to extend.

Let's revisit our previous scenario, a Customer Resource Management system. We
know that we have several Person objects within our application. From a display
perspective, we will probably need something to display a person's contact details.

There are several different components for the display of information, and we must
choose the right one. A grid object would work, but a tabular display across so many
different values might clutter our application, and in this scenario, we probably only
need to see the details of one person at a time. A PropertyGrid is a little different
from a standard grid, but we're just going to output a name and an address. We
really don't need the user to see the field names so much as the data itself. We can
pretty much eliminate the DataView as well, for the same reasons as rejecting the
grid. We really need only one record at a time.

This brings us to a form or a panel. Forms imply editing of information, so for
a display-only application you really come back to a panel. Panel objects are
extremely versatile objects, being the core of many other objects within Ext JS. The
body of a window object is a panel. The different pieces of an Accordion are panel
objects. The bodies of the tabs in a TabPanel are panel objects. Creating a custom
component that extends the panel object opens the doors to a variety of different
display options within an Ext JS application.

Creating a custom namespace
We want to create our custom components within their own custom namespace for
encapsulation, quick reference, and to help us organize our code. It may be that our
packages or class may be named the same as other packages and classes already
within Ext JS. A custom namespace prevents conflicts from occurring between classes
of the same name, as long as each is defined within its own separate namespace. A
common naming convention for user-defined objects is to use the Ext.ux namespace.

Ext.namespace('Ext.ux');

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[284]

Because we're going to create a collection of display panels for our CRM application,
we'll really set our namespace apart from the rest.

Ext.namespace('CRM.panels');

We need to place this line at the top of each class definition template.

Our first custom class
First, let's take a look at a fairly simple script that takes a single record of information
and lays it out in a panel on the screen.

// ch13ex1.js
 var userData = [

 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',EMAIL:'john@beatles.com',
PASSWORD:'apple1',ADDRESSTYPE:'Home (Mailing)',STREET1:'117 Abbey Road
',STREET2:'',STREET3:'',CITY:'New York',STATE:'NY',ZIP:'12345',PHONETY
PE:'Cell',PHONE:'123-456-7890'},
 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',ADDRESSTYPE:'Work
(Mailing)',STREET1:'108 Penny Lane',STREET2:'',STREET3:'',
CITY:'Los Angeles',STATE:'CA',ZIP:'67890',PHONETYPE:'Home',
PHONE:'456-789-0123'},
 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space
Way',STREET2:'',STREET3:'',CITY:'Billings',STATE:'MT',
ZIP:'98765',PHONETYPE:'Office',PHONE:'890-123-4567'},
 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',
STATE:'CA',ZIP:'43210',PHONETYPE:'Home',PHONE:'567-890-1234'}
];

 var userDetail = new Ext.Panel({
 applyTo: 'chap13_ex01',
 width: 350,
 height: 250,
 title: 'Chapter 13 Example 1',
 bodyStyle: 'padding:10px',
 data: userData[0],
 tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[285]

 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
/>{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
])
 });

What we have here is a simple array of data objects, and a panel definition. We're
passing a single data item into the panel's configuration, defining an XTemplate
for the record's display when the panel is rendered.

Turning this into a reusable component is very easy, as the majority of our code will
just be moved into our custom class definition. First, we'll create a new class template,
ContactDetails.js, and define its initial class declaration as extending the Ext.
Panel class. Ext JS actually provides custom methods for extending components.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[286]

Example 2:

ContactDetails.js

Ext.namespace('CRM.panels');

CRM.panels.ContactDetails = Ext.extend(Ext.Panel,{
 // The panel definition goes here
});

Our next step is to begin defining the custom properties and methods of
our component. We begin with the default properties that are specific to
our component. Some of these properties may be overridden in our object
configuration, but these defaults allow us to only pass in what we might
need to change for our individual application.

width: 350,
height: 250,
bodyStyle: 'padding:10px',
data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
},
tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[287]

 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),

Pit stop!
Does anything look familiar here? Yes, it should, especially after looking
at the 'records' within userData. A class is an object, just like each
'record' in the userData array is an object. At its most base level, an
object is a collection of name/value pairs. The only true difference is
that a class will also have functions as the value of an attribute name
of the object, and the object can be referenced by its class (the name of
the class). Each of these name/value pairs forms the constructor of the
ContactDetails class.

Overriding methods
Continuing to build our first custom class, we get into overriding methods. As
we have previously mentioned, we can override a method of our parent class by
defining a method of the same name in the child class. A key component of the Panel
class is the initComponent() method, which (as the name suggests) initializes the
Panel component. Most methods will never need to be overridden, but sometimes
we'll need to override a specific method to add to, or change, the default behavior
of a component.

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
},

Ext JS uses superclass as the programmatic reference to the
object's parent class object, as CRM.panels.ContactDetails
is a subclass of its parent (superclass) Ext.Panel.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[288]

With our component, we needed a way to apply a new XTemplate to our
component, should one be passed into our ContactDetails class. As a developer
can pass in the template configuration via the tpl argument, instead of an actual
XTemplate object, it is important to validate that input and adjust accordingly. Our
first action is to call the initComponent() method of our parent Panel class, and
then adjust the value of the tpl argument as needed.

Understanding the order of events
In our last example (Example 2), we used the initComponent() method to apply
our XTemplate to our Panel object, by writing an overriding method for the
initComponent() method that supersedes the inherited Panel (parent) class.

// Overriden parent object method
initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
},

Here, we've called the initComponent() method of our parent Panel (super)
class. After that, we verify that we have a value for our tpl attribute and cast it
to an XTemplate if only a string was passed in for the variable, before the method
of our component.

update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
}

The update() method takes an argument of data (a record object from our array),
applies that argument to the component's data attribute, and then applies the
component's XTemplate to the 'body' of the component. This is a custom method
of the component, not an overridden method of the parent panel class. What's
important to our discussion is the need for this method.

When can we do what?
Our XTemplate does not get immediately applied to our component, as it isn't able
to overwrite the panel body until the panel body has actually been rendered. This is
what we mean by 'order of events', and can initially be very confusing, until you put
a little thought into it. For instance, say we had dynamically tried to apply a custom
ID argument as part of our constructor:

id: 'ContactDetails_' + this.data.ID,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[289]

This would have broken our component. Why? Because this.data is also an item
within our constructor, and doesn't actually exist until the component is instantiated
into memory. The same thing would have happened, if we had tried to apply our
XTemplate within the initComponent() method:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 this.tpl.overwrite(this.body, this.data);
},

This would have failed when initComponent() begins the process of creating the
component. The component, at this stage, still isn't part of the browser's Document
Object Model, so there isn't any 'body' for the XTemplate to be applied to yet. Getting
a handle on the 'order of events' is one of the biggest challenges in learning Ext JS, if
you don't know about it, and the order of events may be different with different Ext
JS classes as well.

What is an event-driven application?
Now we get down to the real juice. One huge barrier to cross, when transitioning
from a procedural programming style into object-oriented development, is
understanding the event-driven application model. Not all OO programs are
event-driven, but the paradigm is definitely shifting in that direction, and Ext JS
is no exception. This is a concept that most JavaScript developers have known for
years, as the browser itself forces us into an event-driven model, as each action of
the browser is an event. Basically, the flow of an application is determined by sensing
some change of state or user interaction, called an event. When the event occurs, the
application broadcasts that the event has taken place. Another piece of the application
(a listener, also known as an observer) is listening for the event broadcast. When it sees
that the event has been broadcast, it then performs some other action.

Our ContactDetails class is no different. As an extension of the Panel class, it
automatically contains all of the events and event listeners that are a part of the
Panel class. An event, render, was previously defined. The process of building
the display of the panel fires off a 'broadcast' of the render event.

this.fireEvent('render');

The Ext.Panel object has already defined an event listener for the render event.
Once the render event has been handled, it calls the onRender() method.

this.addListener('render',this.onRender,this,
 {ct:this.ct,position:this.position});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[290]

An event has been reached, which is then broadcast. An event listener is listening
for that broadcast. Upon hearing the broadcast, it executes additional pre-configured
actions that have been defined for that event. Understanding this process plays a
key part in how we develop event-driven applications, and our own applications
with Ext JS.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[291]

Creating our own custom events
We may just as easily apply our own custom events within our Ext JS applications.
Other developers can add listeners to new events that we've registered with our
applications or we can add our own listeners to kick-off other methods within our
custom component.

For example, let's create a new update event within our custom component.
We'll adjust our initComponent() method to register our new event:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
},

This new code is all it takes to register our new event. We'll also go ahead
and register a new, internal event listener, which we'll use to call a new
method that we'll write in a moment:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
 this.addListener({
 update:{
 fn: this.onUpdate,
 scope: this
 }
 });
},

What this states is that whenever the update event is broadcast, our application will
turn around and call the onUpdate() method of our ContactDetails component.

onUpdate: function(data){
 console.log('in onUpdate');
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[292]

The onUpdate() method, in this case, only outputs a short message to the debugging
console, which you can see if you are debugging your application in Firefox with the
Firebug plugin (console is not supported in Internet Explorer). The final step is having
the update event broadcast. We already have an update() method, so it would make
sense for us to broadcast the update once it's completed:

update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 this.fireEvent('update', this.data);
},

Here we broadcast our update event by calling the Ext JS's fireEvent() method,
and passing along our data as the argument to any method listening for the update
event. We can have any number of event listeners configured for a particular event,
either internal to the component, or externally within a script referencing our
custom component.

Our first custom component: complete
Here's the final component we've been constructing. At this point in time, we
don't really need the custom update event. We'll leave it in, as it may be useful
later, and we'll just remove the onUpdate() method for now. We can have events
that are registered within our applications that are never listened for. They are
available for convenience, should we want to use them, but they are otherwise
ignored, which is fine.

// ContactDetails.js
Ext.namespace('CRM.panels');

CRM.panels.ContactDetails = Ext.extend(Ext.Panel,{
 width: 350,
 height: 250,
 bodyStyle: 'padding:10px',
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[293]

 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
 },
 tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),
 initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
 },

 onRender: function(ct, position) {
 CRM.panels.ContactDetails.superclass.onRender.call
 (this, ct, position);
 if (this.data) {
 this.update(this.data);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[294]

 this.fireEvent('update', this.data);
 }
});

With our new custom component, we now have a new way of calling it into
our applications as well.

// ch13ex2.js
 var userData = [
 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',
EMAIL:'john@beatles.com',PASSWORD:'apple1',
ADDRESSTYPE:'Home (Mailing)',
STREET1:'117 Abbey Road',STREET2:'',STREET3:'',
CITY:'New York',STATE:'NY',ZIP:'12345',PHONETYPE:'Cell',
PHONE:'123-456-7890'},

 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',
ADDRESSTYPE:'Work (Mailing)',
STREET1:'108 Penny Lane',STREET2:'',
STREET3:'',CITY:'Los Angeles',STATE:'CA',ZIP:'67890',
PHONETYPE:'Home',PHONE:'456-789-0123'},

 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space Way',STREET2:'',STREE
T3:'',CITY:'Billings',STATE:'MT',ZIP:'98765',
PHONETYPE:'Office',PHONE:'890-123-4567'},

 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',STATE:'CA',ZIP:'43210',PHONETYPE:
'Home',PHONE:'567-890-1234'}
];

 var userDetail = new CRM.panels.ContactDetails({
 applyTo: 'chap13_ex01',
 title: 'Chapter 13 Example 1',
 data: userData[0]
 });

 updateContact = function(event,el,data){
 userDetail.update(data.data);
 }

 Ext.get('actionLink').on('click',updateContact,this,
 {data:userData[1]});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[295]

We've taken an anchor element, with an id of actionLink, from our calling page,
and given it an onclick event that updates the data of our ContactDetails object,
userDetail. Clicking on the Update Data link on the page changes the contact
details from John over to Paul.

What's next? Breaking it down
Ok, we've now created our first custom component. That was fairly painless. But,
looking back at what we've done, it looks as if we've pushed ourselves into a small
corner again. As it stands, every aspect of our application that requires contact
information would have to display the name, e-mail address, phone number, and
address of our contact, every time. What happens if we require only the address?
Or just the name, or e-mail, or the phone number?

Well, this is where we refactor, creating even more custom components. For our
purposes, we'll quickly break this down into two components: one for UserDetail,
and another for AddressDetail.

Example 3: UserDetail.js

// UserDetail.js
Ext.namespace('CRM.panels');

CRM.panels.UserDetail = Ext.extend(Ext.Panel,{
 width: 350,
 height: 125,
 bodyStyle: 'padding:10px',
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[296]

 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
 },
 split: false,
 tpl: new Ext.Template([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk"
align="Edit Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk"
align="Edit Phone" border="0" />{PHONE} ({PHONETYPE})
'
]),
 initComponent: function(){
 CRM.panels.UserDetail.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 }
});

Ext.reg('userdetail',CRM.panels.UserDetail);

Example 3: AddressDetail.js

Ext.namespace('CRM.panels');

CRM.panels.AddressDetail = Ext.extend(Ext.Panel,{
 width:350,
 height:125,
 bodyStyle: 'padding:10px',
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[297]

 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
 },
 split: false,
 tpl: new Ext.XTemplate([
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),
 initComponent: function(){
 CRM.panels.AddressDetail.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 }
});
Ext.reg('addrdetail',CRM.panels.AddressDetail);

By breaking these into two separate components, we can now use either piece
in any area of our application, independently.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[298]

Example 3: ch13ex3.js

 var userData = [
 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',EMAIL:'john@beatles.
com'
,PASSWORD:'apple1',ADDRESSTYPE:'Home (Mailing)',STREET1:'117 Abbey
Road',STREET2:'',STREET3:'',CITY:'New York',
STATE:'NY',ZIP:'12345',PHONETYPE:'Cell',PHONE:'123-456-7890'},

 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',
ADDRESSTYPE:'Work (Mailing)',STREET1:'108 Penny
Lane',STREET2:'',STREET3:'',CITY:'Los Angeles',STATE:'CA',
ZIP:'67890',PHONETYPE:'Home',PHONE:'456-789-0123'},

 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space Way',
STREET2:'',STREET3:'',CITY:'Billings',STATE:'MT',ZIP:'98765',
PHONETYPE:'Office',PHONE:'890-123-4567'},

 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',STATE:'CA',ZIP:'43210',
PHONETYPE:'Home',PHONE:'567-890-1234'}
];

 var userDetail = new CRM.panels.UserDetail({
 applyTo: 'chap13_ex03a',
 title: 'User Detail',
 data: userData[0]
 });

 var addrDetail = new CRM.panels.AddressDetail({
 applyTo: 'chap13_ex03b',
 title: 'Address Detail',
 data: userData[0]
 })

 updateContact = function(event,el,data){
 userDetail.update(data.data);
 addrDetail.update(data.data);
 }

 Ext.get('actionLink').on('click',updateContact,this,
 {data:userData[1]});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 13

[299]

Best Practice
Ok, looking at our two custom components, it's fairly obvious that
they are essentially the same object with different XTemplates
applied, and it would probably be best for them to have their own
parent class of overloaded, template-applying methods, and just be
repositories of the XTemplate defaults and our xtypes. But, for
our examples, we're going to try and keep it simple for now.

Using xtype: the benefits of lazy
instantiation
In our previous example, a new line was added to the bottom of each class file:

Ext.reg('userdetail',CRM.panels.UserDetail);

What we've done here is register our new custom component as an xtype. Well,
what does that mean exactly? An xtype is a component container element, registered
with the Ext JS library, registering the component with the Component Manager,
for lazy object instantiation. What this means is that we can use the xtype as a quick
object identifier, when laying out our applications, and that these types of objects
are only loaded into browser memory when they are actually used. This can greatly
improve the overall performance of our application, especially when a view may
contain many objects. We should use xtype wherever possible while writing object
configuration, so that objects that might not immediately be displayed won't take up
valuable memory resources. Next, we'll look at this in practice.

Using our custom components within
other objects
Now that we've created our custom components, we can add them to any other
container object within Ext JS. We can now use our xtype to refer to the component
type, for lazy instantiation, and we can get all of the benefits of modular design.
Let's apply our two new components with a border layout, for side-by-side viewing.

Example 4: ch14ex4.js

 var ContactDetail = new Ext.Panel({
 title: 'Contact Details',
 applyTo: 'chap13_ex04',
 width: 400,
 height: 125,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Code for Reuse: Extending Ext JS

[300]

 layout: 'border',
 frame: true,
 items:[{
 region: 'west',
 xtype: 'userdetail',
 width: 200,
 data: userData[0]
 },{
 region: 'center',
 xtype: 'addrdetail',
 width: 200,
 data: userData[0]
 }]
 });

We have identified the west and center regions of our BorderLayout as belonging to
the UserDetail and AddressDetail class types respectively. If this layout were part
of a window object, these two classes wouldn't even be loaded into memory until the
window was shown, helping to reduce browser memory usage.

Summary
Extending the various classes of the Ext JS library is the best way to place ourselves
on a fast track to Rapid Application Development, by allowing us to easily create
modular, reusable components. Within this chapter, we've discovered some of the
most powerful aspects of the Ext JS library.

We had a brief overview of object-oriented development with JavaScript, and then
covered how object-oriented program design applies to the Ext JS library. We spent
a little time covering some of the basics of object-oriented programming such as
inheritance, method overriding, and some basic terminology.

We then began applying some of these concepts within Ext JS such as defining
custom namespaces, creating custom components, and overriding methods of
our object's parent (super) class.

We followed up by giving a small explanation of event-driven application architecture,
and applied that by writing a custom event and listener for our custom component.

Finally, we covered xtypes and the importance of lazy instantiation on application
performance, and then modified our code to use xtypes for our new custom
components to add them into other Ext JS object containers. In the next chapter we'll
discuss how to write and use plugins, and how a plugin differs from a component.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In
Like any good development library, there are ways we can inject our own
functionality into it, interacting with the components without modifying them
directly. This injection happens by way of the plugins config option that every
component has available to it. Each widget in Ext JS that inherits from the
Component class has the ability to use plugins, which is pretty much everything,
from panels to grids to form fields and everything in between.

In this chapter we will learn to:

•	 Structure a typical plugin
•	 Use plugins within components or widgets
•	 Have a plugin interact with its owner
•	 Learn advanced plugin techniques

What can we do?
What can we do with a plugin, and what are the use cases? The usage of a plugin
has a very broad range because of how much freedom we are given in the code.
There are plugins that simply change the way a selection model on a tree work,
make a text field use uppercase, or alter the appearance of a slider. The more
complex plugins can create expanding grid rows or visual row editors and much
more. There are very few limitations when it comes to plugins.

For our example, we are going to be creating a plugin that will filter our grid-based
user input from a text field. We can add some fun features to this, such as case
sensitivity and highlighting the target text. We will also cover how to inject items
into the owner components layout.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[302]

How it works
Before we jump in and write a plugin, let's take a quick look at how a plugin interacts
with its host Component. The plugin itself is generally extended from a base class like
the observible class. However we don't need to extend from a particular class to make
a plugin, it can be as simple as an empty object, or a singleton.

The component that is using the plugin
is referred to as the host component.

The important part is to have the right methods available, which are called
in the following order:

•	 Constructor: Here we receive and can change the configuration of the plugin,
since this method is called when the plugin is first instantiated. This method
can be omitted if we don't plan on having any configurable options for
our plugin.

•	 Init: This method is called after the host component is initialized, which
is after the config has been processed and the owner component has set
up all of its dependencies such as toolbars or form fields. Though the host
Components pieces are configured at this point, they are not necessarily
rendered yet, so attaching event based render listeners will be needed
depending on what we are trying to do.

Another part of this process that does not belong on the list above, but should be
noted, is that we can attach listeners to events on the owner component within the
init method. So for instance, we can attach a function to execute when the owner
component has rendered, or a store has loaded, and so on.

Using a plugin
Of course the other half of this puzzle is actually using the plugin. When we create
our component, say a grid for instance, we need to specify a 'plugins' config, which
contains an array of instances (or configs) of plugins. So we can either add the
plugins using the following format:

{
 title: 'Movie Grid',
 xtype: 'grid',
 ...
 plugins: [new Ext.ux.PluginName()],
 ...
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[303]

Or we have the option of passing a plugin config using a ptype like the following:

{
 title: 'Movie Grid',
 xtype: 'grid',
 ...
 plugins: [{ptype:'plugin-name'}],
 ...
}

The ptype for the plugin must be registered when we create the plugin, but we will
learn more about this soon. Let's get coding.

Plugin structure
There are two main ways to structure our plugin code:

•	 singleton: Our plugin can be created as a singleton class and used across
multiple components, though any variables used in the plugin would be
shared between each usage. This can be incredibly lightweight, but also
has many limitations.

•	 observible/object: Extending from the observible class in Ext JS is the most
common method for creating plugins; it offers the most flexibility, though
comes with the cost of more overhead. This can be simplified by extending
JavaScript's Object constructor.

The singleton plugin structure can be very useful; however most cases will use an
instantiation of a class, so I want to focus on creating the most common form of a
plugin—extending observible.

The structure created for our new plugin will look very similar to the way we
extend components. We are essentially doing the same thing, just adding the specific
methods that need to exist when this component is used as a plugin. The following
is the basic structure used for a plugin, which we will use as a starting point:

Ext.ns('Ext.ux');

Ext.ux.PluginName = Ext.extend(Ext.util.Observable, {
 constructor: function(config){
 // here we can add or alter the config
 Ext.ux.PluginName.superclass.constructor.call(this);
 },
 init: function(cmp){
 // here we can interact with the host component
 }
});

Ext.preg('plugin-name',Ext.ux.PluginName);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[304]

Notice the constructor and init methods—these two make the foundation of a
plugin, and in fact the init method is required for a plugin to function. Having a
constructor method is not needed if we don't want to have a configurable plugin.
The init method on the other hand is where the plugin gets its first reference to its
instantiated host component, so this is where most of the heavy lifting is performed.

Ext.ux.PluginName = Ext.extend(Ext.util.Observable, {
 constructor: function(config){
 // here we can add or alter the config
 Ext.ux.PluginName.superclass.constructor.call(this);
 },
 init: function(cmp){
 // here we can interact with the owner component
 }

});

A single argument is passed into the init method, which is a reference to the instance
of the host component. From within this init method, we can now call methods
on the host component, or add listeners, but the first thing I like to do is create a
reference to this host component reference that is scoped within our plugin. This
way we have easy access to the host component.

Ext.ux.PluginName = Ext.extend(Ext.util.Observable, {
 constructor: function(config){
 // here we can add or alter the config
 Ext.ux.PluginName.superclass.constructor.call(this);
 },
 init: function(cmp){
 this.hostCmp = cmp;
 // here we can interact with the host component
 }
});

Now it becomes free for all, and we can pretty much do whatever we want, but
for the sake of this example, let's create a simple plugin that gives us a grid filter
window. We are going to add this plugin we are creating on to the main movies
grid in our movie database example code from Chapter 10.

First signs of life
This is the point when our plugin starts to come to life, when we are able to actually
do something. First lets make our plugin create and show a window when the owner
grid is rendered.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[305]

In the plugins init method, we can create our window and attach on render listener
to the owner grid which will show the window. The constructor method is not
needed at this point, but if your sample code already has it, it will not cause any
problems to leave it in.

Ext.ns('Ext.ux');

Ext.ux.GridSearchWindow = Ext.extend(Ext.util.Observable, {
 /* constructor method not needed at this point */
 init: function(cmp){
 this.hostCmp = cmp;
 this.hostCmp.on('render', this.onRender, this, {delay:200});
 },
 onRender: function(){
 this.win = new Ext.Window({
 width: 200,
 height: 120,
 x: 300, y: 300,
 title: 'Grid Search',
 layout: 'fit',
 closable: false,
 constrain: true,
 renderTo: this.hostCmp.id
 });
 this.win.show();
 }
});

Ext.preg('gridsearchwin',Ext.ux.GridSearchWindow);

Now that we have a basic plugin, we need to add it to the grid using the plugins
config.

{
 title: 'Movie Grid',
 xtype: 'grid',
 ...
 plugins: [{ptype:'gridsearchwin'}],

 ...
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[306]

When our movie grid is created, a window will be displayed that is constrained
to our grids panel area.

In our example we are waiting for the host grids render event to show the window,
but there is no technical reason we need to do this. In our case it's just because
of the constrain feature and positioning, our window could just as easily be
displayed directly in the init method of our plugin if it was not constrained
and initially positioned.

As our window uses constrain along with an initial x and y position, we
must delay the onRender event from firing to give our grid time to figure
out its size and place the window properly within.

The search form
With our window up and running—opening along with the grid—we can start
to add some form fields and buttons to perform the search features of our plugin.

Ext.ux.GridSearchWindow = Ext.extend(Ext.util.Observable, {
 ...
 onRender: function(){
 this.win = new Ext.Window({
 width: 200,
 ...,
 renderTo: this.hostCmp.id,
 items: this.getFormConfig(),
 buttons: [{
 text: 'Find',
 handler: this.doSearch,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[307]

 scope: this
 }, '->', {
 text: 'Clear',
 handler: this.clearSearch,
 scope: this
 }]
 });
 this.win.show();
 },
 doSearch: function(){
 var s = this.hostCmp.getStore();
 s.filter(this.win.field.getValue(),this.win.value.
getValue(),true);
 },
 clearSearch: function(){
 this.hostCmp.getStore().clearFilter();
 },
 getFormConfig: function(){
 return {
 xtype: 'form',
 bodyStyle: 'padding: 5px;',
 border: false,
 labelAlign: 'right',
 labelWidth: 60,
 items: [{
 fieldLabel: 'Column',
 xtype: 'combo',
 ref: '../field',
 triggerAction: 'all',
 displayField: 'display',
 valueField: 'field',
 mode: 'local',
 width: 110,
 value: 'title',
 store: {
 xtype: 'jsonstore',
 fields: ['display','field'],
 root: 'data',
 data: {data:[]}
 }
 },{
 fieldLabel: 'Find',
 xtype: 'textfield',
 ref: '../value',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[308]

 width: 110
 }]
 }
 }
});

The new methods we added are doSearch, clearSearch, and getFormConfig—
the first two are methods for our search and clear buttons to use, however the
getFormConfig method returns an object containing the config used to create
the actual form, which will give us a basic window and form like the following:

Interacting with the host
Our start of a plugin looks good now, but let's go to the next step and interact some
more with our host component by reading it's configuration and interacting with
some of it's features.

One of the first things we did is assign the host component to a property
on the local scope:

 this.hostCmp = cmp;

So at any point within our plugin we have access to the host components methods
through this property in the scope, in this case it's a grid. This reference to the grid
works just like any other component reference—so we are going to take a look at
the host grids column model and create some combo box options based on that.

We know that the grid component has a columns property that contains
the column configuration, so let's grab it from the initialConfig object.
We will add a getColumnsData method that can encapsulate our logic.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[309]

 getColumnsData: function(){
 var flds = [];
 Ext.each(this.hostCmp.initialConfig.columns, function(itm){
 flds.push({
 display: itm.header,
 field: itm.dataIndex
 });
 }, this);
 return {
 data: flds
 };
 }

This method now returns a chunk of data in the format of an object literal that can
be used with a store—specifically, the store for our forms combo box. By looping
through all of the columns and pushing each into a new array, then returning that
array inside the 'data' property of an object, we can use it directly in our combo
box's store. Modify the form configuration from above to use the following:

{
 fieldLabel: 'Column',
 xtype: 'combo',
 ref: '../field',
 triggerAction: 'all',
 displayField: 'display',
 valueField: 'field',
 mode: 'local',
 width: 110,
 value: 'title',
 store: {
 xtype: 'jsonstore',
 fields: ['display','field'],
 root: 'data',
 data: this.getColumnsData()
 }
 }

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[310]

Now we have a window that has options available in the combo box,
and can search the grid.

That is exactly how easy it is to create a plugin, which is both easy to distribute or
share and gives us many opportunities to add extra features to components with
minimal code.

Configurable plugins
Like many other components in Ext JS, we can provide our plugin with a configuration
when we instantiate it. This lets us customize our plugins on a case per case basis. Any
configuration options that are passed in with the plugins config are copied into the
scope of the plugin.

In order for our config options to be copied into the scope, a constructor method
must exist that handles this.

 constructor: function(config){
 Ext.apply(this,config);
 Ext.ux.GridSearchWindow.superclass.constructor.
call(this,config);
 }

Now we can go ahead and add an option to our plugins config. I am adding a fields
array that lists the fields I want to be included in the combo box used to select the
field to search.

{
 title: 'Movie Grid',
 xtype: 'grid',
 ...

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[311]

 plugins: [{
 ptype:'gridsearchwin',
 fields: ['title','tagline']
 }],
 ...
}

Now we will have a 'fields' attribute in our plugins scope that we can utilize within
any scoped methods such as the init method or the getColumnsData method that
we are going to modify now.

 getColumnsData: function(){
 var flds = [], flen = this.fields?this.fields.length:0;
 Ext.each(this.hostCmp.initialConfig.columns, function(itm){
 if (flen === 0 || (flen > 0 &&
this.fields.indexOf(itm.dataIndex) >= 0)){
 flds.push({
 display: itm.header,
 field: itm.dataIndex
 });
 }
 }, this);
 return {
 data: flds
 };
 }

By adding some simple checks around the statement that adds columns to our
combo box's data, we can filter out the unwanted options. There is also a check
for whether the fields configuration exists or not. This will produce the following:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Plugging In

[312]

Extra credit
For that extra little cherry on top, we can add simple text highlighting to our grid
search plugin by first adding the appropriate CSS to our document.

.highlight { background-color: #ffff80; }

Then we will need a function that will wrap all of the grid cell renderers in our grid
with a highlighting function.

 wrapRenderers: function(){
 var cm = this.hostCmp.getColumnModel();
 Ext.each(cm.config,function(col,i){
 var origFn = cm.getRenderer(i),
 vid = this.win.value.id,
 hlFn = function(){
 var a = arguments, sv = Ext.getCmp(vid).getValue();
 val = origFn(a[0],a[1],a[2],a[3],a[4],a[5]);
 if (sv && val.replace) {
 val = val.replace(new RegExp('(' + sv + ')',
'gi'), '$1');
 }
 return val;
 };
 cm.setRenderer(i, hlFn);
 },this);
 }

And last but not least, call this new method when the store loads to apply
the new renderers to the grid:

 init: function(cmp){
 this.hostCmp = cmp;
 this.hostCmp.on('render', this.onRender, this, {delay:200});
 this.hostCmp.getStore().on('load', this.wrapRenderers, this);

 }

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 14

[313]

This will give us some pretty sweet search term highlighting.

That's all!

Summary
In this chapter we have learned how to create the most common form of a plugin,
the form I find myself using most often, which is extending the observible class.
We were able to attach our own code to events on the host component and create a
distinct, separate functionality that interacts with the host component like it was
a built in feature.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data
Ext JS is an extremely powerful, cross-browser library, providing any developer with
a beautiful and consistent set of tools for laying out browser-based applications. But
there's a lot more here than just pretty boxes and grids. As the title says, It's All About
the Data! An application without data is really nothing more than an interactive static
page, and our users are going to want to manipulate real information. One of the
wonders of web applications is that they've taken computing full circle and back to
the days of the client/server application model. Ext JS's AJAXified objects provide
us with the means to work with real-time data straight from the server, and in this
chapter we'll cover the many different ways in which you can retrieve from and post
data to your Ext JS based applications.

In this chapter, we cover:

•	 Understanding data formats
•	 The data Store object
•	 Finding data
•	 Filtering data
•	 Dealing with Recordset changes
•	 The DataWriter
•	 Many objects use a Store

Understanding data formats
We have dozens of component objects available to us within Ext JS, and most
of them can take dynamic data from the server. It's all in knowing what kind
of data a component can take, and what formats are acceptable.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[316]

Loading HTML into a panel
You've probably noticed that many components are basically just a box. TabPanel
instances, Accordion instances, and the content area of a Window are all just large
boxes (a <div> element), or Panel instances. Each of these unique objects has its
own methods and properties, yet each of them extends the Ext.Panel object.

Applying dynamic data to a basic Panel is super simple, because it takes the
simplest of formats: straight text or HTML. Our first example will load a simple
HTML page into a Panel. First, we'll need the rendering page, and a container
element for our content:

… <div id="mainContent">
 <div id="chap15_ex01"></div>
 </div>…

Here, we have shown what will go inside the <body> tag of our example HTML
page. Next, we'll need a server-side template to call for content:

William Shakespeare: <i>Poet Laureate</i>

The last thing we'll need is the actual script to create our example Panel:

Example 1: scripts\chapter15_01.js

Ext.onReady(function(){
 var example1 = new Ext.Panel({
 applyTo:'chap15_ex01',
 title:'Chapter 15: Example 1',
 width:250,
 height:250,
 frame:true,
 autoLoad:{
 url:'example1ajax.html'
 }
 });
});

Calling the ch13ex1.html template in the browser will run this basic script.
Let's look over the code to see what we're doing:

1. We wait until the DOM is rendered (Ext.onReady() function).
2. We create a new Ext.Panel object, rendered to the chap13_ex01 element

(a <div> on the rendered page).
3. We load in the contents of the external URL example1ajax.html.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[317]

It is very simple to pull in an HTML template as content for a Panel item. But we
would really like dynamic data. Let's build on this example, and pull in data from
an application server. We can use the same autoLoad attribute to call an application
server processing page to return data.

Ext JS is a client-side scripting library and, as such, you can use any
server-side programming language that you feel comfortable with. You
may have noticed that some earlier examples in this book are coded in
PHP. Examples within this chapter, and the next, require the Adobe
ColdFusion server to process the dynamic data, and require you to
download and install the free Developer's Edition to run the examples.
At this point, we're using ColdFusion to illustrate two different points:

•	 That any server-side processor can feed data to Ext JS.
•	 That not every application server, or remote application, will

return data in a standard format. Our examples of Custom Data
Readers, later in this chapter, will iterate this point further.

The free Adobe ColdFusion Developer's Edition server is available at
http://www.adobe.com/products/coldfusion. Review the
sample README.txt file for more detailed instructions on accessing the
example files for this chapter.

For Example 2, we'll change our <div> id to chap15_ex02, and use the
chapter15_02.js file to load the data using a different approach, which
now reads as follows:

Example 2: scripts\chapter15_02.js

 var example2 = new Ext.Panel({
 applyTo:'chap15_ex02',
 title:'Chapter 15: Example 2',
 width:250,
 height:250,
 frame:true,
 autoLoad:{
 url:'Chapter15Example.cfc',
 params:{
 method:'example2',
 returnFormat:'plain',
 id: 1
 }
 }
 });

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[318]

You'll notice that the URL is now calling an Adobe ColdFusion Component (CFC),
passing in some parameters to get its results. We have a very basic CFC, which runs
a small query based on the passed parameters to generate the content that is passed
back through the AJAX call.

Example 2: Chapter_15\Chapter15Example.cfc

<cfcomponent output="false">
 <cffunction name="example2" access="remote" output="false"
returntype="string">
 <cfargument name="id" type="numeric" required="true" />
 <cfset var output = "" />
 <cfset var q = "" />
 <cftry>
 <cfquery name="q" datasource="cfbookclub">
 SELECT firstName,
 lastName,
 bio
 FROM Authors
 WHERE authorID = <cfqueryparam cfsqltype="cf_sql_integer"
value="#ARGUMENTS.id#" />
 </cfquery>
 <cfif q.recordcount>
 <cfsavecontent variable="output"><cfoutput>
 #q.firstName# #q.lastName#

 <i>#Replace(q.bio,"\n","
","all")#</i>

 </cfoutput></cfsavecontent>
 </cfif>
 <cfcatch type="database">
 <!--- Place Error Handling Here --->
 </cfcatch>
 </cftry>
 <cfreturn output />
 </cffunction>
</cfcomponent>

As the purpose of this book isn't to teach you a server-side language, let's break
this down in the simplest way. The CFC takes an argument of id, which is passed
into a query of the Authors table. If a record is returned from the query, a basic
string is returned in a predetermined format. The AJAX call (autoLoad) is passing
several parameters:

•	 The method to run within the CFC
•	 The format type to return (plain text, in this case)
•	 The method arguments (in this case id)

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[319]

Gotchas with remote data
You must remember that you should call data only via AJAX from the domain of your
site. Attempting to reference data from a site outside of your domain will error out at
the browser level, as it's considered to be cross-site scripting. Cross-site scripting is a
means of delivering malicious scripts to an unsuspecting user, generally from outside
of the site that they're visiting. Most modern browsers now have built-in facilities to
prevent this type of attack. Ext JS does provide facilities for bypassing this restriction,
via the Ext.data.ScriptTagProxy, but this should only be used if you are confident
of the security of the data you are requesting, and its effect on your application.

Other formats
Ext JS has the capability to consume external data in a variety of formats:

Format Example
Plain Text Eric Clapton is a consummate guitarist
HTML Jimi Hendrix is considered, by some, to have been

one of the finest blues guitarists that ever lived
JSON {

 'members': 4,
 'band': [
 {'id':1,'first_name':'John',
 'last_name':'Lennon'},
 {'id':2,'first_name':'Paul',
 'last_name':'McCartney'},
 {'id',3,'first_name':'George',
 'last_name':'Harrison'},
 {'id':4,'first_name':'Ringo',
 'last_name':'Starr'}
]
};

XML <band>
 <members>4</members>
 <member>
 <firstname>Jimmy</firstname>
 <lastname>Page</lastname>
 </member>
 <member>
 <firstname>Robert</firstname>
 <lastname>Plant</lastname>
 </member>

 ...

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[320]

Format Example
JavaScript Array var PinkFloyd = [

 ['1','David','Gilmour'],
 ['2','Roger','Waters'],
 ['3','Richard','Wright'],
 ['4','Nick','Mason']
]

The format that you choose may be decided according to the Ext JS object you are
using. Many developers like to use XML, as many databases (MS SQL, Oracle,
MySQL, PostgreSQL, and DB2 to name a few) can return it natively, and many
RESTful web services use it. Although this is a good thing, especially when working
with varying external applications, XML can be very verbose at times. Data calls that
return small sets of data can quickly clog up the bit stream because of the verbosity
of the XML syntax. Another consideration with XML, is the browser engine. An XML
data set that looks fine to Mozilla Firefox may be rejected by Internet Explorer, and
Internet Explorer's XML parsing engine is slow as well. JSON, or JavaScript Object
Notation, data packages tend to be much smaller, taking up less bandwidth. JSON
is often preferred over XML for exactly these reasons. If the object you're using can
accept it, a simple array can be even smaller, although you will lose the descriptive
nature that the JSON or XML syntaxes provide.

The data Store object
Most Ext JS objects (and even Panel instances, with some additional work) take
data as Records or Nodes. Records are typically stored within a data Store object.
Think of a Store as being similar to a spreadsheet, and each record as being a row
within the spreadsheet, or as a table in your server-side database, with each record
representing a row in that table.

The data package contains many objects for interacting with data. You have several
different Store subclasses:

•	 JsonStore: Store object specifically for working with JSON data
•	 ArrayStore: Store object for working with arrays
•	 XMLStore: Store object for working with XML
•	 GroupingStore: Store object that holds 'grouped' datasets

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[321]

Any Store will require some kind of Reader object to parse the inbound data,
and again the data package has several Reader subclasses:

•	 JsonReader: For working with JSON datasets
•	 ArrayReader: For working with JavaScript arrays
•	 XmlReader: For working with XML datasets

The TreePanel object doesn't use a traditional data Store, but has
its own specialized Store called a TreeLoader, which is passed into
the configuration through the loader config option. The TreeLoader
accepts simple arrays of definition objects, much like those expected by an
ArrayReader. See the Ext JS API (http://www.extjs.com/deploy/
dev/docs/?class=Ext.tree.TreeLoader) for more information.

Defining data
Store objects are easily configured, requiring the source of the data and a
description of the expected records. Our applications know to expect data, but
we have to tell them what the data is supposed to look like. Let's say, for instance,
that our application manages media assets for our site. We would have a server-side
object that queries a folder in our file system and returns information on the files that
the folder contains. The data returned might look something like this:

{
 files: [
 {name: 'beatles.jpg', path:'/images/', size:46.5, lastmod:
 '2001-12-21
00:00:00'},
 {name: 'led_zeppelin.jpg', path:'/images/', size:43.2,
 lastmod: '2001-12-21 00:00:00'},
 {name: 'the_doors.jpg', path: '/images/', size:24.6, lastmod:
 '2001-12-21 00:00:00'},
 {name: 'jimi_hendrix.jpg', path: '/images/', size:64.3,
 lastmod: '2001-12-21 00:00:00'}
]
}

This is a small JSON dataset. Its root attribute is files, which is an array of objects.
Now we have to define this data for our application:

var MediaFile = new Ext.data.Record.create([{
 name: 'Name',
 mapping: 'name'
},{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

http://www.extjs.com/deploy/dev/docs/?class=Ext.tree.TreeLoader
http://www.extjs.com/deploy/dev/docs/?class=Ext.tree.TreeLoader

It's All About the Data

[322]

 name: 'FilePath',
 mapping: 'path'
},{
 name: 'FileSize',
 mapping: 'size',
 type: 'float'
},{
 name: 'LastModified',
 mapping: 'lastmod',
 type: 'date',
 dateFormat: 'Y/m/d'
}]);

We've applied a name that each field will be referenced by within our application,
mapping it to a variable within a dataset object. Many variables will automatically
be typed, but you can force (cast) the 'type' of a variable for greater definition and
easier manipulation.

The various variable types are:

•	 auto (the default, which implies no conversion)
•	 string

•	 int

•	 float

•	 boolean

•	 Date

We've also applied special string formatting to our Date object, to have our output
the way we want.

Dates are typically passed as string objects, which usually have to be
converted into Date objects for proper manipulation. By specifying a
Date format, Ext JS will handle the conversion using the dateFormat
we define. The Ext JS documentation for the Date object provides an
extensive format list, which we can use to define the hundreds of Date
string permutations we may come across in our code. As of Ext JS 3.0,
custom Date formats may also be defined.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[323]

More on mapping our data
In the previous example, we covered the definition of a simple JSON object. The same
technique is used for XML objects, with the only difference being how to map a record
field to a specific node. That's where the mapping config option comes in. This option
can take a DOM path to the node within the XML. Take the following example:

<band>
 <members>4</members>
 <member>
 <firstname>Jimmy</firstname>
 <lastname>Page</lastname>
 </member>
 <member>
 <firstname>Robert</firstname>
 <lastname>Plant</lastname>
 </member>
 ...

To create a mapping of the first_name node you would have the config look
like this:

{name: 'First Name',
mapping:'member > first_name,',
type: 'string'}

In creating our mapping, we utilize an Element Selector that states 'all direct children
of member that have first_name'. To get a good handle on selector syntax, review
the Ext JS API documentation on the Ext.DomQuery class.

JavaScript arrays are easier, as they don't require mapping, other than defining
each field in the same order it would be seen in the array:

var PinkFloyd = [
 ['1','David','Gilmour'],
 ['2','Roger','Waters'],
 ['3','Richard','Wright'],
 ['4','Nick','Mason']
]

Note here that we won't create() a record constructor, but just use the fields
config option of the Store.

fields:[
 {name:'id'},
 {name:'first_name'},
 {name:'last_name'}
]

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[324]

Pulling data into the Store
It is almost as easy to retrieve data from the server as it was to populate the Panel
object earlier, and we can do so using a very similar syntax.

Example 3: scripts\chapter15_03.js

var ourStore = new Ext.data.Store({
 url:'Chapter15Example.cfc',
 baseParams:{
 method: 'getFileInfoByPath',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/images/'
 },
 reader: new Ext.data.CFQueryReader({
 id:'name'
 },[
 {name:'file_name',mapping:'name'},
 {name:'file_size',mapping:'size',type:'int'},
 'type',
 {name:'lastmod',mapping:'datelastmodified',type:'date'},
 {name:'file_attributes',mapping:'attributes'},
 'mode',
 'directory'
]),
 listeners:{
 beforeload:{
 fn: function(store, options){
 if (options.startPath && (options.startPath.length > 0)){
 store.baseParams.startPath = options.startPath;
 }
 },
 scope:this
 },
 load: {
 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
});
ourStore.load();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[325]

This ties all of our pieces together to create our data Store object. First, we use the
url config option to define the location from where we will get our data. Then, we
set the initial set of parameters to pass on the load request. Finally, it may be that
we want to conditionally pass different parameter values for each request. For this,
we can define a special 'listener' to pass new information. In this case, whenever the
load() method is called, if the startPath property is passed into the method as
an argument, before the Store retrieves the data it will change the startPath base
parameter to match the value passed in.

Where's the screenshot?
Ok, that's a valid question. A data Store, by itself, has no visible output in
the browser display. This is why tools like Firefox with the Firebug plugin,
or the Aptana development IDE can be so important when doing JavaScript
development. These tools can allow you to direct processing output to
special windows, to monitor what's going on within your application.

Using a DataReader to map data
In our previous code example we used a custom DataReader to "read" the data
being returned from the server-side call. Some applications can natively return data
in XML, or even JSON, but it might not always be in the format Ext JS is expecting.
As an example, the JsonStore, with its built-in JsonReader, expects an incoming
dataset in the following format:

{
 'rootAttribute': [
 {
 'attr1': 'First record',
 'attr2': '0'
 },{
 'attr1': 'Second record',
 'attr2': '3.5'
 }
]
}

This (JSON) object has a rootAttribute property, which is the name of the root
of the dataset, containing an array of objects. Each of these objects has the same
attributes. The attribute names are in quotes. Values are typically in quotes, with
the exception of numbers, which may or may not be in quotes.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[326]

So, if a server-side call returns data in this expected format, then the base JsonReader
included within the JsonStore will automatically parse the received datasets to
populate the Store object. We'll emulate this in our next example, by using an
example JSON set from earlier in this chapter, and feeding it into a JsonStore
object through its data attribute:

Example 4: scripts\chapter15_04.js

var dataSet = {
 files: [
 {name: 'beatles.jpg', path:'/images/', size:46.5,
lastmod:'2001-12-21 00:00:00'},
 {name: 'led_zeppelin.jpg', path:'/images/', size:43.2,lastmod:
'2001-12-21 00:00:00'},
 {name: 'the_doors.jpg', path: '/images/', size:24.6,
lastmod:'2001-12-21 00:00:00'},
 {name: 'jimi_hendrix.jpg', path: '/images/', size:64.3,lastmod:
'2001-12-21 00:00:00'}
]
};
var newSt = new Ext.data.JsonStore({
 data: dataSet,
 root: 'files',
 idProperty: 'name',
 fields:[
 'name',
 {name:'FilePath',mapping:'path'},
 {name:'FileSize',mapping:'size',type:'float'},
 {name:'LastModified',mapping:'lastmod',type:'date'}
],
 listeners:{
 load: {
 fn: function(store,records,options){
 console.log(records);
 },
 scope:this
 }
 }
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[327]

A call to a server-side application that returns JSON in the standard format would
behave the same way. But what happens if the server-side application uses a slightly
different format? As an example, the Adobe ColdFusion server (starting from version
8) can automatically return JSON datasets for remote requests, translating any of
ColdFusion's native data types into JSON data. But ColdFusion's JSON formatting
is typically different, especially when dealing with query data (which is what a
dataset would usually be created from). Here's an example of a JSON dataset being
returned from a ColdFusion query object:

{
 "COLUMNS":["NAME","SIZE","TYPE","DATELASTMODIFIED","ATTRIBUTES",
 "MODE","DIRECTORY"],
 "DATA":[
 ["IMG1.jpg",582360,"File","June, 13 2003
 23:50:08","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG2.JPG",1108490,"File","June, 13 2003
 23:50:52","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG3.JPG",1136108,"File","June, 13 2003
 23:51:02","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG4.JPG",1538506,"File","June, 13 2003
 23:51:12","","","H:\\wwwroot\\ExtBook\\images"]
]
}

All of the data we need is here, but the format can't be properly parsed by the base
JsonReader. So what do we do now?

Using a custom DataReader
Ext JS's built-in classes provide outstanding ease of use 'out-of-the-box', but (as
we can see) sometimes we need something a little special, possibly due to a different
implementation for a specific application server (such as ColdFusion), or possibly due
to an external application API (Flickr for example). We could probably implement
something on the server-side to put our data in the necessary format, but this creates
unnecessary overhead on our server-side platform. Why not just use the client to
handle these minor transformations? This helps distribute the load in our applications,
and makes more effective use of all of the resources that we have on hand. Ultimately,
though, the true point is that we don't always have control of our remote data sources,
and that we can adapt our Ext JS applications to accept data from most any source.

Ext JS provides us with the facilities for creating custom DataReaders for mapping
our data, as well as simple means (the reader config option) for defining these
readers in our Store.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[328]

In our current exercise, we're lucky in that we don't have to write our own
DataReader. As the Adobe ColdFusion server platform is so widely used, the Ext JS
community has already produced a custom reader just for this task. A simple search
of the Ext JS forums (http://extjs.com/forum/) will help you find many custom
readers for data in a variety of formats. Just take the time to verify (read) the code
prior to use, and thoroughly test, because it is being provided by a third party. By
using the CFQueryReader, with a few minor modifications to our script we can easily
read the JSON data format being returned by ColdFusion.

Include a <script> tag in your calling template to include the CFQueryReader.js
file, prior to the <script> tag for your custom script. Then we'll define our custom
reader by specifying some details about our data; the field to use as a record ID,
and the field definitions:

new Ext.data.CFQueryReader({
 idProperty:'name'
},[
 {name:'file_name',mapping:'name'},
 {name:'file_size',mapping:'size',type:'int'},
 'type',
 {name:'lastmod',mapping:'datelastmodified',type:'date'},
 {name:'file_attributes',mapping:'attributes'},
 'mode',
 'directory'
]);

Next, we'll change our data Store from being a JsonStore to being the base Store
object type, and apply our custom reader to the reader config attribute:

var ourStore = new Ext.data.Store({
 ...

 reader: new Ext.data.CFQueryReader({
 ...

We also remove the fields, id, and root properties from the Store definition,
as these are now all handled from within the reader's definition, or by the custom
reader itself.

The last thing we'll do is apply another custom listener to our script, so that we can
verify whether the dataset is properly loaded. Let's modify our listeners config
option, so that we can attach a function to the Store object's load event listener:

listeners:{
 load:{
 fn: function(store, records, options){
 console.log(records);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[329]

 },
 scope: this
 }
}

If you're using Internet Explorer for development, then this line of code will break,
as the console object isn't natively supported in that environment (you can include
additional scripts to use the console.log() method in IE, like the one found at
http://www.moxleystratton.com/article/ie-console). Firefox, with the Firebug
plugin, will now give you some output once the data has been retrieved, parsed, and
loaded into the data Store, so that we can see that the data is now in our Store.

A word about events:
Many Ext JS objects have events that are fired when certain actions are
taken upon them, or when they reach a certain state. An event-driven
application, unlike a procedural programming model, can listen for
changes in the application, such as the receipt of data or the change of a
Record's value. Ext JS provides an extensive API, giving us the ability to
apply custom event listeners to key actions within the application. For
more information, review the object information within the Ext JS API at
http://extjs.com/deploy/dev/docs/.

Our final script might now look like this:

var ourStore = new Ext.data.Store({
 url:'Chapter13Example.cfc',
 baseParams:{
 method: 'getFileInfoByPath',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/images/'
 },
 reader: new Ext.data.CFQueryReader({
 id:'name'
 },[
 {name:'file_name',mapping:'name'},
 {name:'file_size',mapping:'size',type:'int'},
 'type',
 {name:'lastmod',mapping:'datelastmodified',type:'date'},
 {name:'file_attributes',mapping:'attributes'},
 'mode',
 'directory'
]),
 listeners:{
 load: {

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[330]

 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
});
ourStore.load();

We've setup the load listener to notify us (in Firebug) when the records are received
into our data Store. The load() method makes the remote data call, using the
defined parameters, but the data isn't available until it's been returned from the
server and properly parsed by our custom DataReader. The load event is then
fired, and our load listener will respond accordingly.

This now wraps up our code pieces, defining what our data will look like,
configuring our custom reader, and setting up our data Store to pull in our JSON
data. The load listener will display (within the Console tab of Firebug) the records
retrieved from the server that are now in our Store.

Writing a custom DataReader
Sometimes we can't find a prebuilt custom reader in the Ext JS forums. In that
case, we will have to write our own. Ext JS provides several readers already: the
ArrayReader, JsonReader, and XmlReader classes. When defining our own custom
DataReader, we will extend one of these classes. Our first step is to identify which
class is best suited for us to extend. Going off our previous examples, let's take
another look at the data returned for a ColdFusion query:

{
 "COLUMNS":["NAME","SIZE","TYPE","DATELASTMODIFIED","ATTRIBUTES",
 "MODE","DIRECTORY"],
 "DATA":[
 ["IMG1.jpg",582360,"File","June, 13 2003
 23:50:08","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG2.JPG",1108490,"File","June, 13 2003
 23:50:52","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG3.JPG",1136108,"File","June, 13 2003
 23:51:02","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG4.JPG",1538506,"File","June, 13 2003
 23:51:12","","","H:\\wwwroot\\ExtBook\\images"]
]
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[331]

Analyzing this data packet, the first thing that comes to mind might be "this is JSON."
Well, it is. But, if we look very closely, our data is actually an array, with each record
being an array. Knowing this, the ArrayReader class seems be our best choice for our
base reader class. Now we have to figure out how to extend that base class, so that our
data will be properly read into our data Store.

We covered extending Ext JS components in
Chapter 13, Code for Reuse: Extending Ext JS.

We start that process by analyzing the ArrayReader class itself. No, not the API
(though that may help), but the actual code itself. Within the Ext JS code, that we
downloaded at the beginning of this book, you will see a pkgs directory under the
root directory. Within this directory we will find a data-json-debug.js file. Open
this file, and find the Ext.data.ArrayReader class.

The first thing that we will notice is that the debug files contain a fair amount of
comment documentation. Reading the initial comments for the ArrayReader, we
can see that it extends the Ext.data.JsonReader. This means we might have to
really research both classes, as figuring out how to extend the reader may require
us to review the code for its base class as well. (This is suggested, as many functions
called, within the methods of the ArrayReader, are defined within the JsonReader
itself.) If we thoroughly review the code, we gain a better understanding of how each
class currently performs its tasks, and gives us a blueprint for how to progress.

After a thorough review of the code we find that the core of any data reader is the
readRecords() method. This is the method that consumes the raw JSON output,
interprets it, and places the records into the Store. Typical usage of the ArrayReader
requires us to write our field definitions in the column order that data will come in.
ColdFusion may return query columns in any order, so that method wouldn't be
helpful. Luckily, the COLUMNS element of the base JSON element defines the order of
data in each array element. After discovering this, it also becomes apparent that the
ArrayReader is not the best choice for our base class, but rather an extension of the
JsonReader.

Because of this, the author of the CFQueryReader chose to override the
readRecords() method of the base JsonReader, writing a solution for parsing the
unique data formatting returned by ColdFusion. By studying the ArrayReader, the
JsonReader, and the base DataReader (in the data-foundation-debug.js file), the
author of CFQueryReader was able to figure out how to create proper data accessor
methods so that a Store configured with the CFQueryReader would function just as
any of the base Store objects would.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[332]

Here is what the final Custom Reader would look like (with comments):

Ext.data.CFQueryReader = Ext.extend(Ext.data.JsonReader, {
 readRecords : function(o){
 this.jsonData = o;
 var s = this.meta,
 Record = this.recordType,
 f = Record.prototype.fields,
 fi = f.items,
 fl = f.length,
 reset = false;
 // For backwards compatability with Ext 2.x
 if(typeof this.getJsonAccessor != "function"){
 this.getJsonAccessor = this.createAccessor;
 }
 /*
 * Creating 'property' accessors, based on the availability
 * (or lack of) of certain meta properties
 */
 if (!this.ef || !this.getQueryRoot) {
 if(s.successProperty) {
 this.getSuccess = this.getJsonAccessor(s.
successProperty);
 }
 /*
 * Providing built in support for CF query objects within
 * structure objects, as is the case when a developer
 * uses the ConvertQueryForGrid() function of CF
 */
 if(s.root){
 this.getRoot = this.getJsonAccessor(s.root + '.DATA');
 this.getQueryRoot = this.getJsonAccessor(s.root);
 } else {
 this.getRoot = (o.QUERY) ? this.
getJsonAccessor('QUERY.DATA') : this.getJsonAccessor('DATA');
 this.getQueryRoot = function(){
 return (o.QUERY) ? o.QUERY : o;
 };
 }
 if(s.totalProperty) {
 this.getTotal = this.getJsonAccessor(s.totalProperty);
 } else if(o.TOTALROWCOUNT) {
 this.getTotal = this.getJsonAccessor('TOTALROWCOUNT');
 }
 }

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[333]

 var root = this.getRoot(o),
 c = root.length,
 totalRecords = c,
 success = true,
 cols = this.getQueryRoot(o).COLUMNS;
 /*
 * ColdFusion typically uppercases column names in it's
return,
 * but certain ColdFusion frameworks maintain casing. To
account
 * for this, and standardize returns and processing, we will
 * internally ensure that the column names are uppercased
 * for consistency
 */
 for (var i = 0;i < cols.length;i++){
 cols[i] = cols[i].toUpperCase();
 }
 // Update the totalRecords if a total was passed in the base
JSON object
 if(s.totalProperty || o.TOTALROWCOUNT){
 var v = parseInt(this.getTotal(o), 10);
 if(!isNaN(v)){
 totalRecords = v;
 }
 }
 // Update the success if a success was passed the in the base
JSON object
 if(s.successProperty){
 var v = this.getSuccess(o);
 if(v === false || v === 'false'){
 success = false;
 }
 }
 // Create a array location mappings according to the COLUMNS
output
 for(b=0;b < fl; b++){
 var fMap = (fi[b].mapping !== undefined && fi[b].mapping
!== null) ? fi[b].mapping : fi[b].name;
 fi[b].mapArrLoc = cols.indexOf(fMap.toUpperCase());
 }
 // Now we create data accessor functions
 if (!this.ef || reset === true) {
 // Create methods for getting a record's ID value
 if (s.id || s.idProperty) {
 var g = this.getJsonAccessor(s.id || s.idProperty);

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[334]

 this.getId = function(rec){
 var r = g(rec);
 return (r === undefined || r === "") ? null : r;
 };
 } else {
 this.getId = function(){return null;};
 }
 // Create extractor functions by field
 this.ef = [];
 for(var i = 0; i < fl; i++){
 f = fi[i];
 var map = (f.mapping !== undefined && f.mapping !==
null) ? f.mapping : f.name;
 this.ef[i] = function(rec){
 var r = rec[map];
 return (r === undefined || r === "") ? null : r;
 };
 }
 }
 var records = [];
 // Create individual records and put in the records array
 for(var i = 0; i < c; i++){ // loop all rows of data
 var n = root[i]; // n is a 'row' of data
 var values = {};
 for(var j = 0, jlen = fl; j < jlen; j++){
 f = fi[j]; // field reference
 var k = f.mapArrLoc !== undefined && f.mapArrLoc !==
null ? f.mapArrLoc : j; // get the array position within the row for
the field ref
 var v = n[k] !== undefined ? n[k] : f.defaultValue; //
value is that array position within current row
 v = f.convert(v, n); // convert the value if necessary
(as in type casting to date and stuff)
 values[f.name] = v; // build a values object by
applying the current value to a key of the current 'field'
 }
 var rec = new this.recordType(values, this.getId(values));
// create Ext Record object of values object, assigning the id
 rec.json = values; // put raw values object in the 'json'
attribute of the Record object
 records[i] = rec; // Build the complete array of Records
to populate the Store
 }
 return {
 success: success,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[335]

 records : records,
 totalRecords : totalRecords
 };
 }
});

Custom Data Readers often get updated as the Ext JS library matures. The Ext Team
is constantly improving on the handling of data from remote sources. They try very
hard to maintain backwards compatibility as much as possible, but custom readers
aren't generally written by the Ext Team. This means that, should the Ext Team make
changes to the core Ext.data package classes, a custom DataReader may need to be
updated to function correctly. Just remember that we should test our application's
data readers any time the core library is updated. The above DataReader is
maintained in a repository on RIAForge (http://cfqueryreader.riaforge.org).

Getting what you want: finding data
Now that we have data (or so Firebug tells us, once it's received from the server),
we'll typically need to manipulate it. Once we've loaded our data Store with
records, the entire dataset remains resident in the browser cache, ready for
manipulation or replacement. This data is persistent until we move away from
the page or destroy the dataset or the data Store.

Ext JS provides many different options for dealing with our data, all of which
are documented within the API. Here, we'll explore some of the most common
things to do.

Finding data by field value
The first thing we might want to do is find a specific record. Let's say we needed to
know which record from our previous examples contains the picture of Jimi Hendrix:

var jimiPicIndex = ourStore.find('NAME','Jimi',0,false,false);

This method would return the index of the first record that had Jimi as part of the
value of the NAME field. It would start its search from the first record (0), as it is in
JavaScript array notation, look for the string from the beginning of the field's value
(using true here will search for the string in any location of the NAME field within any
record), and perform a case-insensitive search.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[336]

Finding data by record index
Having the index is nice; at least we know which record it is now. But we also
need to retrieve the record:

var ourImg = ourStore.getAt(jimiPicIndex);

The getAt() method of the Store object will get a record at a specific index
position within the Store.

Finding data by record ID
The best way to look for a unique record is by ID. This is the best way because your
record ID is unique to the record as well. If you already know the ID of your record,
this process just becomes easier. We used the NAME field as our ID, so let's find the
record for the same:

var ourImg = ourStore.getById('jimi_hendrix.jpg');

So, now we can find a record by partial value within a field, get a record by
its specific index, or retrieve a record by its ID value.

Getting what you want: filtering data
Sometimes, you only need a specific subset of data from your Store. Your Store
contains a complete dataset (for caching and easy retrieval), but you need it filtered
to a specific set of records. As an example, the cfdirectory tag we used in our
ColdFusion server-side call can return an entire directory listing, including all
subdirectories. After retrieving the data, it may be that we only need the names of
the files within the startPath that we posted. For this, we can filter our client-side
cached dataset to get only the Records of type, File:

ourStore.filter('TYPE','File',false,false);

This filters our dataset using the TYPE field. The dataset will now only contain
records that have a TYPE field, with a value of File (matched from the beginning,
and case-insensitive).

After working with our filtered dataset, there will come a time when we want our
original dataset back. Setting a filter on a Store persists on that object until we turn
it off. When we filtered the dataset, the other records didn't go away. They're still
sitting in cache, to the side, waiting to be recalled. Rather than query the server
again, we can simply clear our filter:

ourStore.clearFilter();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[337]

Remote filtering: the why and the how
Client-side filtering is great, reducing our trips to the server. Sometimes, however,
our record set is just too large to pull in at once. A great example of this is a paging
grid. Many times, for performance reasons, we'll only be pulling in 25 Records at a
time. The client-side filtering methods are fine if we only want to filter the resident
dataset, but most of the time we'll want a filter applied to all of our data at the time
we request it from the server.

Sorting data on remote calls is pretty easy, as we can set the Store object's
remoteSort property to true. So, if our Store was attached to a grid object,
clicking on a column heading to sort the display would automatically reload
the data, passing the value in its AJAX request.

Filtering data on remote requests is a bit harder. Basically, we need to pass
parameters through the Store object's load event, and act on those arguments
in our server-side method.

So, the first thing we'll need is some server-side code for handling our filtering
and sorting. We'll return to our ColdFusion component to add a new method:

Example 3: Chapter_15\Chapter15Example.cfc

 <!---
 / METHOD: getDirectoryContents
 /
 / @param startPath:string
 / @param recurse:boolean (optional)
 / @param fileFilter:string (optional)
 / @param dirFilter:string (optional - File|Dir)
 / @param sortField:string (optional -
 NAME|SIZE|TYPE|DATELASTMODIFIED|ATTRIBUTES|MODE|DIRECTORY)
 / @param sortDirection:string (option - ASC|DESC
 [defaults to ASC])
 / @return retQ:query
 --->
<cffunction name="getDirectoryContents" access="remote"
 output="false" returntype="query">
 <cfargument name="startPath" required="true" type="string" />
 <cfargument name="recurse" required="false" type="boolean"
 default="false" />
 <cfargument name="sortDirection" required="false" type="string"
 default="ASC" />
 <!--- Set some function local variables --->
 <cfset var q = "" />

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[338]

 <cfset var retQ = "" />
 <cfset var attrArgs = {} />
 <cfset var ourDir = ExpandPath(ARGUMENTS.startPath) />
 <!--- Create some lists of valid arguments --->
 <cfset var filterList = "File,Dir" />
 <cfset var sortDirList = "ASC,DESC" />
 <cfset var columnList =
 "NAME,SIZE,TYPE,DATELASTMODIFIED,ATTRIBUTES,MODE,DIRECTORY" />
 <cftry>
 <cfset attrArgs.recurse = ARGUMENTS.recurse />
 <!--- Verify the directory exists before continuing --->
 <cfif DirectoryExists(ourDir)>
 <cfset attrArgs.directory = ourDir />
 <cfelse>
 <cfthrow type="Custom" errorcode="Our_Custom_Error" message="The
directory you are trying to reach does not exist." />
 </cfif>
 <!--- Conditionally apply some optional filtering and sorting
 --->
 <cfif IsDefined("ARGUMENTS.fileFilter")>
 <cfset attrArgs.filter = ARGUMENTS.fileFilter />
 </cfif>
 <cfif IsDefined("ARGUMENTS.sortField")>
 <cfif ListFindNoCase(columnList,ARGUMENTS.sortField)>
 <cfset attrArgs.sort = ARGUMENTS.sortField & " " &
 ARGUMENTS.sortDirection />
 <cfelse>
 <cfthrow type="custom" errorcode="Our_Custom_Error"
 message="You have chosen an invalid sort field.
 Please use one of the following: " & columnList />
 </cfif>
 </cfif>
 <cfdirectory action="list" name="q"
 attributeCollection="#attrArgs#" />
 <!--- If there are files and/or folders,
 and you want to sort by TYPE --->
 <cfif q.recordcount and IsDefined("ARGUMENTS.dirFilter")>
 <cfif ListFindNoCase(filterList,ARGUMENTS.dirFilter)>
 <cfquery name="retQ" dbtype="query">
 SELECT #columnList#
 FROM q
 WHERE TYPE = <cfqueryparam cfsqltype=" cf_sql_varchar"
 value="#ARGUMENTS.dirFilter#" maxlength="4" />
 </cfquery>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[339]

 <cfelse>
 <cfthrow type="Custom" errorcode="Our_Custom_Error"
 message="You have passed an invalid dirFilter.
 The only accepted values are File and Dir." />
 </cfif>
 <cfelse>
 <cfset retQ = q />
 </cfif>
 <cfcatch type="any">
 <!--- Place Error Handler Here --->
 </cfcatch>
 </cftry>
 <cfreturn retQ />
</cffunction>

This might look complicated, but it really isn't! Again, our mission here isn't to learn
ColdFusion, but it is important to have some understanding of what your server-side
process is doing. What we have here is a method that takes some optional parameters
related to sorting and filtering via an HTTP POST statement. We use the same
cfdirectory tag to query the file system for a list of files and folders. The difference
here is that we now conditionally apply some additional attributes to the tag, so that
we can filter on a specific file extension, or sort by a particular column of the query.
We also have a Query-of-Query statement to query our returned recordset if we
want to filter further by the record TYPE, which is a filtering mechanism not built
into the cfdirectory tag. Lastly, there's also some custom error handling to ensure
that valid arguments are being passed into the method.

We'll make a few modifications to our previous Store script as well. First, we'll
need a few methods that can be called to remotely filter our recordset:

filterStoreByType = function (type){
 ourStore.load({dirFilter:type});
}
filterStoreByFileType = function (fileType){
 ourStore.load({fileFilter:fileType});
}
clearFilters = function (){
 ourStore.baseParams = new cloneConfig(initialBaseParams);
 ourStore.load();
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[340]

We have methods here for filtering our Store by TYPE, for filtering by file extension,
and for clearing the filters. The values passed into these methods are mapped to
the proper remote method argument names. The beforeload listener of the Store
automatically applies these arguments to the baseParams prior to making the AJAX
call back to the server. The important thing to remember here is that each added
parameter stays in baseParams, until the filters are cleared.

It's also important to note that the load() method can take an options argument
made up of four attributes:

•	 params

•	 callback (a method to perform on load)
•	 scope (the scope with which to call the callback)
•	 add (pass true to add the load to the already-existing dataset)

ourStore.load({params:{dirFilter:type},callback:someMethodToCall,scope
:this,add:false});

The clearFilter() method does not work with remote filtering, so we need to have
a way to recall our initial baseParams when we need to clear our filters, and get our
original dataset back. For this, we first abstract our baseParams configuration:

var initialBaseParams = {
 method: 'getDirectoryContents',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/testdocs/'
};

We then need a way to clone the config in our actual Store configuration. If we
passed the initialBaseParams into the baseParams config option directly, and
then filtered our dataset, the filter would be added to the initialBaseParams
variable, as the variable gets passed by reference. As we want to be able to recall
our actual beginning baseParams, we'll need to clone the initialBaseParams
object. The clone gets set as the baseParams config option. Filters don't touch our
original object, and we can recall them whenever we need to clearFilter().

For this, we'll need a simple method of cloning a JavaScript object:

cloneConfig = function (config) {
 for (i in config) {
 if (typeof config[i] == 'object') {
 this[i] = new cloneConfig(config[i]);
 }
 else

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[341]

 this[i] = config[i];
 }
}

We can then change our baseParams attribute in our Store configuration:

baseParams: new cloneConfig(initialBaseParams),

We used the same function within our clearFilters() method, to reset our
baseParams to their initial configuration. Here is what our entire script looks like now:

Example 4: scripts\chapter15_04.js

cloneConfig = function (config) {
 for (i in config) {
 if (typeof config[i] == 'object') {
 this[i] = new cloneConfig(config[i]);
 }
 else
 this[i] = config[i];
 }
}
Ext.onReady(function(){
 var recordModel = [
 {name:'file_name',mapping:'name'},
 {name:'file_size',mapping:'size',type:'int'},
 'type',
 {name:'lastmod',mapping:'datelastmodified',type:'date'},
 {name:'file_attributes',mapping:'attributes'},
 'mode',
 'directory'
];
 var ourReader = new Ext.data.CFQueryReader({idProperty:'name'},
 recordModel);
 var initialBaseParams = {
 method: 'getDirectoryContents',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/testdocs/'
 };
 var ourStore = new Ext.data.Store({
 url:'Chapter12Example.cfc',
 baseParams: new cloneConfig(initialBaseParams),
 reader: ourReader,
 fields: recordModel,
 listeners:{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[342]

 beforeload:{
 fn: function(store, options){
 for(var i in options){
 if(options[i].length > 0){
 store.baseParams[i] = options[i];
 }
 }
 },
 scope:this
 },
 load: {
 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
 });
 ourStore.load({params:{recurse:true}});
 filterStoreByType = function (type){
 ourStore.load({params:{dirFilter:type}});
 }
 filterStoreByFileType = function (fileType){
 ourStore.load({params:{fileFilter:fileType}});
 }
 clearFilters = function (){
 ourStore.baseParams = new cloneConfig(initialBaseParams);
 ourStore.load({params:{recurse:true}});
 }
});

To test our changes, we can put some links on our HTML page to call the methods
that we've created for filtering data, which we can then monitor in Firebug.

Example 4: Chapter_15\ch13ex5.html

<div id="chap15_ex05">
 <a onclick="filterStoreByType('File')"
 href="javascript:void(0)">Filter by 'File's

 <a onclick="filterStoreByFileType('*.doc')"
 href="javascript:void(0)">Filter by '.doc File's

 Clear Filters

</div>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[343]

After the page has loaded, we see the console logging the initial recordset being
loaded into the Store. Clicking our first link will remove all of the directory records
through filtering. Clicking our second link takes it a step further, and filters out any
files other than those ending in .doc. The last link resets the filters to the original
baseParams and reloads the initial recordset.

Dealing with Recordset changes
One of great things about Ext JS data Store objects is change management. Our
applications might attack changing records in a variety of ways, from editable data
Grids to simple Forms, but changing that data on the client won't update the remote
data Store at the server.

One of the easiest things to do this is to apply an update event listener to our
Store object. We applied the load listener before. Now, let's apply an update
listener to our script.

listeners:{
 load: {
 fn: function(store, records, options){
 console.log(records);
 },
 scope: this
 },
 update: {
 fn: function(store, record, operation){
 switch (operation){
 case Ext.record.EDIT:
 // Do something with the edited record
 break;
 case Ext.record.REJECT:
 // Do something with the rejected record
 break;
 case Ext.record.COMMIT:
 // Do something with the committed record
 break;
 }
 },
 scope:this
 }
}

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[344]

When a record is updated, the update event fires in the Store, passing several
objects into the event. The first is the Store itself, which is good for reference. The
second is the record that's been updated. The last object is the state of the record
that was updated. Here, we have laid out a quick switch/case statement to trigger
different actions according to the state of the record. We can add code into the action
block for the Ext.record.EDIT state to automatically send every edit to the server
for immediate record revision.

One other option that we can address is the Ext.record.COMMIT state. It is
sometimes better to let the user affect many different changes, to many different
records, and then send all the updates at once.

ourStore.commitChanges();

This will collect all of the edited records, flag them by using Ext.record.COMMIT,
and then the update event would fire and affect each record. Our last operation state
is perfect for processing this situation, for which we can add additional client-side
validation, or AJAX validation, or whatever our process might call for.

The Ext.record.REJECT state is generally set directly by the data Store, whereby
the Store rejects any changes made to the record, and will revert the record's field
values back to their original (or last committed) state. This might occur if a value of
the wrong data type is passed into a field.

Taking changes further: the DataWriter
Ext JS 3.0 introduced many new packages and classes for working with data. Ext
JS has always supplied DataReaders, but now we may also take advantage of
DataWriters. In fact, we can create APIs around our data access, providing simple
CRUD (Create, Read, Update, Delete) access directly from within our configurations.

Much of the interaction that we were previously required to script out, we may now
handle via simple configuration. Our data Store objects know, automatically, when
records have changed, and we can now handle these events without adding in a ton
of additional code.

Let's go back and look at the code from Example 2. Here we had pulled a single
record from a database by passing in an author ID. Let's expand upon this by
pulling all of the current records and putting them into a small editor grid.

Example 5: Chapter_15\ch15ex6st1.html

Ext.onReady(function(){
 var recDefinition = [
 {name:'authorID',type:'int'},

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[345]

 'firstName',
 'lastName',
 'bio'
];
 var ourReader = new Ext.data.CFQueryReader({idProperty:'authorID',ro
ot:'query'},recDefinition);
 var ourStore = new Ext.data.Store({
 url:'Chapter13Example.cfc',
 baseParams:{
 method: 'GetAuthors',
 returnFormat: 'JSON',
 queryFormat: 'column'
 },
 reader: ourReader,
 listeners:{
 load: {
 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
 });
 var fm = Ext.form;
 var ourGrid = new Ext.grid.EditorGridPanel({
 store: ourStore,
 cm: new Ext.grid.ColumnModel({
 columns:[{
 id: 'authorID',
 dataIndex: 'authorID',
 width: 40
 },{
 id: 'firstName',
 dataIndex: 'firstName',
 header: 'First Name',
 width: 150,
 editor: new fm.TextField({
 allowBlank: false
 })
 },{
 id: 'lastName',
 dataIndex: 'lastName',
 header: 'Last Name',
 width: 150,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[346]

 editor: new fm.TextField({
 allowBlank: false
 })
 },{
 id: 'bio',
 dataIndex: 'bio',
 header: 'Bio',
 width: 350,
 editor: new fm.TextField()
 }]
 }),
 renderTo: 'chap13_ex06',
 width: 750,
 height: 600,
 title: 'Authors',
 frame: true,
 clicksToEdit: 1
 });
 ourStore.load();
});

Example 5: GetAuthors method

<cffunction name="GetAuthors" access="remote" output="false"
returntype="struct">
 <cfset var retVal = StructNew() />
 <cfset var q = "" />
 <cfset retVal['success'] = true />
 <cftry>
 <cfquery name="q" datasource="cfbookclub">
 SELECT authorID,
 firstName,
 lastName,
 bio
 FROM Authors
 </cfquery>
 <cfif q.recordcount>
 <cfset retVal['query'] = q />
 </cfif>
 <cfcatch type="any">
 <!--- Error Handling Here --->
 <cfset retVal['success'] = false />
 <cfset retVal['errorMsg'] = "There was an error retrieving
records." />
 </cfcatch>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[347]

 </cftry>
 <cfreturn retVal />
</cffunction>

This populates all records of the Author table to an EditorGridPanel. This is only
the first step. Right now we can edit the grid, changing the records in the local data
Store, but that isn't changing the data back at the server. For this, we really need
our DataWriter.

DataWriters allow us to configure a proxy object for handling all of our basic CRUD
operations. Let's configure a standard HttpProxy object by defining an API for our
basic CRUD operations. First we'll write the API strictly to do exactly what our
previous example does, creating our proxy and adjusting our Store configuration.

Example 5: scripts\chapter15_06_02.js

var ourProxy = new Ext.data.HttpProxy({
 api:{
 read: 'Chapter13Example.cfc?method=GetAuthors&returnFormat=JSON'
 }
})
var ourStore = new Ext.data.Store({
 proxy: ourProxy,
 reader: ourReader,
 listeners:{
 load: {
 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
});

We've placed our ColdFusion specific params directly in the url attribute of the API
call, though we could use a restful url to specify our calling methods, should we have
a controller to handle them. Let's further extend our API to handle updated records.

First we'll need to add the DataWriter to our script. We can choose between
a JsonWriter or an XmlWriter. Since ColdFusion can easily handle JSON,
we'll use the JsonWriter:

var ourWriter = new Ext.data.JsonWriter();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[348]

We can then add an update item to our API proxy:

var ourProxy = new Ext.data.HttpProxy({
 api:{
 read: 'Chapter13Example.cfc?method=GetAuthors&returnFormat=JSON',
 update: 'Chapter13Example.cfc?method=UpdateAuthors&returnFormat=J
SON'
 }
});

In this default configuration each cell change of the Editor grid will change a value,
and with each change a db call would be made to the update API method, passing a
query object with the ID of the record (the authorID) , and the field/value pair. This
has advantages, but it makes sense to call the server with a complete record, or even
a batch of records. This is done by setting the autoSave attribute of the Store to
false, then calling save only when ready.

var ourStore = new Ext.data.Store({
 proxy: ourProxy,
 writer: ourWriter,
 reader: ourReader,
 autoSave: false
});

We'll also want to change our DataWriter as well. We can use the listful
attribute, to make the records returned to the server an array, for one record or a
hundred. This will make it easier to write generic server processes. We'll also use
the writeAllFields attribute so that we send all of the fields of a record, not just
those that changed. This is a little more data back and forth, but it helps us to write
better process.

var ourWriter = new Ext.data.JsonWriter({listful: true,writeAllFields:
true});

The last thing we'll do is add a Store listener to the save event, so we can clear
those 'dirty' flags from the grid once our updates are made.

var ourStore = new Ext.data.Store({
 proxy: ourProxy,
 writer: ourWriter,
 reader: ourReader,
 autoSave: false,
 listeners:{
 save:{
 fn: function(store, batch, data){
 store.commitChanges();

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[349]

 },
 scope: this
 }
 }
});

We can now update multiple records at one time, by making the changes
in our EditorGridPanel and clicking the "Save Changes" button.

Example 5: scripts\chapter15_06_03.js

Ext.onReady(function(){
 var recDefinition = [
 {name:'authorID',type:'int'},
 'firstName',
 'lastName',
 'bio'
];
 var ourReader = new Ext.data.CFQueryReader({idProperty:'authorID',ro
ot:'query'},recDefinition);
 var ourWriter = new Ext.data.JsonWriter({listful:true,writeAllField
s:true});
 var ourProxy = new Ext.data.HttpProxy({
 api:{
 read: 'Chapter13Example.cfc?method=GetAuthors&returnFormat=JS
ON',
 update: 'Chapter13Example.cfc?method=UpdateAuthors&returnFormat
=JSON'
 }
 });
 var ourStore = new Ext.data.Store({
 proxy: ourProxy,
 writer: ourWriter,
 reader: ourReader,
 autoSave: false,
 listeners:{
 save:{
 fn: function(store, batch, data){
 store.commitChanges();
 },
 scope: this
 }
 }
 });
 var fm = Ext.form;

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[350]

 var ourGrid = new Ext.grid.EditorGridPanel({
 store: ourStore,
 cm: new Ext.grid.ColumnModel({
 columns:[{
 id: 'authorID',
 dataIndex: 'authorID',
 width: 40
 },{
 id: 'firstName',
 dataIndex: 'firstName',
 header: 'First Name',
 width: 150,
 editor: new fm.TextField({
 allowBlank: false
 })
 },{
 id: 'lastName',
 dataIndex: 'lastName',
 header: 'Last Name',
 width: 150,
 editor: new fm.TextField({
 allowBlank: false
 })
 },{
 id: 'bio',
 dataIndex: 'bio',
 header: 'Bio',
 width: 350,
 editor: new fm.TextField()
 }]
 }),
 renderTo: 'chap15_ex06',
 width: 750,
 height: 600,
 title: 'Authors',
 frame: true,
 clicksToEdit: 1,
 bbar:[{
 text: 'Save Changes',
 handler: function(){
 ourStore.save();
 }
 }]
 });

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[351]

 ourStore.load();
});

Chapter15Example.cfc UpdateAuthors method:

<cffunction name="UpdateAuthors" access="remote" output="false"
returntype="boolean">
 <cfargument name="query" required="true" type="string" />
 <cfset var retVal = StructNew() />
 <cfset var q = "" />
 <cfset var i = 0 />
 <cfset ARGUMENTS.query = '{"data":' & ARGUMENTS.query & '}' />
 <cfset pairs = DeserializeJson(ARGUMENTS.query) />
 <cfset retVal["success"] = true />
 <cfloop array="#pairs.data#" index="i">
 <cftry>
 <cfquery name="q" datasource="cfbookclub">
 UPDATE Authors
 SET firstName = '#i.firstName#',
 lastName = '#i.lastName#',
 bio = '#i.bio#'
 WHERE authorID = #Val(i.authorID)#
 </cfquery>
 <cfcatch type="any">
 <!--- Error Handling Here --->
 <cfset retVal['errorMsg'] = "There was an error" />
 <cfset retVal['success'] = false />
 </cfcatch>
 </cftry>
 </cfloop>
 <cfreturn retVal["success"] />
</cffunction>

Although we won't cover it here, it's just as easy to add the 'create' and 'destroy'
methods to your API. The 'destroy' would remove the record from the datasource
by authorID, while the 'create' would write a new record to the datasource,
returning the authorID that was created.

Many objects use a Store
The beauty of the Store object is in its many uses. So many objects, within the Ext JS
library, can consume a Store as part of their configuration, automatically mapping
data in many cases.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

It's All About the Data

[352]

Store in a ComboBox
For example, the ComboBox object can take a Store, or any of its subclasses,
as a data provider for its values:

var combo = new Ext.form.ComboBox({
 store: states,
 displayField: 'state',
 valueField: 'abbreviation',
 typeAhead: true,
 mode: 'remote',
 triggerAction: 'all',
 emptyText: 'Select a state...',
 selectOnFocus: true,
 applyTo: 'stateCombo'
});

This ComboBox takes a Store object called states, and maps its state field to the
display, while mapping the abbreviation field to its underlying selected value.

Store in a DataView
The DataView object is one of the most powerful objects within Ext. This object can
take a Store object, let us apply a Template or XTemplate to each Record (which
the DataView refers to as a Node), and have each item render within the DataView,
contiguously, wrapping items as they run out of space. The DataView opens up
some very interesting ways to visually produce contact lists, image galleries, and file
system explorers, and opens up our applications to be able to exchange data among
a variety of objects through custom drag-and-drop functionality.

Stores in grids
We've seen examples of applying a data Store to grid in Chapter 5 of this book.
There are several different types of grids (Editor, Grouping, Property, and Basic
Grids), but all of them take Store objects as input, and the applicable ColumnModel,
to coordinate their data display.

The Grid objects and the ComboBox are probably the most prevalent uses of Store
objects, with the Grid and the DataView being the two primary means of displaying
multiple records of data. The Tree object takes a special data source called a
TreeLoader. The TreeLoader is actually part of the Tree package of classes, and does
not extend the base Store object, although it operates in much the same way. Rather
than Record objects, the TreeLoader takes an array of objects, which it then converts
into Node instances. The structure to its incoming data is something like this:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 15

[353]

var dataset = [{
 id: 1,
 text: 'Node 1',
 leaf:: false
},{
 id: 2,
 text: 'Node 2',
 leaf: true
}];

When a leaf is true, then it is an expandable item, which will query the server
for further data when passing the node data. A leaf:false statement says that
the Node has no children.

Summary
In this chapter, we've learned how to pull dynamic, server-side data into our
applications. Ext JS's Store objects, with their versatility and mappable syntax,
are easily-configured as data sources for a lot of Ext JS objects. In this chapter,
we've bound simple external data to a Panel object, gone over the various data
formats that Ext JS can consume, and seen a basic overview of the data Store
object and some of its more important subclasses.

Getting into the meat of things, we learned how to define our data using the record
object, after which we learned how to populate our Store with records from a remote
data source. We also learned about the purpose behind DataReader instances, the
different ones available to you, and how to create a custom DataReader.

We got busy learning Store manipulation techniques such as finding records by
field values, indexes, or IDs. We also touched on filtering our Store objects to get a
working subset of data records. We also talked about dealing with local data changes
via the update event listener. Then we started sending data back, registering local
data Store changes back to the server with DataWriter definitions.

Finally, we covered some of the other Ext JS objects that use the Store, opening
the doors to external data within multiple facets of our applications.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services
with Ext.Direct

When the Ext team set out to update Ext JS, for their 3.0 release, they began by
looking at code from hundreds of developers, trying to see what holes needed to
be filled; what needs weren't being met by the library that developers re-wrote over
and over again. Overwhelmingly, they kept coming back to how developers accessed
and updated data with the server. Developers would write thousands of lines of
repetitive code to handle data transfer, in and out. From this discovery spawned
Ext.Direct, a specification and supporting classes that allowed developers to
define all of their server data interaction points from one consolidated location.

In this chapter, we'll discuss:

• How a developer goes about tapping into the power of Ext.Direct
• Writing our own server-side stack
• Choosing a configuration that works for our environment
• Building out our API
• Setting up our own Programmatic Router to 'direct' our requests where

we need them to go
• Finally, we'll put all of the pieces together

What is Direct?
Part of the power of any client-side library is its ability to tap nearly any
server-side technology (as we demonstrated in Chapter 15, It's All About the Data).
That said, with so many server-side options available there were many different
implementations being written for accessing the data.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[356]

Direct is a means of marshalling those server-side connections, creating a
'one-stop-shop' for handling your basic Create, Read, Update, and Delete actions
against that remote data. Through some basic configuration, we can now easily
create entire server-side API's that we may programmatically expose to our Ext
JS applications. In the process, we end up with one set of consistent, predefined
methods for managing that data access.

Building server-side stacks
There are several examples of server-side stacks already available for Ext JS, directly
from their site's Direct information. These are examples, showing you how you might
use Direct with a particular server-side technology, but Ext provides us with a
specification so that we might write our own. Current stack examples are available for:

• PHP
• .NET
• Java
• ColdFusion
• Ruby
• Perl

These are examples written directly by the Ext team, as guides, as to what we can do.
Each of us writes applications differently, so it may be that our application requires a
different way of handling things at the server level. The Direct specification, along
with the examples, gives us the guideposts we need for writing our own stacks when
necessary. We will deconstruct one such example here to help illustrate this point.

Each server-side stack is made up of three basic components:

• Configuration—denoting which components/classes are available to Ext JS
• API—client-side descriptors of our configuration
• Router—a means to 'route' our requests to their proper API counterparts

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[357]

To illustrate each of these pieces of the server-side stack we will
deconstruct one of the example stacks provided by the Ext JS team.
I have chosen the ColdFusion stack because:

• It is a good example of using a metadata configuration
• It works well with our examples from Chapter 15, It's All

About the Data
• DirectCFM (the ColdFusion stack example) was written by

Aaron Conran, who is the Senior Software Architect and
Ext Services Team Leader for Ext, LLC

As we've stated before, the purpose of this book isn't to teach
you a server-side programming language. Each of the following
sections will contain a "Stack Deconstruction" section to illustrate
each of the concepts. These are to show you how these concepts
might be written in a server-side language, but you are welcome
to move on if you feel you have a good grasp of the material.

Configuration
Ultimately the configuration must define the classes/objects being accessed, the
functions of those objects that can be called, and the length (number) of arguments that
the method is expecting. Different servers will allow us to define our configuration in
different ways. The method we choose will sometimes depend upon the capabilities
or deficiencies of the platform we're coding to. Some platforms provide the ability to
introspect components/classes at runtime to build configurations, while others require
a far more manual approach. You can also include an optional formHandler attribute
to your method definitions, if the method can take form submissions directly. There
are four basic ways to write a configuration.

Programmatic
A programmatic configuration may be achieved by creating a simple API object of
key/value pairs in the native language. A key/value pair object is known by many
different names, depending upon the platform to which we're writing for: HashMap,
Structure, Object, Dictionary, or an Associative Array. For example, in PHP you
might write something like this:

$API = array(
 'Authors'=>array(
 'methods'=>array(
 'GetAll'=>array(
 'len'=>0
),

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[358]

 'add'=>array(
 'len'=>1
),
 'update'=>array(
 'len'=>1
)
)
)
);

Look familiar? It should, in some way, as it's very similar to a JavaScript object.
The same basic structure is true for our next two methods of configuration as well.

JSON and XML
This may look far more familiar, after all we've been through this book. When we've
written Ext code so far, we've often passed in configuration objects to our various Ext
components. The same is true for this configuration, as we can pass in a basic JSON
configuration of our API:

{
 Authors:{
 methods:{
 GetAll:{
 len:0
 },
 add:{
 len:1
 },
 update:{
 len:1
 }
 }
 }
}

Or we could return an XML configuration object:

<Authors>
 <methods>
 <method name="GetAll" len="0" />
 <method name="add" len="1" />
 <method name="update" len="1" />
 </methods>
</Authors>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[359]

All of these forms have given us the same basic outcome, by providing a basic
definition of server-side classes/objects to be exposed for use with our Ext
applications. But, each of these methods require us to build these configurations
basically by hand. Some server-side options make it a little easier.

Metadata
There are a few server-side technologies that allow us to add additional metadata
to classes and function definitions, using which we can then introspect objects at
runtime to create our configurations. The following example demonstrates this by
adding additional metadata to a ColdFusion component (CFC):

<cfcomponent name="Authors" ExtDirect="true">
 <cffunction name="GetAll" ExtDirect="true">
 <cfreturn true />
 </cffunction>
 <cffunction name="add" ExtDirect="true">
 <cfargument name="author" />
 <cfreturn true />
 </cffunction>
 <cffunction name="update" ExtDirect="true">
 <cfargument name="author" />
 <cfreturn true />
 </cffunction>
</cfcomponent>

This is a very powerful method for creating our configuration, as it means adding
a single name/value attribute (ExtDirect="true") to any object and function we
want to make available to our Ext application. The ColdFusion server is able to
introspect this metadata at runtime, passing the configuration object back to our
Ext application for use.

Stack deconstruction—configuration
The example ColdFusion Component provided with the DirectCFM stack is pretty
basic, so we'll write one slightly more detailed to illustrate the configuration.
ColdFusion has a facility for attaching additional metadata to classes and methods,
so we'll use the fourth configuration method for this example, Metadata.

We'll start off with creating the Authors.cfc class:

<cfcomponent name="Authors" ExtDirect="true">
</cfcomponent>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[360]

Next we'll create our GetAll method for returning all the authors in the database:

<cffunction name="GetAll" ExtDirect="true">
 <cfset var q = "" />
 <cfquery name="q" datasource="cfbookclub">
 SELECT AuthorID,
 FirstName,
 LastName
 FROM Authors
 ORDER BY LastName
 </cfquery>
 <cfreturn q />
</cffunction>

We're leaving out basic error handling and stuff, but these are the basics behind
it. The classes and methods we want to make available will all contain the
additional metadata.

Building your API
So now that we've explored how to create a configuration at the server, we need
to take the next step by passing that configuration to our Ext application. We do
this by writing a server-side template that will output our JavaScript configuration.
Yes, we'll actually dynamically produce a JavaScript include, calling the server-side
template directly from within our <script> tag:

<script src="Api.cfm"></script>

How we write our server-side file really depends on the platform, but ultimately we
just want it to return a block of JavaScript (just like calling a .js file) containing our
API configuration description. The configuration will appear as part of the actions
attribute, but we must also pass the url of our Router, the type of connection, and
our namespace. That API return might look something like this:

Ext.ns("com.cc");
com.cc.APIDesc = {
 "url": "\/remote\/Router.cfm",
 "type": "remoting"
 "namespace": "com.cc",
 "actions": {
 "Authors": [{
 "name": "GetAll",
 "len": 0
 },{
 "name": "add",

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[361]

 "len": 1
 },{
 "name": "update",
 "len": 1
 }]
 }
};

This now exposes our server-side configuration to our Ext application.

Stack deconstruction—API
The purpose here is to create a JavaScript document, dynamically, of your
configuration. Earlier we defined configuration via metadata. The DirectCFM API now
has to convert that metadata into JavaScript. The first step is including the Api.cfm in a
<script> tag on the page, but we need to know what's going on "under the hood."

Api.cfm:
<!--- Configure API Namespace and Description variable names --->
<cfset args = StructNew() />
<cfset args['ns'] = "com.cc" />
<cfset args['desc'] = "APIDesc" />
<cfinvoke component="Direct" method="getAPIScript"
argumentcollection="#args#" returnVariable="apiScript" />
<cfcontent reset="true" />
<cfoutput>#apiScript#</cfoutput>

Here we set a few variables, that will then be used in a method call. The getAPIScript
method, of the Direct.cfc class, will construct our API from metadata.

Direct.cfc getAPIScript() method:

<cffunction name="getAPIScript">
 <cfargument name="ns" />
 <cfargument name="desc" />
 <cfset var totalCFCs = '' />
 <cfset var cfcName = '' />
 <cfset var CFCApi = '' />
 <cfset var fnLen = '' />
 <cfset var Fn = '' />
 <cfset var currFn = '' />
 <cfset var newCfComponentMeta = '' />
 <cfset var script = '' />
 <cfset var jsonPacket = StructNew() />
 <cfset jsonPacket['url'] = variables.routerUrl />
 <cfset jsonPacket['type'] = variables.remotingType />

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[362]

 <cfset jsonPacket['namespace'] = ARGUMENTS.ns />
 <cfset jsonPacket['actions'] = StructNew() />
 <cfdirectory action="list" directory="#expandPath('.')#"
name="totalCFCs" filter="*.cfc" recurse="false" />
 <cfloop query="totalCFCs">
 <cfset cfcName = ListFirst(totalCFCs.name, '.') />
 <cfset newCfComponentMeta = GetComponentMetaData(cfcName) />
 <cfif StructKeyExists(newCfComponentMeta, "ExtDirect")>
 <cfset CFCApi = ArrayNew(1) />
 <cfset fnLen = ArrayLen(newCFComponentMeta.Functions) />
 <cfloop from="1" to="#fnLen#" index="i">
 <cfset currFn = newCfComponentMeta.Functions[i] />
 <cfif StructKeyExists(currFn, "ExtDirect")>
 <cfset Fn = StructNew() />
 <cfset Fn['name'] = currFn.Name/>
 <cfset Fn['len'] = ArrayLen(currFn.Parameters) />
 <cfif StructKeyExists(currFn, "ExtFormHandler")>
 <cfset Fn['formHandler'] = true />
 </cfif>
 <cfset ArrayAppend(CFCApi, Fn) />
 </cfif>
 </cfloop>
 <cfset jsonPacket['actions'][cfcName] = CFCApi />
 </cfif>
 </cfloop>
 <cfoutput><cfsavecontent variable="script">Ext.ns('#arguments.
ns#');#arguments.ns#.#desc# = #SerializeJson(jsonPacket)#;</
cfsavecontent></cfoutput>
 <cfreturn script />
</cffunction>

The getAPIScript method sets a few variables (including the 'actions' array),
pulls a listing of all ColdFusion Components from the directory, loops over that
listing, and finds any components containing "ExtDirect" in their root meta.
With every component that does contain that meta, it then loops over each method,
finds methods with "ExtDirect" in the function meta, and creates a structure with
the function name and number of arguments, which is then added to an array of
methods. When all methods have been introspected, the array of methods is added
to the 'actions' array. Once all ColdFusion Components have been introspected,
the entire packet is serialized into JSON, and returned to API.cfm for output.

One item to note is that the script, when introspecting method metadata, also looks
for a "ExtFormHandler" attribute. If it finds the attribute, it will include that in the
method struct prior to placing the struct in the 'actions' array.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[363]

Routing requests
By looking at our previous example of the API output, we notice that the url attribute
is pointing to a server-side file. This is the final piece of the Direct stack, a file that will
'route' requests to the proper server-side class and method for processing.

What is a Router
A Router is a server-side template that takes in all requests from our Ext JS
application, and passes those requests off to the respective object and method for
action. Ultimately, a Router is fairly agnostic; it will take any request, maybe apply
some basic logic to the incoming variables, and then pass the request along according
to data in the transaction.

Transactions
When we send data to our Router, we're creating a transaction. Data coming from
our Ext JS application will come in one of the two ways: form post (like when we
upload files), or a raw HTTP post of a JSON packet. The parameters of each type
are slightly different.

A standard JSON post will look like this:

{"action":"Authors","method":"GetAll","data":[],"type":"rpc","tid":27}

It's important to notice that Direct passed along information that came directly
from our configuration, such as the action and method we're trying to access.
Each of these transactions would contain the following:

• action—the class/ object/component we're attempting to access.
• method—the method/function we're trying to invoke.
• data—the arguments being sent to the method, in the form of an array.
• type—we'll use "rpc" for all remote calls.
• tid—our own transaction ID. This helps us identify responses from the

server, connecting them to whichever transaction was initiated. This is
especially beneficial whenever you batch process multiple requests, as it
helps to tell us what was requested, for which, by what, and place our
return results where they are needed.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[364]

Stack deconstruction—HTTP post transaction
DirectCFM's Router will first create an instance of it's Direct.cfc class, then pull
in the request and deserialize it , casting it into a native ColdFusion variable.

<cfset direct = CreateObject('component', 'Direct') />
<cfset postBody = direct.getPostBody() />
<cfset requests = DeserializeJSON(postBody) />

If the variable isn't an array, it will copy it into a temp variable, create an array,
and place the temp object as the first element of the array. This is to maintain
consistent process.

<cfif NOT IsArray(requests)>
 <cfset tmp = requests />
 <cfset requests = ArrayNew(1) />
 <cfset requests[1] = tmp />
</cfif>

We now need to loop over the requests that came from our Ext JS application.
For each element of the array, we call the method that was requested.

<cfset result = direct.invokeCall(curReq) />

invokeCall() is a method of the Direct.cfc class, which is used to dynamically
call a method. It's very generic by nature. The curReq variable, being passed
in as an object, is an element of our requests array.

Direct.cfc invokeCall() method:

<cffunction name="invokeCall">
 <cfargument name="request" />
 <cfset var idx = 1 />
 <cfset var mthIdx = 1 />
 <cfset var result = '' />
 <cfset var args = StructNew() />
 <!--- find the methods index in the metadata --->
 <cfset newCfComponentMeta = GetComponentMetaData(request.action) />
 <cfloop from="1" to="#arrayLen(newCfComponentMeta.Functions)#"
index="idx">
 <cfif newCfComponentMeta.Functions[idx]['name'] eq request.method>
 <cfset mthIdx = idx />
 <cfbreak />
 </cfif>
 </cfloop>
 <cfif NOT IsArray(request.data)>
 <cfset maxParams = 0 />

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[365]

 <cfelseif ArrayLen(request.data) lt ArrayLen(newCfComponentMeta.
Functions[mthIdx].parameters)>
 <cfset maxParams = ArrayLen(request.data) />
 <cfelse>
 <cfset maxParams = ArrayLen(newCfComponentMeta.Functions[mthIdx].
parameters) />
 </cfif>
 <!--- marry the parameters in the metadata to params passed in the
request. --->
 <cfloop from="0" to="#maxParams - 1#" index="idx">
 <cfset args[newCfComponentMeta['Functions'][mthIdx].
parameters[idx+1].name] = request.data[idx+1] />
 </cfloop>
 <cfinvoke component="#request.Action#" method="#request.method#"
argumentcollection="#args#" returnvariable="result">
 <cfreturn result />
</cffunction>

Here we find the action class, then the method, and then verify that the method was
passed with enough parameters in the request. After an arguments object is created
we finally dynamically invoke the class related to the action, calling the method
requested. The result is sent back to the Router.

Form transactions
Form posts send a slightly different data set, forming their attributes in such a way
as to easily differentiate a form post from a standard HTTP post:

• extAction—The class/object/component to use
• extMethod—The method that will process our form post
• extTID—The transaction ID of the request (form posts cannot batch requests)
• extUpload—An optional argument for a file field used for file upload
• Any other fields needed for our method

Our Router should take in the request, call the correct class/object/component,
and invoke the appropriate method. We know the object to call, from our action/
extAction parameters, as well as the method, from our method parameter. This
makes it simple to write dynamic statements for invoking the proper server-side
architecture for our requests.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[366]

Stack deconstruction—form transactions
DirectCFM handles form post transactions in nearly the same manner that it handled
the JSON requests. First, we see if it is a form post. In ColdFusion, this is done by
looking for values in the form scope.

<cfif NOT StructIsEmpty(form)>
</cfif>

If it is, we'll set up our initial object to hold our JSON return.

<cfset jsonPacket = StructNew() />
<cfset jsonPacket['tid'] = form.extTID />
<cfset jsonPacket['action'] = form.extAction />
<cfset jsonPacket['method'] = form.extMethod />
<cfset jsonPacket['type'] = 'rpc' />

We can then dynamically invoke the action (class) and method requested during
the form post.

<cfinvoke component="#form.extAction#" method="#form.extMethod#"
argumentcollection="#form#" returnVariable="result" />

Now all we have to do is return the results of our method calls.

Response
The final piece of the puzzle is to take the return from our dynamically invoked
methods and formulate a proper response object to pass back to our Ext JS
applications. The response should be a JSON encoded array of each transaction.
The response of each transaction should contain the following:

• type—"rpc"

• tid—the transaction ID
• action—the class/object/component that was called
• method—the method we invoked
• result—the result of the method call

This would give us a response similar to:

[{
 "type":"rpc",
 "tid":14,
 "action":"Authors",
 "method":"GetAll",
 "result":{

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[367]

 "COLUMNS":"ID,FIRSTNAME,LASTNAME",
 "DATA":[
 [1,"Stephen","King"],
 [2,"Robert","Ludlum"]
]
 }
},{
 "type":"rpc",
 "tid":15,
 "action":"Authors",
 "method":"add",
 "result":{
 "success":true,
 "ID":3
 }
}]

Stack deconstruction—JSON HTTP response
The Router builds out the rest of the response object, carefully to remove the "DATA"
used to make the request.

Router.cfm:
<cfif IsStruct(result) AND StructKeyExists(result, 'name') AND
StructKeyExists(result, 'result')>
 <cfset curReq['name'] = result.name />
 <cfset curReq['result'] = result.result />
<cfelse>
 <cfset curReq['result'] = result />
</cfif>
<cfset StructDelete(curReq, 'data') />

The last thing to be done is to return the data as JSON output:
<cfcontent reset="true" /><cfoutput>#SerializeJson(requests)#</
cfoutput>

Form post responses are only slightly different. A standard post method will return
the result in the same manner, except the JSON response is not part of an array. In
the case of a file upload, the JSON should be wrapped inside a <textarea> element
within a valid HTML document:

<html>
 <body>
 <textarea>{"type":"rpc","tid":15,"action":"Authors","method":"uplo
adPhoto","result":{"success":true,"ID":3}}</textarea>
 </body>
</html>

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[368]

Notice there's only one response here. Remember that form posts cannot handle
batch requests, so we can only do one at a time.

Stack deconstruction—form post response
We can serialize the JSON result of the method, and output the response back to the
browser, conditionalizing the response for those requests that were file uploads.

<cfset jsonPacket['result'] = result />
 <cfset json = SerializeJson(jsonPacket) />
 <cfif form.extUpload eq "true">
 <cfoutput>
 <cfsavecontent variable="output"><html><body><textarea>#json#</
textarea></body></html></cfsavecontent>
 </cfoutput>
 <cfelse>
 <cfset output = json />
 </cfif>
 <cfcontent reset="true" />
<cfoutput>#output#</cfoutput>

Exception responses
Ok, we all make mistakes. Because of this, we have to be able to write in exception
handling. An exception response is a basic JSON packet, containing the following info:

• type—'exception'

• message—an informative message about the error that occurred
• where—tells us where the error occurred on the server

Exception responses are only handled when the Router is configured in debugging
mode, and it is suggested that you do not return these responses in a production
environment, as it could expose vital information about your server's file system
that would pose a security risk.

Stack deconstruction—exceptions
ColdFusion allows us to use standard try/catch error handling for capturing errors
for graceful error handling. If an error were to occur in our method handling, we
could 'catch' that error and form our Exception Response:

<cfcatch type="any">
 <cfset jsonPacket = StructNew() />
 <cfset jsonPacket['type'] = 'exception' />
 <cfset jsonPacket['tid'] = curReq['tId'] />
 <cfset jsonPacket['message'] = cfcatch.Message />

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[369]

 <cfset jsonPacket['where'] = cfcatch.TagContext.Line/>
 <cfcontent reset="true" />
 <cfoutput>#SerializeJson(jsonPacket)#</cfoutput><cfabort/>
</cfcatch>

This creates a new jsonPacket structure, to which we apply the necessary key/
value pairs required for an exception object. We then output the JSON response,
and abort further processing of the method.

Putting the pieces together
Now that we have a basic understanding of how we can create a stack, it's time
to tie all of the pieces together to use it with our Ext JS applications.

Make your API available
The first thing we need to do, in order to be able to access our configuration, is
include the API within our application. This was touched on briefly in our review
of the API. All it requires us to do is include a <script> tag within our application,
calling the server-side script that renders the API configuration:

<script src="Api.cfm"></script>

We need to include this after our Ext base script files, but prior to our own
application files. Next, we need to attach that API as a Provider for Ext.Direct,
within our JavaScript application file:

Ext.Direct.addProvider(com.cc.APIDesc);

This now gives us access to any actions and methods provided through
our configuration.

Making API calls
Now that our actions and methods are available to our application, it comes down
to making actual requests. Say, for instance, that you wanted to create a data store
object to fill in a grid. You could do this by creating a DirectStore object, calling
one of the exposed methods to populate the store:

var dirStore = new Ext.data.DirectStore({
 storeId: 'Authors',
 api: {
 read: com.cc.Authors.GetAll,
 create: com.cc.Authors.add,

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[370]

 update: com.cc.Authors.update,
 delete: com.cc.Authors.delete
 },
 paramsAsHash: false,
 autoSave: false,
 reader: new Ext.data.CFQueryReader({
 idProperty: 'AuthorId'
 },[
 {name:'AuthorID',type:'int'},
 'FirstName',
 'LastName'
]),
 writer: new Ext.data.JsonWriter({
 encode: false,
 writeAllFields: true
 })
});

We begin with our DirectStore configuration. The DirectStore is a new object of
the Ext.data package, specifically designed to call data from an Ext.Direct source.
The api attribute is now used to define actions and basic CRUD methods against our
store, but notice that the majority of the configuration is just like any other data store.
We did use the CFQueryReader custom reader object that we discussed in Chapter
15, It's All About The Data, to parse out the query object returned by the ColdFusion
application server, as well as the JsonWriter configuration to handle changes to our
remote source.

Next, we'll apply this store to a basic data EditorGridPanel:

// shorthand alias
var fm = Ext.form;
var dirGrid = new Ext.grid.EditorGridPanel ({
 width: 400,
 height: 500,
 title: 'Ext.DirectStore Example',
 store: dirStore,
 loadMask: true,
 clicksToEdit: 1,
 columns: [{
 header: 'AuthorID',
 dataIndex: 'AuthorID',
 width: 60
 },{
 header: 'First Name',
 dataIndex: 'FirstName',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[371]

 width: 150,
 editor: new fm.TextField({
 allowBlank: false
 })
 },{
 header: 'Last Name',
 dataIndex: 'LastName',
 width: 150,
 editor: new fm.TextField({
 allowBlank: false
 })
 }],
 viewConfig: {
 forceFit: true
 },
 tbar:[{
 text: 'New Author',
 handler: function(){
 var author = dirGrid.getStore().recordType;
 var a = new author({
 AuthorID: 0,
 });
 dirGrid.stopEditing();
 dirStore.insert(0,a);
 dirGrid.startEditing(0,1);
 }
 }],
 bbar:[{
 text: 'Save Changes',
 handler: function(){
 console.log(dirStore.save());
 }
 }]
});
dirGrid.render('chap16');
dirStore.load();

There's nothing new here. We apply our store to our editor grid configuration just
as we would apply one to any other store object. Once we render the grid, we then
load the store from our Direct exposed configuration, just as we would load any
other store.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Marshalling Data Services with Ext.Direct

[372]

Going back to our class object, we have an add and an update method, both taking
an author as an argument. The add method should return a valid AuthorID in its
response, which we might want to apply to a new record in our store. We've added
a button to the TopToolbar to add records to the grid for editing:

tbar:[{
 text: 'New Author',
 handler: function(){
 var author = dirGrid.getStore().recordType;
 var a = new author({
 AuthorID: 0,
 });
 dirGrid.stopEditing();
 dirStore.insert(0,a);
 dirGrid.startEditing(0,1);
 }
}],

Once a new record has been added, or an existing record has been edited, we need
to save those changes to our remote server. Here we've added a button to the bottom
Toolbar that will save any new and changed records to the server, by invoking the
appropriate method to take upon the record:

bbar:[{
 text: 'Save Changes',
 handler: function(){
 dirStore.save();
 }
}]

New records will go to the add method of the Author action. Changed records will
go to the update method of the Author action. Since this is a JSON request, we can
batch-process our changes.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 16

[373]

Summary
In this chapter, we've discussed how a developer can write his/her own Ext.Direct
server-side stacks for marshalling data services under a single configuration. We've
discussed each of the individual pieces:

• Configuration
• API
• Router

We've talked about the four different ways of writing a configuration:

• Programmatic
• JSON
• XML
• Metadata

We've also deconstructed one example stack provided by the Ext JS development
team, illustrating how the server-side code might generate our APIs, and route our
requests. Finally, we talked about how we implement Direct within our own Ext
applications. In our final chapter we'll show you a few hidden gems of the Ext JS
framework, and talk about some community resources for further information.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What
Else Can You Do?

Throughout this book, we've gone over some of the core components of Ext JS:
Windows and Dialogs, Grids, Trees, Data Stores, and more. This is some of the
flashiest, coolest, and most consistent stuff on the Web today, for taking a drab
old HTML display and giving it the sizzle and pop such a dynamic development
platform deserves. But we've still only scratched the surface of what's available
within the complete Ext JS library. Here we'll look at some of the deeper bits of the
framework, while pointing you to additional learning resources that you can explore
and use to grow your knowledge of Ext JS.

In this chapter, we cover:

•	 Form widgets
•	 Data formatting
•	 Application managers
•	 Working with the DOM and styles
•	 Ext JS on the desktop
•	 Community extensions
•	 Community resources

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[376]

So much to work with
The Ext JS site (http://www.extjs.com) provides a wealth of information for
those learning to develop with Ext JS. A quick view of the Samples and Demos
area of this site will show us quite a bit of what we've covered in this book, but a
thorough examination of the source code will show us some things that we may not
immediately have known were available. These are the pieces that aren't necessarily
apparent, such as a panel or a grid, but these little things ultimately hold it all
together and truly allow us to create robust applications.

Form widgets
What's a widget? Well, a widget is a tiny piece or component of a graphical user
interface, say (for instance) a slider or a progress bar. Most applications are made up
of forms, so it's no accident that Ext JS includes some form widgets that we can't get
with straight HTML. TextFields and checkboxes and radio buttons are standard
fare, but Ext JS sweetens the pot by going to the next level, providing us with
components that we're used to seeing in most desktop applications.

DateField
The DateField is a perfect example. Handling dates within most HTML forms can
be a chore, but Ext JS provides a very basic component for handling dates:

Example 1: chapter17_01.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'DateField Example',
 applyTo:'chap14_ex01',
 layout:'form',
 labelAlign:'top',
 width:210,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'datefield',
 fieldLabel:'Date of Birth',
 name:'dob',
 width:190,
 allowBlank:false
 }]
 });
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[377]

What we have here is a basic FormPanel layout that puts our DateField into proper
context and allows for certain necessary attributes (like putting our label above the
field). Within the layout we have a single DateField component. On initial load, it
looks like a basic TextField, with the exception of the trigger to the right. Clicking
the trigger shows the beauty of Ext JS's consistent component "look-and-feel",
displaying an attractive calendar layout for the selection of a date. You can select
a day, move from month-to-month, or even click on the month itself to choose a
different month and year.

Apart from its rich display, the DateField also provides a rich set of attributes for
specialized customization, including the ability to determine different accepted date
formats, and the ability to disable entire blocks of days. The component will also
automatically validate manually-entered data.

TimeField
Dealing with time can be more difficult than dealing with dates, but Ext JS also
provides a component to assist us. The TimeField is a basic ComboBox that will
automatically show a set of time, in increments that we want, for quick selection:

Example 2: chapter17_02.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'DateField Example',
 applyTo:'chap14_ex02',
 layout:'form',
 labelAlign:'top',

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[378]

 width:210,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'timefield',
 fieldLabel:'Time',
 minValue: '9:00 AM',
 maxValue: '6:00 PM',
 increment: 30
 }]
 });
});

As in our last example, this simple FormLayout contains one item, in this case the
TimeField. Click on the trigger, and we get our options, defined by our code as
times between 9 A.M. and 6 P.M. in increments of 30 minutes. Other configuration
options allow you to define multiple accepted time formats, and also implement
custom validation. Basic validation is provided by default.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[379]

NumberField
The NumberField doesn't look very special—it's just a basic 'text' field. What makes
it special is how it allows us to 'dummy-proof' our Ext JS applications. Client-side
data validation is essential for ensuring data integrity prior to sending values to the
server, allowing us to prevent errors from our remote procedure calls. Components
such as this one simplify that process for us. The NumberField provides automatic
keystroke filtering and validation to allow the entry of only numeric data, allowing
us to specify whether it can take negative numbers or float values, and even specify
how many decimal places are accepted.

CheckboxGroups and RadioGroups
Ext JS 2.2 brought two new form controls: the CheckboxGroup and the RadioGroup.
These controls allow us to 'group' sets of checkbox or radio buttons, providing them
with custom formatting and special, group-level validation capabilities. For example,
say we have a form with two checkboxes for the users to select their gender. By
placing these within a CheckboxGroup, we can apply our validation to the group so
that at least one option is selected when the form is submitted. We can apply many
more complex validation rules as well, depending upon the scenario. See the Ext JS
API for more details.

HtmlEditor
Ext JS includes a nice, limited, WYSIWYG HtmlEditor, to drop right into your forms:

Example 3: chapter17_03.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'HtmlEditor Example',
 applyTo:'chap14_ex03',
 layout:'form',
 labelAlign:'top',
 width:600,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'htmleditor',
 id:'bio',
 fieldLabel:'Blog Entry',
 height:200,
 anchor:'98%'
 }]
 });
});

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[380]

Here, we dropped the HtmlEditor into our FormLayout for a quick demonstration.
The HtmlEditor is applied to a basic text area, in much the same way as other
WYSIWYG editors, say FCKEditor or TinyMCE. We have the ability to enable
or disable the various menu buttons related to formatting, as well as call various
methods (like those to get or set the text of the editor, its position, and so on), or
apply event listeners, just like the other components of Ext JS.

We get the same, consistent Ext JS look and feel, while giving our users the ability to
format their own content directly from within our applications. In this image, note that
the HtmlEditor uses Ext JS's built-in ColorPalette component for selecting colors.

Data formatting
We all know that we don't always receive data in the format in which we want it to
be displayed. Ext JS provides many different components specifically for addressing
such issues. First among these is the Format object in the Ext.util package, which
gives us a wide variety of functions for everything from creating the U.S. currency
format for a number to methods for stripping scripts and HTML from strings. The
Ext JS library also extends several native JavaScript objects and provides us with
additional methods for manipulating them. Specifically, the String, Number, and
Date objects have all been extended. You can now strip off unnecessary whitespace,
constrain numbers to a minimum and maximum value, and even create Date objects
from a variety of format options.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[381]

Basic string formatting
The String object has been extended to provide several formatting options,
including the format() method. This simple method allows you to return a
formatted string of text, with the first parameter being the string to return, and all
other parameters (as many as you like) being bound to pieces of the string, using
a basic form of binding expression, whereby curly braces surround a variable
reference. Typical binding expressions, used by Ext JS, would contain a dot-notated
variable reference surrounded by curly braces (that is, {this.firstName}), but this
instance will bind values to the arguments that will follow using their array order:

Example 4: chapter17_04.js

Ext.onReady(function(){
 var cls = "Band";
 var member = {
 firstName: 'Eric',
 lastName: 'Clapton',
 position: 'Lead Guitarist'
 };

 var pnl = new Ext.Panel({
 applyTo: 'chap14_ex04',
 width: 200,
 height: 100,
 bodyStyle: 'padding:5px',
 title: 'Band Member',
 html: String.format('<div class=\'{0}\'>{2}, {1}: {3}</div>',
 cls, member.firstName, member.lastName, member.position)
 });
});

This small block of code displays a simple Panel element, which calls the formatting
function to build the HTML of the Panel. The arguments of the format() method
are applied to different parts of the string that we are building.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[382]

Formatting dates
The Date object has also been extended to provide additional formatting and parsing
capabilities. The API provides a complete listing of the date part identifiers that can
be used when parsing a string into a Date object, or when outputting a Date object
in the desired format:

Example 5: chapter17_05.js

Ext.onReady(function(){
 var cls = "Band";
 var member = {
 firstName: 'Eric',
 lastName: 'Clapton',
 position: 'Lead Guitarist',
 birthDate: new Date('03/30/1945')
 };

 var pnl = new Ext.Panel({
 applyTo: 'chap14_ex05',
 width: 200,
 height: 100,
 bodyStyle: 'padding:5px',
 title: 'Band Member',
 html: String.format('<div class=\'{0}\'>{2}, {1}: {3}
DOB:
{4}</div>', cls, member.firstName, member.lastName, member.position,
member.birthDate.format('F j, Y'))
 });
});

We've extended our previous example to add Eric's birthday. We've created a new
Date object, as part of the Member object, and then used the format() method of the
Date object to format our date for display.

Other formatting
The Ext.util package provides many different classes and methods for
formatting various types of data, including many for working with strings,
dates, and numbers. A good example is the usMoney() method:

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[383]

var annualSalary = 123456.345;
Ext.util.Format.usMoney(annualSalary);

This will return a pre-formatted US currency string of $123,456.35. This can come
in very handy when working with e-commerce applications.

Author's note:
The usMoney() method in the Format class is currently the only
method for formatting a currency type. But with Ext JS's extensible
architecture, it would be possible to create methods for formatting other
foreign currencies. A quick search of the Ext JS forums will pull up
several posts on creating formatting methods for other currency types.

Another common need is the ability to strip HTML from a string. Say we have a
simple comment form on our page, and want to ensure that the user doesn't include
any HTML in the input, so that our data isn't polluted before going to the server. Ext
JS includes a simple method for stripping out HTML from any string:

var firstName = 'jimi';
var adj = Ext.util.Format.stripTags(firstName);

We may also want to make sure that a particular input, say a name, is capitalized
before we pass it back to the server:

var adj2 = Ext.util.Format.capitalize(adj);

We may also want to apply a default value to a variable in case one does not
exist already:

var adj3 = Ext.util.Format.defaultValue(favoriteBlog,
 'Cutter\'s Crossing');

A thorough review of the API will provide you with a full understanding of all
of the various formatting options that are available.

Managing application state
At the core of any application (especially an event-driven application) is maintaining
and controlling the application state. This can encompass many different things,
from keeping user preferences on grid sorting, to managing multiple windows or
layout areas on the screen, and even being able to use the Back button in the browser
and have it change your application without reloading the wrong page. Luckily, Ext
JS provides several Manager objects for handling many of these scenarios.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[384]

Basic state management
The Ext.state.Manager class is automatically checked, and utilized, by every
state-aware component within Ext JS. With one simple line of code we can set this
manager in place, and with little or no additional work our application's view state
is automatically registered.

To put this in perspective, suppose that we have a rather large application, spanning
many different HTML documents. Ext JS plays a part in the application, because
we've implemented a data grid for displaying users. While we work on our grid,
it may be necessary to change the sort order from the default LastName column to
another column, for example, the UserName column. Now let's say we had to go
into an inventory editor for a moment. If we use the Manager, when we return to the
user editor our grid will automatically come up sorted again by Username, as that
was the last state change that we made:

Ext.state.Manager.setProvider(new Ext.state.CookieProvider());

This line creates our state Manager, setting the provider to a CookieProvider.
What this means is that the application state is saved to a value within a cookie on
the client machine, which in turn is read to re-enable the state upon returning to a
state-aware component.

Side Note:
The CookieProvider also provides a simple API for the general
management of client-side cookies for our sites, and can be used as a
standalone class for referencing and manipulating cookie objects.

How do I get that window?
Many Ext JS applications will be confined to a single HTML page, and might
commonly come down to a collection of Ext JS Window objects on the screen. But
what happens if a user is in one window, and we want to show them another
window that is already open, without closing the one they've been working
on? By default, all Ext JS windows are created, and registered, within the global
WindowGroup. We can easily control the visibility and z-index of these windows
by using the WindowMgr class. This manager class allows us to grab any window
of a WindowGroup, and bring it to the front, send it to the back, or even hide all
of the windows in the group.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[385]

Using the back button in Ext JS applications
One common problem among Rich Internet Applications is handling the Back
button of the browser. Say we have a large Ext JS-based application with tabs, grids,
and accordions. A user navigating our application by using these components might
hit his/her Back button to go back to their last action, screen, or panel. This is an
expected behavior in most Internet applications, because most Internet applications
go from one HTML page to another.

But most Rich Internet Applications, like those built with Ext JS, are usually a
collection of different states within the same HTML page, and the Back button
would typically take a user out of our application and back to the last viewed
HTML page. Thankfully, Ext JS introduced the History class, giving us the ability
to control how the browser history is used, and how the browser's Back button
would be handled within our applications.

Manage this:
There are several other manager classes within Ext JS. The
StoreMgr provides easy access to our various data store objects. The
ComponentMgr allows us to quickly retrieve specific components to act
upon. The EventMgr allows us to control events within Ext JS objects.
A good review of the Ext JS API will give us more information on these
manager objects and their many uses.

Accessing the DOM
Custom library adapters allow for the use of Ext JS with other libraries, say jQuery
or Prototype. But Ext JS provides its own internal libraries for DOM manipulation
as well.

Finding DOM elements
The first task when manipulating the DOM (Document Object Model) is to find
what we're looking for. The DomQuery class provides us with several methods for this
purpose, including returning entire groups of DOM nodes that meet specific criteria,
or selecting a single node by its selector. We can even start the search from
a specific node in the page. There are several different selector types that can be
used when searching for a specific element:

•	 base Element selectors
•	 Attribute selectors
•	 Pseudo classes
•	 CSS Value selectors

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[386]

What's more, we can chain together a series of selectors to find the exact element
we're searching for:

var myEl = Ext.DomQuery.selectNode
 ('a.iconLnk[@href*="cutterscrossing"]:first');

This will return the first anchor element with a class name of iconLnk that contains
cutterscrossing within its href attribute:

•	 a—is an anchor element
•	 .selectNode—has a class of selectNode
•	 [@href *= "cutterscrossing"]—has an href attribute containing

'cutterscrossing' somewhere within its value
•	 :first—is only the first element matching the criteria

Manipulating the DOM
The DomHelper class allows us to manipulate the DOM of the rendered page
on-the-fly. Whether we want to add a new element below a collection of others,
remove a specific element, or even overwrite the body content of an element, the
DomHelper class contains the methods that can accomplish the task: For example:

Ext.DomHelper.insertAfter(ourGrid, newForm);

This line will place the newForm object directly after ourGrid in the current page's
DOM. You could just as easily use insertBefore() to place the form before the
grid. You could even use insertHtml() to insert a block of HTML into the DOM
with a particular relation to a specific DOM element. A thorough review of the API
will give you a complete view of the power of the DomHelper class.

Working with styles
The DomHelper class also provides a simple method for setting the style of an
individual element, through the use of the applyStyles() method. But sometimes
we may need to change the stylesheet of our entire document. For this, Ext JS
has the Ext.util.CSS class, which allows us to create a new stylesheet that will
automatically be appended to the Head of our document, remove entire stylesheets,
or swap one stylesheet for another. We can even act upon their entire set of rules:

Ext.util.CSS.swapStyleSheet('defaultDisplay','print.css');

This little script will swap out the current stylesheet, which is identified by the link
tag's id attribute, and replace it with the print.css stylesheet.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[387]

Ext JS for the desktop: Adobe AIR
One of the great things about being a Web application developer is that we have the
opportunity to write truly cross-platform applications. The traditional model for this
has always been writing browser-based applications that work primarily under a
client/server paradigm, with the browser as the client and a Web application server
as the server.

But desktop applications have a lot of their own benefits, including access to their
own local file systems (something you cannot do with Web-based applications,
because of security concerns). The biggest issue with building desktop applications
is writing them all for Windows, Unix/Linux, and the Mac. None of these systems
share common display libraries or file access systems, so writing a cross-platform
application would require writing separate versions of the code to accommodate
each system. There are languages that provide cross-platform virtual machines,
which give this kind of access to the system resources, but they require learning
languages that may be outside of the average Web developer's toolbox.

Adobe came up with an interesting idea. How could they let people develop
cross-platform applications using Web-based technologies such as HTML,
JavaScript, AJAX, and Flash?

With their purchase of Macromedia, Adobe gained the rights to the Flash player
and the Flash application platform. The Flash player is distributed on 97 percent
of the user desktops as a plug-in for every major browser. They also gained access
to a new technology called Flex, which is a framework and compiler that allows
developers (rather than designers) to script Flash-based applications.

But, part of what they truly gained was an understanding of how to create a
cross-platform application delivery engine. So, they built upon their newfound
knowledge, and set out to create the Adobe Integrated Runtime, better known as
AIR. AIR is a desktop engine for rendering content written in HTML, JavaScript,
and/or Flash (and more), which allows local access to the client system's resources,
regardless of the operating system. Built upon the open source WebKit platform,
which is the same platform used by Apple in their Safari Web browser, AIR has
access to the local file system and storage, while maintaining Internet awareness,
thereby creating a bridge between offline process and online content. AIR even
provides access to local databases created with SQLLite. SQLLite is a server-less
library for delivering databases with its own transactional SQL database engine
that can be directly embedded into an application.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[388]

Adobe and Ext JS already have a great relationship, because Adobe contracted
Ext JS so that it could use the Ext JS component library as the foundation of the
AJAX-based components generated by ColdFusion Markup Language, which is
processed on Adobe's popular ColdFusion application server. Considering the
cross-platform nature of AIR, it was befitting that some of the first HTML/JavaScript
sample applications were written in another cross-platform library, Ext JS. The tasks
sample application is included with the Ext JS download, and is an excellent primer
on how to write HTML and JavaScript applications for AIR.

Ext JS 2.1 was released on the same day that Adobe AIR was officially released, and
included an entire package of components dedicated to developing Ext JS-based AIR
applications. The classes of the Ext.air package interact with AIR's own classes for
interacting with the runtime and the desktop. Aptana, a popular JavaScript editor
and Eclipse plugin, added support for creating AIR applications directly as projects
from within its IDE (Aptana already supported Ext JS development), with simple
wizards to help get you started, as well as for packaging completed AIR applications.

The Ext.air package includes special packages for managing application state,
including the NativeWindowGroup and FileProvider classes (AIR's answer to the
WindowGroup and CookieProvider classes). There are even classes for controlling
sound and system menus.

More information:
For more information on developing Adobe AIR applications, visit the
AIR and AJAX Developer Center (http://www.adobe.com/devnet/
air/ajax/). For details look at AIR/Ext JS integration, and study the
'tasks' sample application, included in the Ext.air Pack download.
There's also the Ext.air for Adobe AIR topic within the Ext JS Forums.

Ext JS community extensions
Chapter 13 of this book discussed how developers can write their own custom
extensions to Ext JS. Being an open source project, the Ext JS community is very
active in contributing new components to extend existing functionality, and
sometimes these components even go on to become a part of the framework.

Many custom extensions are found directly in the forums area of the Ext JS website,
as posts from members who have come up with solutions to a problem they had
identified. There is, however, a section of the Learning Center area of the site that
is dedicated to showcasing custom extensions. Let's look at a few fan favorites.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[389]

DatePickerPlus
Building on the DateField class, the DatePickerPlus provides multi-calendar displays,
allowing a user to select a range of dates. There are multiple configuration options
available, and the level of control available to the developer is very comprehensive.

PowerWizard
The PowerWizard class allows us to create powerful, multi-step 'wizard-like'
processes, with field (and multi-field) validation and decision trees, as well as
data persistence between frames.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[390]

TinyMCE
Yes, for those times when the HtmlEditor just isn't enough, someone wrote a custom
extension to wrap the TinyMCE WYSIWYG editor into the Ext JS applications.

SwfUploadPanel
How many times would it have been nice to be able to upload more than one file
at a time through our Web application interface? Someone converted the popular
SwfUpload project into a custom Ext JS component, allowing multi-file uploads
from within our application.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[391]

ColorPicker
The built-in ColorPalette component can seem rather limiting, only showing a
few of the colors available for web display. For this reason, there is the ColorPicker
giving the user the option of selecting any color they wish.

These are just a few of the outstanding community contributions to the library.
There are many more available through the Community Extensions section of
the Learning Center area of the Ext JS website, as well as throughout the Forums.
(Check out the Ext: User Extensions and Plugins topic for more.)

Additional resources
Knowing where to find good information is the biggest trick to learning anything
new. Although this book is a good resource, there is a wealth of information
available on the Internet, especially on the Ext JS site (http://www.extjs.com).

Samples and Demos
The Samples and Demos area of the Ext JS site (http://extjs.com/deploy/dev/
examples/samples.html) will likely be the first real exposure that anyone has to
the power of the Ext JS library. These small samples are broken down into various
categories, providing us with solid examples of how to use many of the components
of Ext JS. With easily-accessible source code, we can see exactly what it takes to write
this type of functionality for our own applications.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[392]

Ext JS API
The Ext JS interactive API (http://extjs.com/deploy/dev/docs/) is an
outstanding resource, giving us access to the underlying properties, methods,
and events that are available within each class of Ext JS. The API documentation
is written in Ext JS itself, and it's menu is a tree style navigation with expanding
members, allowing us to expand each package to see information on their specific
classes. Peppered throughout are additional code samples to illustrate their use.
The Ext JS team even provides a desktop AIR version of this API browser, so that
we can have it available offline.

Side note:
The Ext JS team also supports the older 1.1 framework, which is what
runs the underlying AJAX components of the older Adobe ColdFusion
8 server. The samples and demos for the 1.1 framework are actually
included in the 1.1 API browser (http://extjs.com/deploy/ext-
1.1.1/docs/), which is available through the Learning Center area of
the website (http://extjs.com/learn/).

Ext JS forums
The forums for Ext JS (http://extjs.com/forum/) show what an active community
there is, developing the Ext JS library. With over 40,000 threads and more than
200,000 posts, this is the place to ask questions. Topics range from the very easy
to the ultra-advanced, and members of the core Ext JS development team are
frequent contributors.

Step-by-step tutorials
Step-by-step tutorials (http://extjs.com/learn/Tutorials) can be found
within the Learning Center, with content ranging from simple component usage to
advanced project development. Some of these tutorials come directly from the Ext JS
development team, but many are contributed by members of the Ext JS community.

Community Manual
One can also find the Ext JS Community Manual within the Learning Center.
This wiki-style development manual is maintained by the Ext JS community itself,
and contains topics relating to most of the aspects of Ext JS development.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Chapter 17

[393]

Spket IDE
We can find resources for Ext JS all over the Internet. One good example is
from Spket Studios (http://www.spket.com/), makers of the Spket IDE. This
free IDE comes as a plug-in for the Eclipse development platform. With a few
simple steps, Spket can provide complete code introspection for our Ext JS classes
and extensions, as well as in-depth code assistance. It even has a built-in theme
builder to automatically create new skins for your components.

Aptana Studio
Aptana Studio is quickly becoming a major contender in the web-based IDE market.
Even the free version provides code introspection and assistance with multiple
JavaScript libraries, built-in wizards for creating Adobe AIR applications, built-in
debugging tools, and much more.

Google
Yes, Google (or any other search engine) is a fantastic resource, because there are
thousands of articles, tutorials, and blog posts available. A quick search on "Ext JS"
brings up over a million possible matches, and that's growing every day.

Where do we go from here?
It is our hope that, with this brief introduction to the Ext JS JavaScript component
library and framework, we've given our readers a good foundation upon which some
truly amazing things can be built. Ext JS provides such an immense wealth of user
interactivity within Web applications, possibly to a degree never achieved before. With
its deep, consistent, and rich component set, its full-featured and intuitive API, and its
constant development and growth, Ext JS has the potential to truly springboard Web
(and even desktop) applications beyond the traditional paradigms, by providing users
with an experience well beyond the Web applications of the past.

Our imagination is the only limit to what we can hope to have in the future.

Charles F. Kettering
US electrical engineer and inventor (1876-1958)

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

The Power of Ext JS: What Else Can You Do?

[394]

Summary
In this chapter we've discussed some of the lesser known pieces of the Ext JS library.
We briefly covered some of the form components not found in traditional HTML,
such as the DateField and the HtmlEditor. We also learned about the various
classes available for formatting data for the desired output, as well as those classes
needed for managing application state and manipulating the DOM.

Finally, we also talked about the various resources that are out there for continuing
to learn about Ext JS development. We talked about the community extensions,
the brilliant samples, and API browser, as well as the forums, tutorials, and the
community manual. We even touched on some IDE's for doing Ext JS development.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Index
Symbols
<body> tag 316
<div> element 169, 260
 element 264
.NET 356
<script> tag 360

A
absolute layout manager 145
Accordion instances 316
accordion layout manager

about 145, 153
example 154
working 153

ActionColumn column type 103
adapters

about 20
using 21

addListener method 69
Adobe ColdFusion Developers Edition

URL 317
Adobe Integrated Runtime. See AIR
afteredit event 129
AIR 387
AJAX

about 170, 175, 255, 278, 319
and Ext JS 13

AJAX submissions
form, creating 44, 45

align config option 144
allowBlank config option 47
alpha vtype

example 49
anchor config option 59

anchoring 256
anchor layout manager

about 146, 159
working 159, 160

API
access, making available 369
building 360
calls, making 369-371
stack deconstruction 361, 362

API (Application Programming Interface)
10

API calls
making 369-371

Apple 387
application state

managing 383
applyStyles() method 386
Aptana Studio 388, 393
array literal 111
ArrayReader class 94
ArrayReader object 321
ArrayStore class 55, 93
ArrayStore object 320
Asynchronous JavaScript and

XML. See AJAX
AsyncTreeNode class 168
Attribute selectors 385
autoLoad attribute 317
autoLoad config option 155

B
back button

using, in Ext JS applications 385

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[396]

bar chart
about 221
styles, adding 223
switching out, for column chart 222

base Element selectors 385
bbar config option 87
beforecomplete event, arguments

editor 177
newValue 177
originalValue 177

beforemovenode event 174
beforemovenode event, arguments

index 175
newParent 175
node 175
oldParent 175
tree 175

beforenodedrop event 274
blocking 251
bodyStyle config option 74
BooleanColumn column type 101
boolean data type 94
border config option 74
border layout manager 146
bounceIn option 249
BoxComponent base class 213
buffer option 233
button

config options 77
creating 78
events 83
handlers 83

buttons config object 63

C
card layout manager 146
caveats 188
cell renderers

capitalize 104
columns, combining 105
custom cell rendering 104
data, formatting 103, 104
dateRenderer 104
lowercase 104
uppercase 104
using 103

CFC 318, 359
cfdirectory tag 336, 339
chaining 250
chart

adding, to layout 216, 217
charting 213
chartStyle config 218
check boxes 54
CheckboxGroup control 379
checkchange event 186
child components, items config object 45
children property 171
class 282
clearFilter() method 340
clearSearch method 308
clickPixelThresh property 272
clickTimeThresh property 272
client-side sorting 107
cls option 184
cmargins attribute 148
ColdFusion 356
ColdFusion Component. See CFC
ColdFusion stack

selecting, reasons 357
collapseAll method 184
collapseMode attribute 148
collapsenode event 188
collapsible attribute 148
ColorPalette component 391
ColorPicker component 391
column charts 221
column layout manager 146
ColumnModel class

about 100
working 100

column property 130, 135
columns

combining 105
reordering 108

column types
about 101
ActionColumn 103
BooleanColumn 101
DateColumn 102
NumberColumn 102
TemplateColumn 102

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[397]

ComboBox class
about 55
events 62

ComboBox object 352
Component model 168
components

adding, to containers 163, 164
concurrency 250
config object

about 27, 30
example 30
using 44

configuration objects function 27
configuration options, Ext.Fx methods

about 247
block 249
callback 248
display 247
easing 248
remove 247
scope 248

configuration, server-side stacks
about 357
JSON 358
metadata 359
programmatic 357, 358
stack deconstruction 359
XML 358

configuration, Windows
about 199
desktopping 201
window, framing 201

constructor method 302
container

child components, appending 165
components, adding 163, 164

content
loading, on menu item click 83, 85

contentEl
ElExt Panel, configuring 39-41

context menu
about 179
Delete 180
menu, handling 180
Sort 180

contextmenu event listener 72
CookieProvider 384

Create, Read, Update, Delete. See CRUD
cross browser DOM (Document Object

Model) 12
cross-site scripting 319
CRUD 344, 347
CRUD functionality 139
CSS Value selectors 385
custom cell rendering 104
custom class 284-287
custom components

creating 292-298
using, within other objects 299, 300

custom DataReader
using 327-330
writing 330-335

custom events
creating 291

custom namespace
creating 283

custom validation
creating 51, 52

cutterscrossing 386

D
data

defining 321, 322
deleting, from server 135
displaying, with GridPanel 96, 97
filtering 336- 342
finding 335, 336
formatting 380
formatting, cell renderers used 103, 104
mapping 323
mapping, DataReader used 325-327
retrieving, from server 324, 325
server-side data, displaying 109

data attribute 288
data binding 254
data, finding

about 335
by field value 335
by record ID 336
by record index 336

data formats, Ext JS
HTML 319
HTML, loading into panel 316-318
Javascript array 320

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[398]

JSON 319
plain text 319
XML 319

data reader
config options 58

DataReader
data, mapping 325-327

data reader, config options
fields 58
root 58

data store
about 96, 320
changing 233
data, adding 130
data, defining 321, 322
data, deleting 130
grid rows, removing 131, 132
loading 95, 96
requisites 95

data store remove function 132
dataUrl parameter 170
DataView object 352
DataWriter

about 344
benefits 347

DateColumn column type 102
date data type 94
DateField class 389
DateField component 376, 377
datefield field type 47
dateFormat config 94
Date object 382
DatePickerPlus option 389
dates

formatting 382
date value

editing 127
debug version 14
DefaultSelectionModel class 168
demos 391
desktopping 201
dialogs 190
Direct 356
DirectCFM 357
DirectStore object 369
dir parameter 175
dirty cell 128, 129

disable function 83
displayField config option 56
Document Object Model. See DOM
doLayout method 165
DOM

about 170
accessing 38, 385
elements, finding 385
manipulating 386
styles, working 386

DOM elements
finding 385

DomHelper class 386
DOM listeners 69
DomQuery class 385
doSearch method 308
drag-and drop feature, creating

drag action, used 260, 261
drop action, used 261, 262

drag-drop groups 270
dropAllowed option 271
dropNotAllowed option 271
DropTarget constructor 262
drop target element 262
DropTarget.notifyDrop method 262

E
easing

about 248
options 248

easing options, Ext JS 248
ECMAScript standard 278
editable grid

cells, editing 126
field types, editing 126, 127
uses 124
working with 124

EditorGridPanel component 124
enableDragDrop option 274
enableToggle config option 77
endOpacity option 239
errors

displaying, styles used 50, 51
event 289
event-driven application model 289
event driven interfaces 13

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[399]

event handling functions
adding, to form 61

event listener 291
expandAll method 184
Ext.air package 388
ext-all.css file 16
ext-all-debug.js/ext-all.js file 16
ext-all version 14
Ext.apply function 52
ext-base.js file 16
Ext.Button class

about 71
config options 77

Ext.ButtonGroup class 72
Ext.Component.getEl method 237
Ext.Container 190
Ext Core library 38
Ext.CycleButton class 72
Ext.data package 282, 370
Ext.data.Record.create function 132
Ext.data.ScriptTagProxy 319
Ext.DataView

dragging 266
Ext.dd.DragSource class 260, 270, 271
Ext.dd.DragZone class 263-271
Ext.dd.DropTarget class 262, 270, 271
Ext.dd.DropZone class 263, 270
Ext.dd package 260, 275
Ext.dd.Registry

node, adding 266
Ext.dd.Registry.register method 266
Ext.dd.ScrollManager class 273
Ext.dd.StatusProxy class 261
Ext.Direct class 355
Ext.Element.alignTo method 246
Ext.Element.anchorTo method 246
Ext.Element class 237, 238, 251
Ext.Element object 38
Ext.form.BasicForm class 44
Ext.form.Field class 44
Ext.form.FormPanel class 44
Ext.form package 282
Ext.forms namespace 282
Ext.Fx class 238, 251
Ext.Fx class, methods

fadeIn 239, 240
fadeOut 239, 240

frame 240
ghost 241
highlight 242
puff 242
scale 243
shift 244, 245
switchOff 244

Ext.Fx.fadeIn method 239, 240
Ext.Fx.fadeOut method 239, 240
Ext.Fx.frame method 240
Ext.Fx.ghost method 241, 243, 246
Ext.Fx.highlight method 242
Ext.Fx methods

configuration options 247
Ext.Fx.puff method 243
Ext.Fx.scale method 243
Ext.Fx.shift method 244, 245
Ext.Fx.slideIn method 243
Ext.Fx.slideOut method 243
Ext.Fx.switchOff method 244
Ext.get function 27, 38
Ext.grid.EditorGridPanel 125
Ext.grid.GridPanel class 125, 274
Ext.grid package 282
Ext JS

about 9, 12, 315, 317
adapters 20
and AJAX 13
API 8
benefits 10
BoxComponent base class 213
classes 30-32
cross browser DOM (Document

Object Model) 12
data formats 319, 320
desktop applications 387
drag-and-drop, implementing 260
EditorGridPanel component 123, 124
event driven interfaces 13
familiar popups, showing 191, 192
FAQ, URL 24
features 106-108
forms 43, 44
forums 24
getting 13
grid 92
including, in our pages 15

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[400]

localization 22, 23
object-oriented programming 279
online API docs 23
placing 13, 14
proxy 261
spacer imager 16
web application development 12
widgets 30-33
window management 205-210

Ext JS 2.1 388
Ext JS action object

options 66
Ext JS action object, options

failureType 66
response 66
result 66
type 66

Ext JS API 392
Ext JS applications

back button, using 385
Ext JS, button constants

Ext.Msg.CANCEL 195
Ext.Msg.OK 195
Ext.Msg.OKCANCEL 195
Ext.Msg.YESNO 195
Ext.Msg.YESNOCANCEL 195

Ext JS community extensions
about 388
DatePickerPlus 389
PowerWizard class 389
SwfUploadPanel 390
TinyMCE 390

Ext JS, features
client-side sorting 107
column, reordering 108
hidden columns 107
visible columns 107

Ext JS forums
about 24, 392
URL 328

Ext JS icon 167
Ext JS, icon constants

Ext.Msg.ERROR 195
Ext.Msg.INFO 195
Ext.Msg.QUESTION 195
Ext.Msg.WARNING 195

Ext JS, layout managers
AbsoluteLayout 145
AccordionLayout 145
AnchorLayout 146
BorderLayout 146
CardLayout 146
ColumnLayout 146
FitLayout 146
FormLayout 147
HBoxLayout 147
TableLayout 147
VBoxLayout 147

Ext JS library
about 279
chart types 214
using 17, 18

Ext JS, Reader classes
ArrayReader class 94
JSONReader class 94, 95
XMLReader class 95

Ext JS, resources
Aptana Studio 393
community manual 392
demos 391
Ext JS API 392
forums 392
Google 393
samples 391
Spket IDE 393
tutorials 392

Ext JS site
about 376
application state, managing 383
data, formatting 380
DOM, accessing 385
form widgets 376
URL 376

Ext JS tree
about 168
customizing 182-184
features 173-177
interface, creating 169, 170

Ext JS tree, features
drag and drop 173-175
editing 176, 177
sorting 175, 176

Ext.layout.FormLayout 198

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[401]

Ext.layout package 198, 199
Ext.LoadMask class 253
Ext.menu.Menu class

about 71, 72
example 72, 73

Ext.MessageBox class
about 190
customized pop up dialogs,

creating 193, 194
versus Ext.Window class 190

Ext.Msg function 27
Ext.Msg.prompt 191
Ext.Msg.show function

about 31, 194
message boxes, creating 194, 195

Ext.Msg.updateProgress method 193
Ext.onReady function

about 18, 31, 169, 263
using 19

Ext Panel
configuring, with contentEl 39-41

Ext.Panel object 316
Ext.QuickTips class 255
extraStyles config object 218, 228
Ext.record.COMMIT state 344
Ext.record.EDIT state 344
Ext.record.REJECT state 344
Ext.SplitButton class

about 71, 79
example 79

Ext.state.Manager class 187, 384
Ext.Toolbar class 71, 75
Ext.ToolTip class 255
Ext.tree.AsyncTreeNode class 170
Ext.tree package

about 167
classes 168

Ext.tree package, classes
AsyncTreeNode 168
DefaultSelectionModel 168
MultiSelectionModel 168
RootTreeNodeUI 168
TreeDragZone 168
TreeDropZone 168
TreeEditor 168
TreeFilter 168
TreeLoader 169

TreeNode 169
TreeNodeui 169
TreePanel 169-178
TreeSorter 169, 175

Ext.TreePanel class 274
Ext.tree.TreeEditor class 176
Ext.tree.TreeFilter class 181
Ext.tree.TreeLoader class 169
Ext.tree.TreePanel class 168
Ext.util.CSS class 386
Ext.util package 380, 382
Ext.Window class

about 190
versus Ext.MessageBox class 190

Ext.WindowGroup class 190
Ext.WindowManager class 190

F
fading 239, 240
failure option 64
failureType option 66
fbar config option 87
FCKEditor 380
field data

validating 47
field property 130, 135
field types

editing 126, 127
field value

data, finding 335
Fill component 81
filter function 181
filtering 181
fit layout manager 146
FlashComponent class 214, 215
Flex 387
flex config option 145
float data type 94
form

components 43, 44
creating, AJAX submissions used 44, 45
event handling functions, adding 61
loading, with data 67
multiline text area, adding 59
RadioGroup component, adding 54
submitting 64, 65

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[402]

format() method 381
form, components

Ext.form.BasicForm 44
Ext.form.Field 44
Ext.form.FormPanel 44

form data
loading, from database 67

formHandler attribute 357
form layout manager 147
FormPanel class

about 43
working 45
using, in layout 156-158

form transactions 365
form widgets

about 376
CheckboxGroup control 379
DateField component 376, 377
HtmlEditor 379, 380
NumberField text field 379
RadioGroup control 379
TimeField component 377, 378

framing 240
functions

using, limitations 28

G
getAPIScript method 362
getAt() method 336
getColumnsData method 311
getDragData method 267
getFormConfig method 308
getForm method 157
getKey method 61
GetListParent function 75
GetNodePathFromName function 185
ghosting 241
Google 393
Gotchas

with, remote data 319
grid

about 92
altering 115
formatting 116
grouping 119
manipulating, with code 114
paging 117, 118

plugin, adding 305, 306
row, adding 132, 133
server-side data, displaying 109
updating 124
updating, requisites 125

grid, formatting
about 116
grouping 119
GroupingStore class 119, 120
paging 117, 118

Grid object 352
GridPanel class

about 96
config option 99
displaying 98
store, creating 92
store, loading 92
structured data, displaying 96, 97
working 99

GridPanel class, config options
ColModel 99
store 99

grid property 130, 135
grid search plugin

about 310
highlighting text, adding 312

GroupingStore class 119, 120
GroupingStore object 320

H
handler config option 73, 77
handler function 83
hasFxBlock method 251
hbox layout manager

about 147, 162
config options 145
example 162, 163
using, in Panel 144

hbox layout manager, config options
align 144
flex 145
margins 145
padding 144

header property 69
helpfile config option 84
hiddenName config option 56

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[403]

hidden option 101
hideable option 101
hideLabel config option 59
highlighting 242
host component

about 302
interacting, with plugin 308-310

HTML
example 263, 264
lists, changing 265
loading, into panel 316-318

HtmlEditor
about 379
example 379
WYSIWYG 379, 380

html option 197
HTML scaffolding 38
HTTP post transaction

stack deconstruction 364, 365

I
icon buttons

about 82
example 82

iconCls config option 73, 77
icon config option 73, 77
icon property 33
ID configuration property, JSON 172
id property 171
inheritance

about 279
example 279-281

initComponent() method 287, 288
init function 209, 302
insertBefore() method 386
insert function 132
insertHtml() method 386
int data type 94
INTERSECT mode 272
items config option 45, 72

J
Java 356
JavaScript

about 7, 277, 278
example 8

functions 7
variable 7

JavaScript Object Notation. See JSON
JSON

about 170, 171, 320
and XML 358
example 358
ID configuration property 172

JSON dataset 321
JSON file

movie database, loading 110, 111
JSON HTTP response 367
JSONReader class 94, 95
JsonReader object 321
JsonStore object 320

K
keys 61

L
layout

chart, adding 216, 217
layout manager

about 143
working 143

leaf property 171
line chart

about 227
example 227
using 227

listeners config option 61
load() method 68, 340
localization

about 22
scenarios 22, 23

M
majorGridLines property 223
majorUnit setting 222
mapping configs 231
margins attribute 148
margins config option 145
marshalling 356

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[404]

masking
about 53
example 53

memory usage
minimizing 38, 39

menu
handling 180

menu config option 73, 77
MenuItem class

onfig options 73, 74
MenuItem class, config options

bodyStyle 74
border 74
handler 73
icon 73
iconCls 73
menu 73
plain 74
text 73

menu item click
content, loading 83, 85

menuItems variable 72, 73
metadata

about 268, 359
example 359

methods
overriding 287, 288

minorTicks property 223
minorUnit setting 222
mode config option 56
Msg.alert 191
msgCls property 253
Msg property 253
multiline text area

adding, to form 59
MultiSelectionModel class 168

N
namespaces 282
node, Ext.dd.Registry

adding, advantages 266
nodes

sorting, in TreePanel 175
values, editing 176, 177

notifyDrop method 269, 272
NumberColumn column type 102

numberfield field type 47
NumberField text field 379

O
object 28
object literal

about 28, 111
guidelines 29

object-oriented programming, Ext JS
about 279
example 279-281
inheritance 279

objects
custom components, using 299, 300
lazy instantiation, benefits 299

observible class 302-304
onContainerDrop method 272
onNodeDrop method 264, 272
onReady function 44
onRender event 306
onUpdate() method 292
originalValue property 130, 135
overClass option 271
overnesting 152

P
package 282
padding config option 144
pages

Ext JS, including 15
Panel

HTML, loading 316-318
Panel class 43
Panel instances 316
parseFloat function 94
parseInt function 94
Perl 356
PHP

about 356
data, loading from database 112
version, verifying 57

php -v command 57
pie charts

creating 215, 216
pie slices

styling 218, 219

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[405]

plain config option 74
plugin

about 301
adding, to grid 305, 306
constructor method 302
creating 301
customizing 310, 311
example 301
host component, interacting 308-310
init function 302
ptype option 303
search form 306-308
structure 303, 304
using 302, 303
working 302

plugin, structure
observible 303, 304
singleton 303, 304

PowerWizard class 389
programmatic configuration 357, 358
prompt function 34, 36
PropertyGrid component 283
proxy

about 261, 268
advanatges 261

Pseudo classes 385

Q
qtip attribute 51, 184
queryBy method 104
queuing 250
QuickTipping 254
QuickTips object 50

R
radio buttons 53, 54
RadioGroup component

about 379
adding, to form 54

record definition 93, 96
record ID

data, finding 336
record index

data, finding 336
record property 130, 135
records 320

recordset changes
dealing, with 343, 344

region attribute 148
reject method 129
remote data

with, Gotchas 319
remote filtering 337-342
removeMask property 253
renderer option 101
renderTo config option 45, 72
response option 66
result option 66
RIAForge

URL 335
Rich Internet Applications 385
rootAttribute property 325
RootTreeNodeUI class 168
Router

about 356, 363
form transactions 365
HTTP post transaction 364, 365
JSON HTTP response 367
response 366
transaction, creating 363

RowEditor Plugin
about 138
using 138

row property 130, 135
Ruby 356

S
Safari 387
samples 391
scaling 243
scroll management 273
search form 306, 307, 308
SELECT element 55
select event 62
selection models

CellSelectionModel 113
CheckBoxSelectionModel 113
listener, adding 113
RowSelectionModel 113
selecting 113
setting up 112

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[406]

selector types
Attribute 385
baseElement 385
CSS Value 385
Pseudo classes 385

selModel config option 113
sel variable 132
Separator component 81
server

edited data, saving 134
rows, saving to 136, 137

server-side stacks
building 356
components 356
examples 356

server-side stacks, components
about 356
API 356
configuration 356
router 356

setValue method 67
shifting 244, 245
shortcuts

about 81
Fill component 81
Separator component 81
Spacer component 81
TextItem component 81

showLabels config 220
show method 253
singleton class 303, 304
sliding 243
sm variable 132
sortable option 101
sortType function 176
Spacer component 81
spacer image 16
specialkey event 61
specialkey listener 86
Spket IDE 393
split attribute 148
split button

about 79
example 79

spreadsheet 91
SQLLite 387

stack deconstruction 359
API 361, 362
form post response 368
forms transactions 366
HTTP post transaction 364, 365
JSON HTTP response 367

StackedBarChart 224
StackedColumnChart 224
state management 384
stopFx method 251
store config option 56
Store object

about 351
Combobox object 352
DataView object 352
Grid object 352

store property 253, 254
string

formatting 381
string data type 94
styles

adding, to bar chart 223
programmatically, changing 235
errors, displaying 50, 51
working, with 386

submit action 66
success option 64
swfobject library 214
SwfUploadPanel 390
switching 244
switch statement 34

T
table layout manager 147
Tabpanel class

about 150
example 151, 152

TabPanel instances 316
tbar config option 87
TemplateColumn column type 102
textarea field 59
text config option 73, 77
TextItem component 81
text property 171
tile function 210
TimeField component 377, 378

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[407]

timefield field type 47
TinyMCE editor 390
tipRenderer config 228, 229
title option 197
title_tagline function 105
toggleGroup config option 77
toggleHandler function 77, 80
toolbar

about 75
button, config options 77
button, with menu 78
child components 75
dividers 80
form fields 85, 86
item alignment 80
shortcuts 81
spacers 80
split button 79
toggling button state 79

tooltips 228
trackpoints 230
transaction

action 363
creating 363
data 363
method 363
tid 363
type 363

TreeDragZone class 168
TreeDropZone class 168
TreeEditor class 168
TreeFilter class 168
TreeLoader class 169
treenode 237
TreeNode class 169
TreeNodeUI class 169
TreePanel class

about 169
context menus 179, 180
nodes, filtering 181
rendering, into container 169, 170
selection models 178

TreePanel object 321
TreeSorter class 169, 175
type option 66

U
update() method 288
up function 75
url config option 45
url parameter 170
usMoney() method 382

V
valueField config option 56
value property 130, 135
variable

assigning, to function 8
assigning, to string 8

vbox layout manager
about 147, 161
example 161

Viewport
about 147
example 148, 149, 150

vtype
creating 51, 52

vTypes
alpha 49
alphanum 49
email 49
url 49

W
widgets 30-33, 237
width option 72, 101
WindowGroup.each function 210
window management, Ext JS

about 205
customer service workplace 209
default window manager behavior 205
multiple window, example 205-208

Windows
about 197
events 203
examples 197
layout configuration option 198, 199
manipulating 202, 203
state, handling 204
textfields, adding 198

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

[408]

World Wide Web Consortium (W3C) 278
Writable Store 139-141

X
XML

about 172
and JSON 358
example 358

XML file
movie database, loading 109, 110

XMLReader class 95
XmlReader object 321
XMLStore object 320
XmlTreeLoader class

about 172
creating 173
example 173

xtype
about 46, 299
form fields, example 46
using 299

xxxMask definition 51
xxxText definition 51
xxxVal definition 51

Y
YUI Charting site

URL 214

Z
z-ordering 205

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Thank you for buying
Learning Ext JS 3.2

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9 Paperback: 376 pages

Liferay Portal 5.2 Systems Development

1. Master the Ext JS widgets and learn to create
custom components to suit your needs

2. Build striking native and custom layouts,
forms, grids, listviews, treeviews, charts, tab
panels, menus, toolbars and much more for
your real-world user interfaces

3. Packed with easy-to-follow examples to
exercise all of the features of the Ext JS library

jQuery UI 1.7: The User Interface
Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with ready-
to-use widgets from the jQuery User Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2. Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library
with an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery's
powerful plug-in architecture

jQuery 1.3 with PHP
ISBN: 978-1-847196-98-9 Paperback: 248 pages

Enhance your PHP applications by increasing their
responsiveness through jQuery and its plugins.

1. Combine client-side jQuery with your
server-side PHP to make your applications
more efficient and exciting for the client

2. Learn about some of the most popular
jQuery plugins and methods

3. Create powerful and responsive user
interfaces for your PHP applications

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by andrea bellÃ¨ on 22nd October 2010

via stadio 16 int 2, pieve di soligo, Treviso, 31053

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started
	A word about JavaScript
	I'm asynchronous!
	About Ext JS
	Ext JS: not just another JavaScript library
	Cross-browser DOM (Document
Object Model)
	Event-driven interfaces
	Ext JS and AJAX

	Getting Ext JS
	Where to put Ext JS

	Including Ext JS in our pages
	What do those files do?
	Spacer image

	Using the Ext JS library
	Time for action

	The example
	Using the Ext.onReady function
	Not working?
	Adapters
	Using adapters

	Localization
	English only
	A language other than English
	Multiple languages

	Ext JS online help
	Online API docs
	The FAQ
	Ext JS forum

	Summary

	Chapter 2: The Staples of Ext JS
	Meet the config object
	The old way
	The new way—config objects
	What is a config object?

	Widgets and classes
	Time for action

	What just happened?
	More widget wonders
	Time for (further) action
	Lighting the fire
	The workhorse—Ext.get
	Minimizing memory usage

	Can we use our own HTML?
	Summary

	Chapter 3: Forms
	The core components of a form
	Our first form
	Nice form—how does it work?
	Child items

	Validation
	Built-in validation—vtypes
	Styles for displaying errors
	Custom validation—creating our own vtype
	Masking—don't press that key!
	Radio buttons and check boxes
	It's not a button, it's a radio button
	X marks the checkbox
	The ComboBox
	A database-driven ComboBox

	TextArea and HTMLEditor
	Listening for form field events
	ComboBox events

	Buttons and form action
	Form submission
	Talking back—the server responses

	Loading a form with data
	Static data load

	DOM listeners
	Summary

	Chapter 4: Menus, Toolbars, and Buttons
	What's on the menu?
	The menu's items

	A toolbar for every occasion
	Button configuration
	A basic button
	Button with a menu
	Split button
	Toggling button state
	Toolbar item alignment, dividers, and spacers
	Shortcuts
	Icon buttons
	Button events and handlers—click me!

	Loading content on menu item click
	Form fields in a toolbar

	Buttons don't have to be in a toolbar
	Toolbars in panels

	Toolbars unleashed
	Summary

	Chapter 5: Displaying Data with Grids
	What is a grid anyway?
	A GridPanel is databound
	The record definition
	The Reader
	ArrayReader
	JsonReader
	XmlReader
	Loading our data store

	Displaying structured data with
a GridPanel
	Converting data read into the store

	Displaying the GridPanel
	How did that work?

	Defining a grid's column model
	Built-in column types
	BooleanColumn
	DateColumn
	NumberColumn
	TemplateColumn
	ActionColumn

	Using cell renderers
	Formatting data using the built-in cell renderers
	Creating lookup data stores—custom cell rendering
	Combining two columns
	Generating HTML and graphics

	Built-in features
	Client-side sorting
	Hidden/visible columns
	Column reordering

	Displaying server-side data in the grid
	Loading the movie database from an XML file
	Loading the movie database from a JSON file
	Loading data from a database using PHP

	Programming the grid
	Working with cell and row selections
	Listening to our selection model for selections
	Manipulating the grid (and its data) with code
	Altering the grid at the click of a button

	Advanced grid formatting
	Paging the grid
	Grouping
	Grouping store

	Summary

	Chapter 6: Editor Grids
	What can I do with an editable grid?
	Working with editable grids
	Editing more cells of data
	Edit more field types
	Editing a date value
	Editing with a ComboBox

	Reacting to a cell edit
	What's a dirty cell?
	Reacting when an edit occurs

	Deleting and adding in the data store
	Removing grid rows from the data store
	Adding a row to the grid

	Saving edited data to the server
	Sending updates back to the server
	Deleting data from the server
	Saving new rows to the server

	RowEditor plugin
	Writable store

	Summary

	Chapter 7: Layouts
	What is a layout manager?
	So what layouts are available?
	AbsoluteLayout
	AccordionLayout
	AnchorLayout
	BorderLayout
	CardLayout
	ColumnLayout
	FitLayout
	FormLayout
	HBoxLayout
	TableLayout
	VBoxLayout

	A dynamic application layout
	Our first Viewport
	Nesting: child components may be Containers
	Accordion layout
	A toolbar as part of the layout
	Using a FormPanel in the layout
	AnchorLayout
	More layouts
	Vbox layout
	Hbox layout
	Dynamically changing components
	Adding new components
	Summary

	Chapter 8: Ext JS Does Grow on Trees
	Planting for the future
	From tiny seeds...
	Our first sapling
	Preparing the ground

	A tree can't grow without data
	JSON
	A quick word about ID
	Extra data

	XML

	Tending your trees
	Drag and drop
	Sorting
	Editing

	Trimming and pruning
	Selection models
	Round-up with context menus
	Handling the menu

	Filtering

	The roots
	TreePanel tweaks
	Cosmetic
	Tweaking TreeNode
	Manipulating
	Further methods

	Event capture
	Remembering state
	StateManager
	Caveats

	Summary

	Chapter 9: Windows and Dialogs
	Opening a dialog
	Dialogs
	Off the shelf
	Confirmation
	It's all progressing nicely

	Roll your own
	Behavior

	Windows
	Starting examples
	Paneling potential
	Layout

	Configuration
	When I'm cleaning windows
	The extras
	Desktopping
	Further options
	Framing our window

	Manipulating
	Events
	State handling

	Window management
	Default window manager behavior
	Multiple window example
	Customer service WindowGroups

	Summary

	Chapter 10: Charting New Territory
	Just another component
	What the flash?
	A slice of data—pie charts
	Chart in a layout
	Pie chart setup

	Styling the pie slices
	Bar and column charts
	From bar to column
	Add some style
	Stack them across
	Get to the stacking
	Charting lines

	Tooltips
	A real world example
	Dynamically changing the data store
	Programatically changing the styles

	Summary

	Chapter 11: Effects
	It's elementary
	Fancy features
	It's OK to love

	Fxcellent functions
	Methodical madness
	Fading
	Framing
	Woooo: ghosting
	Highlighting
	Huffing and puffing
	Scaling the Ext JS heights
	Sliding into action
	Switching from seen to unseen
	Shifting

	And now, the interesting stuff

	The Fx is in
	Anchoring yourself with Ext
	Options
	Easy does it

	Multiple effects
	Chaining
	Queuing
	Concurrency
	Blocking and Ext.Fx utility methods

	Elemental
	Making a move
	Using Ext components

	Reveal all
	You're maskin', I'm tellin'
	Data binding and other tales
	Considering components

	QuickTipping

	Summary

	Chapter 12: Drag-and-drop
	Drop what you're doing
	Life's a drag
	Sourcing a solution
	Approximating
	Snap!

	Drop me off
	But wait: nothing's happening!

	Interacting the fool
	Zones of control
	Changing our lists

	Registering an interest
	Extreme drag-and-drop
	DataView dragging
	Dealing with drag data
	Proxies and metadata
	Dropping in the details

	Drag-drop groups
	Nursing our drag-drop to health

	It's all in the details
	Configuration
	It's all under control

	Managing our movement
	Global properties

	Scroll management
	Dragging within components
	TreePanel
	GridPanel
	Using it in the real world

	Summary

	Chapter 13: Code for Reuse: Extending Ext JS
	Object-oriented programming with Ext JS
	Inheritance
	Break it down and make it simple
	Sounds cool, but what does it mean?
	Now, what was this overriding stuff?

	Understanding packages, classes,
and namespaces
	Packages
	Classes
	Namespaces
	What's next?

	Ok, what do we extend?
	Creating a custom namespace
	Our first custom class
	Overriding methods
	Understanding the order of events
	When can we do what?
	What is an event-driven application?

	Creating our own custom events
	Our first custom component: complete
	What's next? Breaking it down
	Using xtype: the benefits of lazy
instantiation
	Using our custom components within other objects
	Summary

	Chapter 14: Plugging In
	What can we do?
	How it works
	Using a plugin
	Plugin structure

	First signs of life
	The search form
	Interacting with the host
	Configurable plugins
	Extra credit
	Summary

	Chapter 15: It's All About the Data
	Understanding data formats
	Loading HTML into a panel
	Gotchas with remote data
	Other formats

	The data Store object
	Defining data
	More on mapping our data
	Pulling data into the Store

	Using a DataReader to map data
	Using a custom DataReader
	Writing a custom DataReader
	Getting what you want: finding data
	Finding data by field value
	Finding data by record index
	Finding data by record ID

	Getting what you want: filtering data
	Remote filtering: the why and the how

	Dealing with Recordset changes
	Taking changes further: the DataWriter
	Many objects use a Store
	Store in a ComboBox
	Store in a DataView
	Stores in grids

	Summary

	Chapter 16: Marshalling Data Services with Ext.Direct
	What is Direct
	Building server-side stacks
	Configuration
	Programmatic
	JSON and XML
	Metadata
	Stack deconstruction—configuration

	Building your API
	Stack deconstruction—API

	Routing requests
	What is a Router

	Putting the pieces together
	Make your API available
	Making API calls

	Summary

	Chapter 17: The Power of Ext JS: What Else Can You Do?
	So much to work with
	Form widgets
	DateField
	TimeField
	NumberField
	CheckboxGroups and RadioGroups
	HtmlEditor

	Data formatting
	Basic string formatting
	Formatting dates
	Other formatting

	Managing application state
	Basic state management
	How do I get that window?
	Using the back button in Ext JS applications

	Accessing the DOM
	Finding DOM elements
	Manipulating the DOM
	Working with styles

	Ext JS for the desktop: Adobe AIR
	Ext JS community extensions
	DatePickerPlus
	PowerWizard
	TinyMCE
	SwfUploadPanel
	ColorPicker

	Additional resources
	Samples and Demos
	Ext JS API
	Ext JS forums
	Step-by-step tutorials
	Community Manual
	Spket IDE
	Aptana Studio
	Google

	Where do we go from here?
	Summary

	Index

