

Learning Ext JS

Build dynamic, desktop-style user interfaces for your

data-driven web applications

Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Learning Ext JS

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2008

Production Reference: 1201108

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-14-2-14-214-2

www.packtpub.com

Cover Image by Michelle O'Kane (michelle@kofe.ie)

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Credits

Authors

Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

Reviewer

James Kennard

Senior Acquisition Editor

David Barnes

Development Editor

Swapna V. Verlekar

Technical Editor

Gagandeep Singh

Copy Editor

Sumathi Sridhar

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Neelkanth Mehta

Indexer

Monica Ajmera

Proofreader

Dirk Manuel

Production Coordinator

Rajni R. Thorat

Cover Work

Rajni R. Thorat

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

About the Authors

Shea Frederick began his career in web development before the term 'Web
Application' became commonplace. By the late 1990s, he was developing web
applications for Tower Records that combined a call center interface with inventory
and fulfillment. Since then, Shea has worked as a developer for several companies,
building and implementing various commerce solutions, content management
systems, and lead tracking programs.

Integrating new technologies to make a better application has been a driving
point for Shea's work. He strives to use open-source libraries, as they are often the
launching pad for the most creative technological advances. After stumbling upon a
young user interface library called yui-ext several years ago, Shea contributed to its
growth by writing documentation, tutorials, and example code. He has remained an
active community member for the modern yui-ext library—Ext JS. Shea's expertise
is drawn from community forum participation, work with the core development
team, and his own experience as the architect of several large Ext JS-based web
applications. He currently lives in Baltimore, Maryland, with his wife and two dogs,
and spends time skiing, biking, and watching the Steelers.

A big loving thanks goes out to my wife Becky for looking over my
shoulder to correct the many grammatical errors my fingers produce,
and for always being there to support me.

Colin Ramsay began his career building ASP websites as a part-time developer
at university. Since then, he's been involved with a range of web technologies
and employers in the North East of England, working on everything from flash-
in-the-pan web frameworks to legacy applications. Most recently, he has used
this experience to provide a springboard for the formation of his UK-based web
development company, Plastiscenic Limited. From writing articles and blog posts
across the web, Colin has made the leap to book authoring with the patience and
kind assistance of his friends and family.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Steve Blades (who goes by the name of 'Cutter'), a Virginia native, raised ina Virginia native, raised in
Georgia, began his computing career when he started learning BASIC at age
12, hammering out small programs on a Timex Sinclair 1000. As a linguist and
Intelligence Analyst for the US Army, Cutter began learning HTML while stationed
at the National Security Agency. On leaving the service, Cutter became part-owner
of a growing Advertising Specialty company, developing business automation
processes for the company by writing MS Office-based applications. From there,
Cutter went on to become a Customer Support Technician with a local Internet
Service Provider. Upon showing programming aptitude, he was later moved
into their Corporate Support department, providing maintenance and rewrites to
existing websites and applications. It was here that Cutter began to really dive into
web application programming, teaching himself JavaScript, CSS, and ColdFusion
programming. Cutter then took the position of IT Director for Seacrets, a large resort
destination in Ocean City, Maryland, while also holding the same position for one
of its owner's other companies, Irie Radio. Now, Cutter is the Senior Web Developer
for Dealerskins, a company that develops and hosts websites for the automobile
dealership industry. He lives and works in Nashville, Tennessee with his wife Teresa
and daughter Savannah.

Apart from work, side projects, and maintaining his blog (http://blog.
cutterscrossing.com), Cutter also enjoys spending time with his family, is an avid
reader and a videophile, and likes to relive his band days with a mic in hand.

I would like to thank a few people for their support while I have
been working on this project. First, thanks to Jack Slocum and
the entire Ext JS team for giving us such a great library to write
about. Thanks to the Dev Team at Dealerskins for helping proof
my chapters. Thanks to my Mom, for buying me my first book on
programming. But, most of all, thanks to my wife, Teresa, and my
daughter, Savannah, for giving me the time, space, love, and
support needed to work on this project. I could never have done
it without them.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

 About the Reviewer

James Kennard is an all-round computer specialist with a particular interest in
web-based technologies. He authored the Joomla! CMS book Mastering Joomla! 1.5
Extension and Framework Development. He holds a B.Sc. in Computer Science and has
worked for organisations such as LogicaCMG. James has recently taken an interest
in user interfaces and overall UX—it is this which led him to the truly superb
Ext JS project.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Dedicated to our family, friends, and the Ext JS team.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Content

Preface 1

Chapter 1: Getting Started 9
About Ext 9

Ext: Not just another JavaScript library 11

Cross-browser DOM (Document Object Model) 12

Event-driven interfaces 12

Ext and AJAX 12

Getting Ext 13

Where to put Ext 13

Including Ext in your pages 14

What do those files do? 15

Using the Ext library 15

Time for action 16

The example 17

Not working? 17

Adapters 18

Using adapters 18

I'm asynchronous! 19

Localization 20

English only 20

A language other than English 21

Multiple languages 21

Ext JS online community 22

Summary 22

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[ii]

Chapter 2: The Staples of Ext 23
Ready, set, go! 23

Spacer image 24

Widget 24

Time for action 24

What just happened? 25

Using onReady 25

More widget wonders 26

Meet JSON and the config object 28

The old way 28

The new way—config objects 28
What is a config object? 29

How does JSON work? 30

Time for action 30

Lighting the fire 32

The workhorse—Ext.get 33

Speed tip 34

Summary 35

Chapter 3: Forms 37
The core components of a form 37

Our first form 38

Nice form—how does it work? 39

Form fields 39

Validation 40

Built-in validation—vtypes 41

Styles for displaying errors 43

Custom validation—create your own vtype 44

Masking—don't press that key! 45

Radio buttons and check boxes 46

It's not a button, it's a radio button 46

X marks the check box 46

The ComboBox 47

Database-driven ComboBox 47

TextArea and HTMLEditor 50

Listening for form field events 51

ComboBox events 51

Buttons and form action 53

Form submission 53

Talking back—the server responses 54

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[iii]

Loading a form with data 56

Static data load 56

Object reference or component config 58

Instantiated 58

Component config 58

Summary 59

Chapter 4: Buttons, Menus, and Toolbars 61
A toolbar for every occasion 61

Toolbars 61

The button 63

Menu 63

Split button 64

Toolbar item alignment, dividers, and spacers 65

Shortcuts 66

Icon buttons 66

Button handlers—click me! 67

Load content on menu item click 68

Form fields in a toolbar 69

Toolbars in windows, grids, and panels 70

Summary 71

Chapter 5: Displaying Data with Grids 73
What is a grid anyway? 74

Displaying structured data with a GridPanel 74

Setting up a data store 75
Adding data to our data store 75

Defining your data for the data store 76

Specifying data types 77

Displaying the GridPanel 78

How did that work? 80

Configuring the GridPanel 80

Defining a Grids column model 81

Using cell renderers 82

Formatting data using the built-in cell renderers 82

Creating lookup data stores—custom cell rendering 83

Combining two columns 84

Generating HTML and graphics 84

Built-in features 85

Client-side sorting 86

Hidden/visible columns 86

Column reordering 86

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[iv]

Displaying server-side data in the grid 88

Loading the movie database from an XML file 88

Loading the movie database from a JSON file 90

Loading data from a database using PHP 91

Programming the grid 92

Working with cell and row selections 92

Listening to our selection model for selections 93

Manipulating the grid (and its data) with code 94

Altering the grid at the click of a button 94

Advanced grid formatting 95

Paging the grid 96

Grouping 98

Grouping store 98

Summary 100

Chapter 6: Editor Grids 101
What can I do with an editable grid? 101

Working with editable grids 102

Editing more cells of data 104

Edit more field types 104
Editing a date value 105

Edit with a ComboBox 106

Reacting to a cell edit 106
What's a dirty cell? 107

Reacting when an edit occurs 107

Deleting and adding in the data store 108
Removing grid rows from the data store 109

Adding a row to the grid 110

Saving edited data to the server 112

Sending updates back to the server 112

Deleting data from the server 114

Saving new rows to the server 115

Summary 117

Chapter 7: Layouts 119
What are layouts, regions, and viewports? 119

Our first layout 121

Splitting the regions 122

I want options 123

Tab panels 124

Adding a tab panel 124

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[v]

Widgets everywhere 126

Adding a grid into the tabpanel 126

Accordions 128

Nesting an accordion layout in a tab 128

Placing a toolbar in your layout 129

A form to add new movies 131

Tricks and advanced layouts 132

Nested layouts 132

Icons in tabs 134

Programmatically manipulating a layout 135

Now you see me, now you don't 135

Give me another tab 136

Summary 136

Chapter 8: Ext JS Does Grow on Trees 137
Planting for the future 137

From tiny seeds... 138

Our first sapling 138

Preparing the ground 139

A tree can't grow without data 140

JSON 141
A quick word about ID 141

Extra data 142

XML 142

Tending your trees 143

Drag and drop 143

Sorting 145

Editing 146

Trimming and pruning 147

Selection models 147

Round-up with context menus 148
Handling the menu 149

Filtering 150

The roots 151
TreePanel tweaks 151

Cosmetic 152

Tweaking TreeNode 152

Manipulating 153
Further methods 154

Event capture 155

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[vi]

Remembering state 156
StateManager 156

Caveats 157

Summary 157

Chapter 9: Windows and Dialogs 159
Opening a dialog 159

Dialogs 160

Off the shelf 160
Confirmation 162

It's all progressing nicely 163

Roll your own 164
Behavior 165

Windows 166

Starting examples 166

Paneling potential 167
Layout 168

Configuration 169
When I'm cleaning windows 169

The extras 169

Desktopping 170

Further options 171

Framing our window 171

Manipulating 172

Events 173

State handling 174

Window management 175

Default window manager behavior 175

Multiple window example 175
Customer service WindowGroups 179

Summary 180

Chapter 10: Effects 183
It's elementary 183

Fancy features 184

It's ok to love 184

Fxcellent functions 184

Methodical madness 184
Fading 185

Framing 186

Woooo: ghosting 186

Highlighting 187

Huffing and puffing 188

Scaling the Ext JS heights 189

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[vii]

Sliding into action 189

Switching from seen to unseen 190

Shifting 190

And now, the interesting stuff 191

The Fx is in 191

Anchoring yourself with Ext 192

Options 192
Easy does it 194

Multiple effects 195

Chaining 195

Queuing 196
Concurrency 196

Blocking and Ext.Fx utility methods 196

Elemental 197

Making a move 197

Using Ext components 198

Bring out the flash 198

You're maskin', I'm tellin' 198
Data binding and other tales 200

Considering components 200

QuickTipping 200

Summary 202

Chapter 11: Drag-and-Drop 205
Drop what you're doing 205

Life's a drag 206

Sourcing a solution 206
Approximating 206

Snap! 207

Drop me off 207
But wait: Nothing's happening! 208

Interacting the fool 209

Zones of control 209
Changing our lists 211

Registering an interest 211

Extreme drag-and-drop 212

DataView dragging 212

Dealing with drag data 213

Proxies and metadata 214

Dropping in the details 215

Drag-drop groups 216

Nursing our drag-drop to health 216

It's all in the details 217

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[viii]

Configuration 217

It's all under control 217

Managing our movement 218

Global properties 218

Scroll management 219

Dragging within components 220

TreePanel 220

GridPanel 221

Using it in the real world 221

Summary 222

Chapter 12: It's All about the Data 223
Understanding data formats 223

Basic remote panel data 223

Gotchas with HTML data 227
Other formats 227

The data store object 228

Defining data 229
More on mapping our data 230

Pulling data into the store 231

Using a DataReader to map data 233

Using a custom DataReader 234

Getting what you want: Finding data 237

Finding data by field value 237
Finding data by record index 237

Finding data by record ID 238

Getting what you want: Filtering data 238
Remote filtering: The why and the how 238

Dealing with Recordset changes 244

Many objects take a Store 246

Store in a ComboBox 246

Store in a DataView 247

Stores in Grids 247

Summary 248

Chapter 13: Code for Reuse: Extending Ext JS 249
Object-oriented JavaScript 249

Object-oriented programming with Ext JS 251

Inheritance 251

Break it down and make it simple 251

Sounds cool, but what does it mean? 253
Now, what was this overriding stuff? 253

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[ix]

Understanding packages, classes, and namespaces 254

Packages 254

Classes 254

Namespaces 254

What's next? 254

Ok, what do we extend? 255

Creating a custom namespace 255

Our first custom class 256

Overriding methods 259

Understanding the order of events 260

When can we do what? 261
What is an event-driven application? 261

Creating our own custom events 262

Our first custom component: Complete 264

What's next? Breaking it down 267

Using xtype: The benefits of lazy instantiation 271

Using our custom components within other objects 271

Summary 272

Chapter 14: The Power of Ext JS: What Else Can You Do? 273
So much to work with 273

Form widgets 273

DateField 274

TimeField 275

NumberField 276

CheckboxGroups and RadioGroups 276

HtmlEditor 277

Data formatting 278

Basic string formatting 278

Formatting dates 279

Other formatting 280

Managing application state 281

Basic 'state' 281

How do I get that window? 282

Using the back button in Ext JS applications 282

Accessing the DOM 282

Finding DOM elements 283

Manipulating the DOM 283

Working with styles 284

Ext JS for the desktop: Adobe AIR 284

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Table of Contents

[x]

Ext JS community extensions 286

DatePickerPlus 286

PowerWizard 287

TinyMCE 287

SwfUploadPanel 288

ColorPicker 288

Additional resources 289

Samples and demos 289

Ext JS API 289

Ext JS forums 289

Step-by-step tutorials 290

Community manual 290

Spket IDE 290

Aptana Studio 290

Google 290

Summary 291

Where do we go from here? 291

Index 293

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface
Ext JS was developed by a unified team of programmers working toward a single
goal—to provide a consistent core user interface and interaction library. Because of
this, the code used for different functionalities and widgets is more coherent than in
some other JavaScript libraries. Ext JS really shines in making web applications easy-
to-use and intuitive. If you are a web application developer, it's a great library to
have in your arsenal.

We start by outlining how to download and configure the Ext JS library. Covering
everything from the simplest alerts to complex grids, layouts, and forms, this book
will enable you to start creating rich, interactive web applications.

We will use plenty of real-world examples that can be applied immediately to your
ongoing projects. Sample code is broken down to its simplest form, allowing us to
concentrate on learning the usage of the library. By the end of this book, we will end
up with a sample application that uses the full spectrum of Ext JS components.

What this book covers
Chapter 1 introduces you to the process of installing the required Ext JS library files,
and setting up a basic page that displays an alert-style message. This provides us
with a way to test whether your setup was done correctly, and whether you're ready
to play with some code. We also cover how to set up other base libraries such as
jQuery, YUI, and Prototype, to work in conjunction with Ext JS.

Chapter 2 covers how to interact with the web page and the user. With example code
that uses simple components, we quickly start to see the level of user interactivitywe quickly start to see the level of user interactivityquickly start to see the level of user interactivity
that Ext JS provides right out of the box. We assemble a series of dialogs that appear
and modify the existing pages depending upon the users' inputs.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface

[2]

Chapter 3 launches us into using the first major widget—forms. We start by creating
a simple form with three fields, explore the different form field types, and then add
some simple validation to our form. From there we move on to creating custom
validation and database-driven combo-box'es and handling form submissions.

Chapter 4 provides an overview of how to use toolbars and buttons within your
application. These components are typically undervalued, yet they provide crucial
user interface functions. We jump straight into creating toolbars with buttons, split
buttons, and menus, along with adding mechanical elements such as spacers and
dividers. Next, we cover customizing the toolbar with stylized icon buttons and
form fields.

Chapter 5 covers grids—the most widely-utilized component in the Ext JS library. In
this chapter, we learn how to set up a grid panel using both local and remote data,
and in both in XML and JSON formats. We also discuss how to prepare different
data types and how to create renderers that will style and format the data to your
preference. Using the selection model and paging are among the many interesting
points covered in this chapter.

Chapter 6 dives into editor grids. Here, we learn how to set up an editor grid using
different form field types, and how to save changes made in the grid back to the
server or database. We also discuss tactics for adding and removing rows of data to
and from our data store, and the server or the database.

Chapter 7 explores the concept of using the layout component to bring all the portions
of your application together into a cohesive web application. We start by using a
viewport with a border layout to contain the many parts of our application. From
there we are able to add other layout features such as tab panels, accordions, and
toolbars. We finish up by learning how to nest layouts and make dynamic changes to
the layout components.

Chapter 8 discusses the presentation of hierarchical information using the Ext JS Tree
support. Using real-world examples of hierarchical data, you will discover how
to display and manipulate a Tree view. You will use AJAX techniques to persist
the modifications to a server and learn how to tweak the Tree to support
advanced scenarios.

Chapter 9 demonstrates how Ext JS can provide attractive user prompts that can
either present information or accept input. We then discuss the extension of these
dialogs in the form of Ext.Window, a fully-fledged means of creating customizable
pop-up windows.

In Chapter 10, we take a tour of the visual effects available in the Ext JS effects
package. You will learn how to apply animations to create smooth transitions and
notifications to enhance the user experience.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface..

[3]

Chapter 11 shows how you can harness Ext.dd—the rich drag-and-drop functionality
provided by Ext JS. A variety of different demonstrations allow you to understand
the concepts behind Ext.dd, and how you can harness its potential within your
own applications.

Chapter 12 gets straight to the heart of every application—the data. Ext JS provides
several different methods for retrieving data, with each method having its own pros
and cons. This chapter will help you to decide what will work for your application,
with step-by-step examples to guide you on your way.

Chapter 13 shows the true power of Ext JS, providing an introduction to creating your
own custom components by expanding upon Ext JS's extensible architecture. You
will see how to create your own components by extending the existing framework,
making pieces that you can re-use in your own applications.

Chapter 14 wraps it all up, by showing you that with Ext JS there is more than meets
the eye. You will discover some of the invisible architecture that allows you to
perform important tasks such as data formatting and application state management.
You will also find that you have a broad array of resources at your fingertips, as we
show you the rich user community that exists around the library, and introduce you
to additional resources to continue your journey in Learning Ext JS.

What you need for this book
At the ground level, this book requires the knowledge to write HTML pages by
hand—if you can write an HTML document from memory in Windows Notepad
(or in a good text editor) then that will be good enough. Familiarity with including
external files such as style sheets and JavaScript files will also be necessary. Only a
basic understanding of JavaScript, or another scripting or programming language,
will be required.

One of the things that will make life easier is having access to a web server, or a local
development web server such as XAMPP or something similar. The XAMPP local
web server is developed by Apache Friends (www.apachefriends.org) and comes
in an easy–to-use install file. By default, it sets up Apache, PHP, and MySQL, which
allows you to perform local web development easily. Running this book's examples
from a local web server is useful and can save lots of time.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface

[4]

A good editor and debugger are extremely useful, particularly if they are specific to
JavaScript, as Aptana is. The makers of Aptana have created a very powerful tool for
developing web applications in JavaScript. Their editor can debug JavaScript, CSS,
PHP, and many other languages as you type, and the best part is that you can link
the editor up with your libraries and classes to get code auto-completion specific to
your development. The debugger can alert you to errors in your code before you get
to the browser (enable the JSLint debugger), and can suggest fixes for the errors.

The final point here is an absolute necessity—get Firefox and Firebug installed
on your computer! Don't even ask why, because Firebug will soon become the
program you just cannot do your job without. Soon, you will be wondering how
you ever got any work done before Firebug. What it does is allows you to monitor
and interact with the web page in real time. When you start working with single-
page web applications and AJAX, you quickly lose the ability to look at the requests
and responses for communications such as form submission. One of the things that
Firebug provides you with is a way to watch and inspect this communication. The
other main thing that it does is allow you to modify the HTML and JavaScript in
your web page and watch these changes take effect in real time. The built-in script
debugger lets us pause code execution and inspect or even modify code
and variables.

Once you are set up with a local (or remote) development web server, your
favorite editor and debugger, and Firefox with Firebug, you are ready to start
Learning Ext JS.

Who is this book for
This book is written for Web Application Developers who are familiar with HTML,
but may have little to no experience with JavaScript application development. If you
are starting to build a new web application, or you are revamping an existing web
application, then this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The config object used for this dialog has
three elements "

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface..

[5]

A block of code is set as follows:

Ext.onReady(function(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
 });

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
}

New terms and important words are introduced in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We also
have elements that can add space and vertical dividers, like the one used between
the Menu and the Split buttons."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface

[6]

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5142_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Preface..

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started
In this chapter, we will cover the basics of Ext and what it can do for us. If you're
accustom to the standard web development, then you'll be excited when you learn
about the elegance in the architecture of Ext, just as I was. Unlike other JavaScript
libraries, Ext handles the foundation for you, so with only a few lines of code, you
can have a fully functional user interface.

In this chapter, we will cover:

What Ext does and why you'll love using it

How to get Ext and start using it in your web applications

Using "adapters" to allow Ext to co-exist with other JavaScript libraries

Taking advantage of AJAX technology

Displaying Ext objects in your own language

About Ext
We will be working with the most recent release version of Ext which, at the time
of writing, is the 2.x branch. The change from 1.x to 2.x was a major refactoring that
included taking full advantage of the newly-created Component model, along with
renaming many of the components to provide better organization. These changes
have made 1.x code mostly incompatible with 2.x and vice versa (an upgrade guide
that explains in more detail what has changed is available on the Ext web site). Theis available on the Ext web site). The
3.x branch is backwards-compatible with 2.x and compatible with everything that
we will cover in this book. The Ext development team is dedicated to making future
releases backwards-compatible.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[10]

The Ext library started out as an extension to the moderately popular, yet very
powerful Yahoo User Interface library, providing what the YUI library lacked:
an easy to use API (Application Programming Interface), and real world widgets.
Even though the Yahoo User Interface tried to focus on the 'User Interface', it didn't
contain much that was useful right out of the box.

It wasn't long before Ext had developers and open-source contributors chipping
in their knowledge to turn the basic YUI extension into one of the most powerful
client-side application development libraries around.

Ext provides an easy-to-use, rich user interface, much like you would find in a
desktop application. This lets the web developers concentrate on the functionality
of web applications instead of the technical caveats. The examples given on the
Ext website speak the loudest about how amazing this library is:

http://www.extjs.com/deploy/dev/examples/

One of the most striking examples is the Feed Viewer. This demonstrates the many
aspects of Ext. However, it is a bit too complex to be used as a learning example. So
for now, you can just revel in its brilliance.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[11]

Another excellent example is the Simple Tasks task-tracking program, which utilizes
a Google Gears database.

Over the course of this book, you will learn how to build web interfaces as
impressive as these.

Ext: Not just another JavaScript library
Ext is not just another JavaScript library—in fact, Ext can work alongside other
JavaScript libraries by using adapters. We'll see how to work with adapters later
in this chapter.

Typically, we would use Ext in a web site that requires a high level of user
interaction—something more complex than your typical web site. A web site that
requires processes and a work flow would be a perfect example, or Ext could just be
used to make your boss gasp with excitement.

Ext makes web application development simple by:

Providing easy-to-use cross-browser compatible widgets such as windows,
grids, and forms. The widgets are already fine-tuned to handle the intricacies
of each web browser on the market, without us needing to change a thing.

Interacting with the user and browser via the EventManager, responding to
the users keystrokes, mouse clicks, and monitoring events in a browser such
as a window resize, or font size changes.

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[12]

Communicating with the server in the background without the need to
refresh the page. This allows you to request or post data to or from your
web server using AJAX and process the feedback in real time.

Cross-browser DOM (Document Object Model)
I am sure I don't need to explain the pitfalls of browser compatibility. From the first
time you create a DIV tag and apply a style to it, it becomes apparent that it's not
going to look the same in every browser unless you are very diligent. When we use
Ext widgets, the browser compatibility is taken care of by the Ext library, so that each
widget looks exactly the same in most of the popular browsers, which are:

Internet Explorer 6+

Firefox 1.5+ (PC, Mac)

Safari 2+

Opera 9+ (PC, Mac)

Event-driven interfaces
Events describe when certain actions happen. An event could be a user action such as
a click on an element, or it could be a response to an AJAX call. When a user interacts
with a button, there is a reaction, with not just one but many events happening.
There is an event for the cursor hovering over the button, and an event for the cursor
clicking on the button, and an event for the cursor leaving the button. We can add an
event listener to execute some code block when any or all of these events take place.

Listening for events is not strictly related to the user interface. There are also system
events happening all the time. When we make AJAX calls, there are events attached
to the status of that AJAX call to listen for the start, the completion, and the failure.

Ext and AJAX
The term AJAX (Asynchronous JavaScript and XML) is an overly-complicated
acronym for saying that processes can take place in the background while the user
is performing other tasks. A user could be filling out a form while a grid of data is
loading—both can happen at the same time, with no waiting around for the page
to reload.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[13]

Getting Ext
Everything we will need can be downloaded from the Ext website, at
http://www.extjs.com/download. Grab the Ext SDK (Software Development Kit),
which contains a ton of useful examples and the API reference. Most importantly, it
contains the resources that Ext needs to run properly.

Where to put Ext
Once you get the SDK file, uncompress it onto your hard drive, preferably in its own
folder. My approach to folder naming conventions is based on the standard Linux
structure where all libraries go into a lib folder. So for the sake of the examples in
this book, uncompress all of the files in the SDK into a folder named lib.

After extracting everything from the SDK download file, your directory tree should
look like this:

To make it easier when we upgrade our Ext library to the most recently-released
version, let us rename the ext-2.0.1 folder to extjs.

The SDK contains a version of Ext JS that has everything you need included in it,
commonly called ext-all. It also contains a version used for development referred
to as the debug version, which is what we will primarily use. The debug version
makes it easier to locate errors in your code because it's uncompressed and will
report back relevant line numbers for errors. When it's time to release our creation to
the general public, we can switch our application to use the standard ext-all, and
everything will continue to work as it was.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[14]

Included in the SDK file are a specification of dependencies, documentation, example
code, and more. The adapter and resources folders shown in bold are required for
Ext to work properly; everything else is just for development purposes.

adapter: Files that allow you to use other libraries along side Ext

build: Files that can be used to custom-build an ext-all.js

docs: The documentation center (this will only work when run on
a web server)

examples: Plenty of amazing and insightful examples

resources: Dependencies of the Ext library, such as CSS and images

source: The complete source code for Ext

When you're ready to host your page on a web server, the adapter and resources
folders will need to be uploaded to the server.

Including Ext in your pages
Before we can use Ext in our pages, we need to reference the Ext library files. To do
this, we need to include a few of the files provided in the SDK download in the HEAD
portion of our HTML page.

<html>
<head>
 <title>Getting Started Example</title>
 <link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
 <script src="lib/extjs/adapter/ext/ext-base.js"></script>
 <script src="lib/extjs/ext-all-debug.js"></script>
</head>
<body>
 <!-- Nothing in the body -->
</body>
</html>

The path to the Ext files must be correct and is relative to the location of our HTML
file. These files must be included in the following order:

ext-all.css: The main Ext CSS file

An external js library file, if needed (one not used in the examples in this
book; however if you need to use an external library it is covered in the
'Adapters' section of this chapter)

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[15]

ext-base.js: The Ext 'adapter'—we will learn more about this file later in
this chapter

ext-all.js or ext-all-debug.js: The primary Ext library file

A theme file could also be included here, or at any point after the main Ext
CSS file

What do those files do?
We have included the following three files that Ext requires to run in our page:that Ext requires to run in our page:in our page:

ext-all.css: A stylesheet file that controls the look and feel of Ext widgets.
This file must always be included as-is, with no modifications. Any changes
to the CSS in this file would break future upgrades. If the look and feel of Ext
needs to be adjusted, another stylesheet containing the overrides should be
included after the ext-all.css file.

ext-base.js: This file provides the core functionality of Ext. It's the engine
of the Ext car. This is the file that we would change if we wanted to use
another library, such as jQuery, along with Ext.

ext-all-debug.js/ext-all.js: All of the widgets live in this file. The
debug version is used for development, and then swapped out for the
non-debug version for production.

Once these files are in place, we can start to actually use the Ext library and have
some fun.

If you are working with a server-side language such as PHP or ASP.NET,
you might choose to "include" these lines in the header dynamically. For
most of the examples in this book, we will assume that you are working
with a static HTML page.

Using the Ext library
Now that we've added the Ext library to our page, we can start writing the code that
uses the Ext library. In the first example, we will use Ext to display a message dialog.
This might not sound like much, but it's a start.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[16]

Time for action
We can run some Ext code by adding a script section in the head of our document,
right after where the Ext library has been included. Our example will bring up an Ext
style alert dialog:

<html>
<head>
 <title>Getting Started Example</title>
 <link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
 <script src="lib/extjs/adapter/ext/ext-base.js"></script>
 <script src="lib/extjs/ext-all-debug.js"></script>
 <script>
 Ext.onReady(function(){
 Ext.Msg.alert('Hello', 'World');
 });
 </script>
</head>
<body>
 <!-- Nothing in the body -->
</body>
</html>

We're not going to cover exactly what our example script is doing yet. First, let's
make sure that the Ext library is set up properly. If we open up our page in a web
browser, we should be able to see an alert message like the one shown here:

Just like a "real" dialog, you can drag it around, but only within the constraints of the
page. This is because this isn't a real dialog; it's a collection of DIV tags and images
put together to imitate a dialog. You can also see that the Close and Ok buttons get
highlighted when you move the cursor over them—not bad for one line of code! Ext
is taking care of a lot of the work for us here, and throughout this book, we'll see
how to get it to do much more for us.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[17]

You may have noticed that we are working with an empty document
that has no elements in the body. Ext does not require any pre-existing
markup for it to function properly; it generates everything it needs on
its own.

The example
Let's take a look at that example code we just ran. Every Ext component we use will
start with "Ext" and will most likely be contained within an"Ext" and will most likely be contained within anExt" and will most likely be contained within an onReady function that we
will cover with more detail in the next chapter.

 Ext.onReady(function(){
 Ext.Msg.alert('Hello', 'World');
 });

Ext has a very human-readable interface. You can almost read it as a sentence—when
Ext is ready, it displays a message box in the alert style with Hello for a title and
World as the body.

Our alert message starts with Ext.Msg, which is the starting point for all message
style windows, and is shorthand for "MessageBox". The alert portion tells Ext
exactly which style of message window to use.

Not working?
If the library is not set up correctly, we might receive an 'Ext' is undefined error.

This message means the Ext library was not loaded. Usually, this is caused by having
an incorrect path to one or more of the Ext library files that are included in our
document. Double-check the paths to the included library files, and make sure they
are pointing to the right folders and that the files exist. If everything is in its correct
place, you should see an adapter folder along with the files ext-all.js and
ext-all-debug.js in your lib/extjs folder.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[18]

Another common problem is that the CSS file is either missing or is not referenced
correctly, which will result in a page that looks awkward, as shown in the
example below:.

If this happens, check to make sure that you have extracted the resources folder
from the SDK file, and that your paths are correct. The resources folder should
reside under the lib/extjs folder.

Adapters
When Ext was first being developed (initially called "yui-ext"), it required the YUI
library to be in place to do the behind-the-scenes work. Later on, Ext was given the
option of using two other frameworks—jQuery or Prototype with Scriptaculous
(Protaculous).

This means that if we were using other libraries already or if we felt some other base
library was somehow superior or better suited your needs, we could continue usingbetter suited your needs, we could continue usingsuited your needs, we could continue using
that library in conjunction with Ext by using the appropriate adapter. Either way, Ext
will function the same, and all of the components will work identically, no matter
which adapter you choose.

Ext also has its own adapter, an adapter to itself. If you have no preference for
another library or framework, then go with the Ext built-in the adapter.

Using adapters
To use an adapter, you must first include the external library that you want to use,first include the external library that you want to use,include the external library that you want to use,
and then include the related adapter file that is located in the adapters folder of the
Ext SDK. Our example code uses the Ext adapter. To use any of the other libraries,
just replace the default Ext adapter script include line with the lines for the specific
libraries, as shown below:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[19]

Default Ext adapter:

<script src="lib/extjs/adapter/ext/ext-base.js"></script>

For jQuery, include these files in the head of your document:

<script src="lib/jquery.js"></script>
<script src="lib/jquery-plugins.js"></script>
<script src="lib/extjs/adapter/jquery/ext-jquery-adapter.js">
 </script>

For YUI, include these files in the head. The utilities file is located in the build/
utilities folder of the YUI Library download:

<script src="lib/utilities.js"></script>
<script src="lib/extjs/adapter/yui/ext-yui-adapter.js"></script>

For "Prototype + Scriptaculous", include these files in the head:

<script src="lib/prototype.js"></script>
<script src="lib/scriptaculous.js?load=effects"></script>
<script src="lib/extjs/adapter/prototype/
 ext-prototype-adapter.js"></script>

After the adapter and base libraries have been included, we just need to include the
ext-all.js or ext-all-debug.js file.

I'm asynchronous!
The Web 1.0 way of doing things has all of our code happening in succession—waiting
for each line of code to complete before moving on to the next. Much like building a
house, the foundation must be complete before the walls can be built, then the walls
must be complete before the roof is built.

With Ext, we can easily start working on the roof of our house before the foundation
has even been thought about. Imagine the roof of our house is being built in a
factory, while at the same time we are building the foundation, then the walls, and
we come in when all of this is done and set the roof that has already been built on
top of it all.

<> = >

>

=

Web 1.0 Web 2 .0

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[20]

This introduces some things we're not use to having to cope with, such as the
roof being complete before the walls are done. No longer are we forced to take a
line-by-line approach to web development.

Ext helps us out by giving us events and handlers to which we can attach our
functionality. We can set up an event that waits around, watching to see when the
walls of the house are built, and then sets the roof on top once this has happened.

This method of thinking about web pages is hard for most people who have grown
up in web development. But it won't be long before you are an expert at it.

Standard JavaScript alert messages pause the code execution, which can
cause unexpected results. You should not be using the built in JavaScript
alert messages, and instead use Ext's MessageBox widget, which does
not pause that code execution.

Localization
Ext objects can be displayed in your specific language, and currently there are over
40 translations (unfortunately, Klingon is not yet available). All of these translations(unfortunately, Klingon is not yet available). All of these translations. All of these translations
are created by the community—users like you and I who have the need to use Ext in
their own native language. The included language files are to be used as a starting
point. So let's take the language we want to use and copy it to our lib folder. By
copying the language file to our lib folder, we can edit it and add translated text to
it without it getting overwritten when we upgrade the Ext library files.

There are three scenarios for localization that require three separate approaches:

English only

A single language other than English

Multiple languages

English only
This requires no modifications to the standard setup, and there are no extra files to
include because the English translation is already included in the ext-all.js file.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[21]

A language other than English
The second option requires that we include one of the language files from the
build/locale folder. This option works by overwriting the English text strings, so it
should be included after all of the other library files, as shown below:

<link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
<script src="lib/extjs/adapter/ext/ext-base.js"></script>
<script src="lib/extjs/ext-all-debug.js"></script>
<script src="lib/extjs/build/locale/ext-lang-es.js"></script>

I have included the Spanish translations for this example. Let's see what our test
page looks like now:

Elements that are part of the UI have been localized—these generally include
calendar text, error messages, tool tip info messages, paging info, and loading
indicators. Messages that are specific to your application, such as the Hi title,
and Hello World Example text will need to be translated and added to the
ext-lang-XX.js file (where 'XX' is your two letter language code) or added to a
new language file of your own. The preferred method is to create a language file of
our own with just the additions and changes we need, this leaves us prepared for
upgrades and fixes in the primary language file.

Multiple languages
The third method of switching between different languages is basically the same
as the second. We would just need to add some server-side scripting to our page
to enable the switching between language files. Unfortunately, switching between
languages cannot be done entirely dynamically. In other words, we can't do it in real
time and watch it happen on the screen.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[22]

Ext JS online community
The online community for Ext is full of quite a few very knowledgeable people, and
often, the Ext core developers are answering questions on the forum.

http://www.extjs.com/forum/

If you run into problems, or run up against a wall, a search of the forum is likely to
yield what you are looking for. I would suggest getting the Google forum search tool
that is available in the Learn section of the Ext web site.

http://www.extjs.com/learn/

When asking questions in the forum, be sure to include as much detail
about the error(s) as possible. Posting the exact text of an error message
and only the relevant portions of your code is the best way to get a
response from the community.

Summary
In this chapter, we have covered the basics of what you need to do to get Ext up and
running, and what a simple script looks like. It's easy to miss a minor detail and get
stuck with an error message that makes no sense. But now, you should be prepared
to conquer any initial errors that you might come across.

The example we created showcases what Ext excels at: providing the user interface.
We only used dialogs, but, as you now know, a few lines of code are all that are
needed to display an Ext widget. The main goal of this chapter was to get Ext
installed and working, so we can start creating some really sweet widgets.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext
In this chapter, we will start to use and interact with Ext widgets for the first time, by
creating a series of dialogs that interact with each other, the user, and the web page.
We will be using the onReady, MessageBox, and get functions to learn how to create
different types of dialogs and modify HTML and styles on our page. Furthermore, in
this chapter, we will be:

Finding out how to configure Ext widgets easily

Waiting for the DOM (Document Object Model) to be made available
for interaction

Using dialogs to figure out what the user wants to do

Dynamically changing the HTML and CSS on our page in response to the
user's inputs

We will start by covering some of the core functions of Ext. We will take a look at
how the example given in the first chapter worked, and will expand upon it. The
following core functions of Ext will be used on every project that we work on during
the course of this book:

Ext.onReady: This function makes sure that our document is ready to be
thrashed out

Ext.Msg: This function creates application-style message boxes for us

configuration objects: This function defines how Ext widgets will act

Ext.get: This function accesses and manipulates elements in the DOM

Ready, set, go!
In this section, we'll look at the onReady event—the first thing that you need to deal
with when you are working with Ext. We will also see how to display some different
types of dialogs, and how to respond to the users' interaction with those dialogs.
Before we get to that, we need to cover some ground rules about working with Ext.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[24]

Spacer image
Before we proceed any further, we should provide Ext with something it needs—a
spacer image. Ext needs a 1 pixel by 1 pixel, transparent, GIF image to stretch in
different ways, giving a fixed width to its widgets. We need to set the location of this
spacer image using the following line:

Ext.onReady(function(){
 Ext.BLANK_IMAGE_URL = 'images/s.gif';
});

You're probably wondering why we need a spacer image at all. The user interface of
Ext is created using CSS, but the CSS needs underlying HTML elements to style so
that it can create the look and feel of Ext components. The one HTML element that
is an exact, predictable size across all browsers is an image. So an image is used
to define how an Ext component is drawn. This is a part of how Ext maintains its
cross-browser compatibility.

Widget
Ext has many "widgets". These include components such as a message box, grid,
window, and pretty much everything else that serves a particular user interface
function. I prefer to view components like onReady more as core functions, and only
refer to components that provide a specific user interface role as a "widget"—like the
grid that is used to present tabular data to the user.

Time for action
Let's create a new page (or just modify the 'getting started' example page) and add
the code to display a dialog when the page is ready:

Ext.onReady(function(){
 Ext.BLANK_IMAGE_URL = 'images/s.gif';
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[25]

As we did in the previous chapter, we have placed our code inside an onReady
function. We can then start to code our dialog and configure it using a config object.
The config object used for this dialog has three elements, the last of which is a
nested object for the three buttons.

Here is how our code now looks in a browser:

This displays what appears to be a very minimal dialog, but if we start clicking on
things, the built-in functionality of Ext becomes apparent. The dialog can be dragged
around the screen by grabbing the title bar, just like the dialog in a typical desktop
application. There is a close button built–in, and pressing the Escape key when the
dialog has focus, or clicking on the Cancel button will close the dialog.

What just happened?
Let's take a closer look at the two core Ext functions we have just used:

Ext.onReady: This function provides a way to make our code wait until the
DOM is available, before doing anything. This is needed because JavaScript
starts executing as soon as it is encountered in the document, at which point,
our DOM elements might not exist.

Ext.Msg.show: This is the core function used for the creation of a dialog. It
takes care of everything needed to have a working dialog. There are some
shortcuts that can be used for common dialog types, which will help you
save time. We will cover these in just a minute.

Using onReady
It's time to examine the code we just used to display our dialog.

 Ext.onReady(function(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[26]

 no: true,
 cancel: true
 }
 });
 });

The onReady function is what we use to make our code wait until the document is
ready. The argument passed toThe argument passed to onReady is a function, which can be passed in as a
function name, or created in-line, as we have done in the example code. This method
of creating a function in-line is referred to as an anonymous function, which is used
when you plan on calling a particular function only once.

If we were executing a function that will be used again, then we could define and call
it like this:

 Function stapler(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
 }

 Ext.onReady(stapler());

When we start to make our application bigger, we are not likely to use many
anonymous functions, and will probably opt for creating re-usable functions.

The buttons record can also specify the text to display on the button.
Instead of passing a boolean value, just pass it the text you want, for
example, {yes: 'Maybe'}.

More widget wonders
Let's get back to making our little application as annoying as possible by adding an
icon and buttons! This can be done by adding a style for the icon, and modifying the
config to have an icon record along with a buttons record.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[27]

First, let's discuss the CSS we need. Add the following code into the head of the
document, within a style tag:

 .milton-icon {
 background: url(milton-head-icon.png) no-repeat;
 }

Also, we will make some changes to our widgets configuration. The icon record
just needs our style name as the value, milton-icon. We have also included a
function to be executed when a user clicks on any of the buttons in the dialog. This
function is created as an anonymous function, and in this case, it is merely used to
pass variables:

 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
 });

In our case, the function has only one argument, which is the name of the button
that was clicked. So if our user was to click the Yes button, the btn variable would
contain a value of yes. Using the example code, we are taking the name of the button
clicked, and passing it to alert, as the message.

The built-in functionality takes care of making sure the Cancel button, the
close icon in the upper right corner, and the Esc key are all tied together
to perform the cancel action. This is one of the many ways in which Ext
makes the coding of web applications easier for us.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[28]

Meet JSON and the config object
In our example, we are utilizing what's called a config object, which is the primary
way to get Ext to do what you want. This is what provides the configuration of the
different options that are available for the function that is being used.

The old way
We used to call functions with a pre-determined set of arguments. This means that
we had to remember the order of the arguments every time the function was used.

var test = new TestFuntion(
 'three',
 'fixed',
 'arguments'
);

This old way of using functions can create many problems:

It requires us to remember the order of the arguments

It does not describe about what the arguments represent

It provides less flexibility in dealing with optional arguments

The new way—config objects
Using a config object, we are able to have a larger level of flexibility, and can tell
what our variables are in descriptive plain text. The order of our arguments no
longer matters—firstWord could be the last item, and thirdWord could be the first,
or they could be in any random order. With the config object method of passing
arguments to your functions, the arguments no longer needs to be tied down to a
specific place.

var test = new TestFunction({
 firstWord: 'three',
 secondWord: 'fixed',
 thirdWord: 'arguments'
});

This method also allows for unlimited expansion of our function's arguments. Using
fewer arguments or adding new arguments is simple. Another great result that
comes by using a config object is that the prior usage of your functions will not be
harmed by the addition or subtraction of arguments at a later point.

var test = new TestFunction({
 secondWord: 'three'
});

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[29]

var test = new TestFunction({
 secondWord: 'three',
 fourthWord: 'wow'
});

What is a config object?
If you are familiar with CSS or JSON, you'll notice that a config object looks similar
to these, mostly because they are all the same. Config objects are just ways of
structuring data so that it can easily be read by programming languages—in our
case, JavaScript.

For an example, let's take a look at the config portion of our example code:

{
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
}

The particular config that we are using here may appear complex at first, but once
we get to know it, it becomes an extremely fast way of configuring widgets. Just
about every Ext widget uses a configuration object, so this is something that we
will want to become very familiar with. The config object will become our new
best friend.

Here are some key things to remember when working with a config object:

Curly brackets wrap around your whole record set, which symbolizes the
records inside the brackets as being part of an object—{records}.

Each record consists of a set of name/value pair, with the name and value
separated by a colon, and pairs separated by commas—{name0: value0,
name1: value1}.

The records' values can contain any type of data, including boolean, array,
function, or even another object—{ name0: true, name1:
{ name2: value2 } }.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[30]

Square brackets identify an array—{name: ['one', 'two', 'three'] }.
An array can also contain objects with records, values, or any number of
other things.

The best thing about using JSON to configure our widgets is that if we want more
options, we just start typing them out. Presto! Unlike a typical function call, the order
of your config options has become irrelevant, and there can be as few or as many
as necessary.

How does JSON work?
Sometimes, you will hear people talk about eval, which generally refers to JSON.
The eval function is what JavaScript uses to interpret a JSON string, converting it
into the objects, arrays, and functions that we are using.

Time for action
Ok! So now we've seen how to get our Ext JS party started and ask the user a
question. Now let's see what we can do with their answers. Let's add to our dialog's
function so that we can decide what to do in response to each of the button-clicks. A
switch statement can take care of deciding what to do in each case:

fn: function(btn) {
 switch(btn){
 case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?');
 break;
 case 'no':
 Ext.Msg.alert('Milton',
 'Im going to burn the building down!');
 break;
 case 'cancel':
 Ext.Msg.wait('Saving tables to disk...','File Copy');
 break;
 }
}

Remember those built in dialog types I mentioned earlier? Well we just used some of
them. They let us accomplish some common tasks without spending time writing the
config needed for each standard scenario.

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[31]

Click OK and you get a prompt. A prompt is the common name for a small window
that allows you to enter a single value, and is a standard element in almost every
user interface.

Click No and you get an alert. I'm sure you are familiar with the standard alert
dialog in JavaScript. I remember the first time I used an alert dialog in JavaScript. I
was so excited to have an alert message on my home page that I made it pop up and
say "Click OK if you are a moron".

Click the Cancel button(or click the close button or press thebutton(or click the close button or press the(or click the close button or press the Escape key) and you will
get a wait message that's using a progress dialog.

The progress dialog we are using can be controlled by Ext and be notified when
it should disappear. But for the sake of simplicity, in this example, we are letting it
run forever.

Button focus and tab orders are built into Ext. Typically the OK or Yes
button will be the default action. So pressing Enter on your keyboard will
trigger that button, and pressing Tab will move you through the buttons
and other items in the dialog.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[32]

Lighting the fire
Now, we can start causing some reactions in our page, based on the users' responses
to the dialogs. We are going to add to our switch statement, which takes care of
a Yes button click. The prompt function can handle a third argument, which is the
function to be executed after the Yes button has been clicked. We are defining this so
that the function will check to see if the value entered into our prompt dialog is equal
to the office and then write this text to a DIV in our page if it is, and a default text
of Dull Work if it does not. The code also applies a style to the same DIV, which uses
a "Swingline" stapler background image.

case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?', function(btn,txt)
{
 if (txt.toLowerCase() == 'the office') {
 Ext.get('my_id').dom.innerHTML = 'Dull Work';
 }else{
 Ext.get('my_id').dom.innerHTML = txt;
 }
 Ext.DomHelper.applyStyles('my_id',{
 background: 'transparent
 url(images/stapler.png) 50% 50% no-repeat'
 });
 });
break;

The no case will display an alert message, which also styles the document when the
No button is clicked.

case 'no':
 Ext.Msg.alert('Milton',
 'Im going to burn the building down!',
 function() {
 Ext.DomHelper.applyStyles('my_id',{
 'background': 'transparent
 url(images/fire.png) 0 100% repeat-x'
 });

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[33]

 Ext.DomHelper.applyStyles(Ext.getBody(),{
 'background-color': '#FF0000'
 });
 Ext.getBody().highlight('FFCC00',{
 endColor:'FF0000',
 duration: 6
 });
 });
break;

The workhorse—Ext.get
Ext is able to work so well, because it has a foundation that provides access to
the DOM, and to many functions that allow manipulation of the DOM. Of these
functions, get is one of the most used.

 Ext.get('my_id');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[34]

This gives us access to an element in the document with the ID, my_id. If we take a
look at the first example, it is using getBody , which retrieves the body element and
applies our effect to that. Let's switch that around to use my_id instead. But first, we
will need to create a my_id element in our document:

 <div id='my_id'
 style='width:200px;height:200px;'>test</div>

If we add this to the body section of our document, and change our effect to
reference this instead of the body, then our effect will happen only to the my_id
div we created:

 Ext.get('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

If we now looked at our document in a browser, we would see a 200-pixel square box
changing color, instead of the entire body of the document changing color.

Bear in mind that IDs are unique. So once we have used my_id, we cannot use this
ID again in our document. If duplicate IDs exist in your document, then the last one
found will be used. But this should be considered as a bug, and not a design practice.
For the most part, Ext creates and tracks its own IDs, and most of the time, we will
default to Ext's tracking of the document elements and not create them on our own.

Having duplicate IDs in your document can lead to strange behavior,
such as a widgets always showing up in the upper left corner of the
browser, and is therefore best avoided.

Speed tip
This isn't exactly a speed tip, but is more about conserving memory by using
something called a "flyweight" to perform simple tasks, which results in higher speed
by not clogging up the browser's memory.

The same highlight effect we just used, could be written using a flyweight instead:

 Ext.fly('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

This is used when we want to perform an action on an element in a single line of
code, and we do not need to reference that element again. The flyweight re-uses the
same memory over and over each time it is called.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[35]

Here is an example of using a flyweight incorrectly:

 var my_id = Ext.fly('my_id');
 Ext.fly('another_id');
 my_id.highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

Because the flyweight re-uses the same memory each time it is called, by the time
we run the highlight function on our my_id reference, the memory has changed to
actually contain a reference to another_id.

Summary
Using only a few lines of code, we have created a fun program that will keep you
entertained for hours! Well, maybe not for hours, but for at least a few minutes.
Nonetheless, we have the beginnings of the basic functionality and user interface
of a typical desktop application.

We have learned the basics of using configuration objects, and I'm sure this will
make even more sense after we have had the chance to play with some more Ext
widgets. But the real point here is that the configuration object is something that is
very fundamental when using Ext. So the quicker you can wrap your head around it,
the better off you will be.

Don't worry if you are not entirely comfortable with the configuration object yet.
We have plenty of time to figure it out. For now, let's move on to one of my favorite
things—forms.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms
In this chapter, we will learn how to create Ext forms, which are similar to the HTML
forms that we use, without the usability restrictions and boring user interface.

We use some different form field types to create a form that validates and submits
asynchronously. Then we will create a database-driven, drop-down menu
(ComboBox), and add some more complex field validation and masking. We will
then finish it off with a few advanced topics that will give our forms some serious
'wow' factor.

The goals of this chapter include:

Creating a form that uses AJAX submission

Validating field data and creating custom validation

Loading form data from a database

The core components of a form
The possibilities are endless with Ext forms. Key listeners, validation, error messages,
and value restrictions are all built in with simple config options. Extending a form
option for your own specific needs can be done easily, which is something we will
cover later on in this chapter. Here are some of the core form components that you
should become familiar with:

Ext.form.FormPanel: Groups fields together in a panel, much as the FORM
tag does for a standard HTML form

Ext.form.Field: As the primary handler of form field creation and
interaction, it can be compared to the INPUT tag in HTML

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[38]

Our first form
To start with, let's create a form with multiple field types, a date picker, validation,
error messages, and AJAX submission—just a simple one for our first try.

For this example, our fields will be created using a config object instead of an
instantiated Ext.form.Field component. This method will work just fine, will take
less time to code, and will help our code run faster. A basic HTML page like the one
we used in the previous example will be used as a starting point. The standard Ext
library files need to be included and, as with everything we create in Ext, our code
will need to be wrapped in the onReady function.

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
 }]
 });
 });

When we run this code in a browser, we end up with a form panel that looks
like this:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[39]

Nice form—how does it work?
The FormPanel is very similar to an HTML form. It acts as the container for our
form fields. Our form has a url config so the form knows where to send the data
when it is submitted. It also has a renderTo config, which defines where the form is
displayed on the page.

The items config element is the important one as it contains all of our form fields.
The items config element is an array of fields. Each field element has an xtype that
defines which type of Ext component will be used: text, date, or number. This could
even be a grid or some other type of Ext component.

Form fields
Now we know that each type of field is defined by its xtype. But where do xtypes
come from, and how many of them are there? An xtype is just a reference to a
particular Ext component, so a 'textfield' xtype is the same as its Ext.form.TextField
counterpart. Here are examples of some of the xtypes that are available to us:

textfield

timefield

numberfield

datefield

combo

textarea

Because these are all just Ext components, we could easily be using a grid, toolbar,
or button—pretty much anything! A recurring theme in Ext components is that
everything is interchangeable, and everything shares the same core functions. This
ensures that just about any scenario can be handled with the Ext library.

Our basic field config is set up like this:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
}

Of course, we have the xtype that defines what type of a field it is—in our case it is a
textfield. The fieldLabel is the text label that is displayed to the left of the field,
although this can also be configured to be displayed on the top or the right side of
the field. The name config is just the same as its HTML counterpart and will be used
as the variable name when sending the form data to the server.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[40]

The names of most of the config options for Ext components match
their counterparts in HTML. This is because Ext was created by web
developers, for web developers.

Making our date field isn't much different from making the text field. Change the
xtype to a datefield, and we're done.

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
}

Validation
A few of our sample fields could have validations that present the users with errors
if the user does something wrong. Let's add some validation to our first form. One of
the most commonly-used types of validation is checking to see if the user has entered
any value at all. We will use this for our movie title field. In other words, let's
make this field a required one:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
}

Setting up an allowBlank config option and setting it to false (the default is true)
is easy enough. Most forms we build will have a bunch of required fields just
like this.

Each type of Ext field also has its own set of specialized validations that are specific
to the data type of that field. For instance, a date field has ways to disable certain
days of the week, or to use a regular expression to disable specific dates. The
following code disables every day except Saturday and Sunday:

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[41]

In this example, everyday except Saturday and Sunday is disabled. Keep in mind
that the week starts on 0 for Sunday, and ends on 6 for Saturday.

When we use other types of fields, we have different validations, like number fields
that can restrict the size of a number or how many decimal places the number can
have. The standard validation options for each field type can be found in the
API reference.

Built-in validation—vtypes
Another more complex type of validation is the vtype. This can be used to validate
and restrict user input, and report back error messages. It will work in just about any
scenario you can imagine because it uses regular expressions to do the grunt work.

Here are some built-in vTypes that can come in handy:

email

url

alpha

alphanum

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[42]

These built-in vtypes are intended to be simplistic, and mostly used as a starting
point for creating your own vtypes.

Here is an alpha vtype being used with a QuickTips balloon error message:

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director',
 vtype: 'alpha'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
 }]
 });
 });

All we did was add a vtype to the director field. This will validate that the value
entered is composed of only alphabetic characters.only alphabetic characters.alphabetic characters.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[43]

Now we're starting to see that the built-in vtypes are very basic. The built-in alpha
vtype restricts our fields to alphabet characters only. In our case, we want the user
to enter a director's name, which would usually contain only alphabet characters,
with just one space or a hyphen. Capitalizing the first characters in the names could
possibly make them look pretty.

A search of the Ext forum is likely to come back with a vType that
someone else has created that is either exactly what you need, or close
enough to use as a starting point for your own requirements.

Styles for displaying errors
Forms are set up by default with a very bland error display which shows any type
of error with a squiggly red line under the form field. This error display closely
mimics the errors shown in programs like Microsoft Word when you spell a word
incorrectly. We do have other options for displaying our error messages, but we will
need to tell Ext JS to use it.

The preferred option is to display the error message in a balloon. This utilizes the
standard squiggly line, but also adds a balloon message that pops up when you
mouse over the field.

We just need to add a line of code before our form is created that will initialize the
balloon messages. Typically this is the first line within the OnReady function.

For example:

 Ext.onReady(function(){
 Ext.QuickTips.init();
 // our form here

 });

This is all that needs to happen for your form fields to start displaying error
messages in a fancy balloon.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[44]

Custom validation—create your

own vtype
If you're like me, regular expressions can leave you in a stupefied gaze at your
monitor, so I always try to find something that is close to what I need and then
modify it, rather than start from scratch.

To create our own vtype, we need to add it to the vtype definitions. Each definition
has a value, mask, error text, and a function used for testing:

xxxVal: This is the regular expression to match against

xxxMask: This is the masking to restrict user input

xxxText:This is the error message that is displayed

As soon as we figure out the regular expressions we need to use, it's fairly straight
forward creating our own vType—so lets try one out. Here is a validation for
our director's name field. The regular expression matches a pair of alpha strings,
separated by a space, and each starting with a capital letter. Sounds like a good way
to validate a name—right?

Ext.form.VTypes['nameVal'] = /^[A-Z][A-Za-z\-]+
 [A-Z][A-Za-z\-]+$/;
Ext.form.VTypes['nameMask'] = /[A-Za-z\-]/;
Ext.form.VTypes['nameText'] = 'In-valid Director Name.';
Ext.form.VTypes['name'] = function(v){
 return Ext.form.VTypes['nameVal'].test(v);
}

It's hard to look at this all at once, so let's break it down into its main parts. We first
start with the regular expression that validates the data entered into our form field:

Ext.form.VTypes['nameVal'] = /^([A-Z]{1})[A-Za-z\-]+
 ([A-Z]{1})[A-Za-z\-]+/;

Next, we add the masking, which defines what characters can be typed into our form
field. This is also in the form of a regular expression:

Ext.form.VTypes['nameMask'] = /[A-Za-z]/;

Then, we have the text to be displayed in a balloon if there is an error:

Ext.form.VTypes['nameText'] = 'In-valid Director Name.';

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[45]

And finally, the part that pulls it all together—the actual function used to test our
field value:

Ext.form.VTypes['name'] = function(v){
 return Ext.form.VTypes['nameVal'].test(v);
}

Put all this together and we have our own custom vtype without much effort, and
that can be used over and over again.

Masking—don't press that key!
Masking is used when a particular field is forced to accept only certain keystrokes,
such as numbers only, or letters only, or just capital letters. The possibilities are
limitless, because regular expressions are used to decide what keys to filter out.

This mask example would allow an unlimited string of capital letters:

 maskRe: /[A-Z]/

Instead of using the masking config, consider creating a vType to accomplish
your masking. If the formatting requirements should happen to change, it will be
centrally-located for easy changing.

So when the day arrives where your boss comes to you freaking out and tells you,
"Remember those product codes that I said would always be ten numbers, well it
turns out they will be eight letters instead", you can make the change to your vType,
and go play Guitar Hero for the rest of the day!

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[46]

Radio buttons and check boxes
Radio buttons and check boxes are a necessary evil. They are clumsy, and hard to
work with. I try to use them only as a last resort, when nothing else will do the job.
But let's add them to our form just so we can say that we did.

It's not a button, it's a radio button
Lets first add a set of radio buttons to our form:

{
 xtype: 'radio',
 fieldLabel: 'Filmed In',
 name: 'filmed_in',
 boxLabel: 'Color'
},{
 xtype: 'radio',
 hideLabel: false,
 labelSeparator: '',
 name: 'filmed_in',
 boxLabel: 'Black & White'
}

These radio buttons work much like their HTML counterparts. Give them all the
same name, and they will work together for you. I also like to hide the labels for the
trailing radio buttons by setting hideLabel to true and labelSeperator to an empty
value. This gives the form a cleaner look.

X marks the check box
Sometimes, we need to use check boxes for boolean values—sort of an
on/off switch.

{
 xtype: 'checkbox',
 fieldLabel: 'Bad Movie',
 name: 'bad_movie'
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[47]

The ComboBox
The ComboBox, or SELECT as its known in HTML, also called a drop-down menu,
is a highly-useful form element. It reduces the users' need to touch the keys on
their keyboards. The Ext ComboBox has a ton of practical uses, and just as many
configuration options to keep track of.

First, let's make a combo using local data. To do this, we need to create a data store.
There are a few different types of data store, each of which can be used for different
situations. However, for this one, we are going to use a simple store:

var genres = new Ext.data.SimpleStore({
 fields: ['id', 'genre'],
 data : [['1','Comedy'],['2','Drama'],['3','Action']]
});

Just like the other fields in our form, we add it to the items config. A few other
config options are needed when we are setting up a combo box. The store is the
obvious one-this is the data that populates the options for our combo. The other
things we need are the mode, which determines if the data is coming from a local
source or a remote source, and the displayField, which determines which column
of data is displayed in the combo options:

{
 xtype: 'combo',
 name: 'genre',
 fieldLabel: 'Genre',
 mode: 'local',
 store: genres,
 displayField:'genre',
 width: 120
}

This gives us a combo box that uses local data, which is good for small lists, or lists
that don't change often. What happens when our list needs to be pulled up fromWhat happens when our list needs to be pulled up from
a database?

Database-driven ComboBox
The biggest change that needs to happen is on the server side—getting your data and
formatting it into a JSON string that the combo box can use. Whatever server-side
language is used, we will need a JSON library to 'encode' the data. If we're using
PHP 5.1 or higher, this is built in.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[48]

To check our version of PHP, we can either execute a command in a
terminal window or run a single line of PHP code. If we have access to
this command line we can run php –v to check our version, otherwise,
running a script that just has the single line <?php phpinfo(); ?> will
do the job.

This is what we would use to generate our JSON data using PHP 5.1 or higher:

<?php
// connection to database goes here

$result = mysql_query('SELECT id, genre_name FROM genres');

If (mysql_num_rows($result) > 0) {
 while ($obj = mysql_fetch_object($result)) {
 $arr[] = $obj;
 }
}
Echo '{rows:'.json_encode($arr).'}';

?>

When we use remote data, there are a few more things that need to happen. First, the
data store needs to know what format the data is in. We specify this by using a data
reader—in our case, it's the JSON Reader.

var genres = new Ext.data.Store({
 reader: new Ext.data.JsonReader({
 fields: ['id', 'genre_name'],
 root: 'rows'
 }),
 proxy: new Ext.data.HttpProxy({
 url: 'data/genres.php'
 })
});

The first argument for the data reader is an object containing the configuration of
our reader—specifically, which fields will be read and what the root element is. The
fields list is simply an array of field names; notice that we left out sort_order—this
field will not be available to our data set. Our root is the element that contains our
array of data, in this case it's rows, but could just as easily be bobs-crab-shack, or
whatever you felt like:

{rows:[
 {
 "id":"1",
 "genre_name":"Comedy",
 "sort_order":"0"
 },{

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[49]

 "id":"2",
 "genre_name":"Drama",
 "sort_order":"1"
 },{
 // snip...//
 }]
}

We have also set up the proxy—typically this will be an HTTP Proxy that retrieves
data from the same domain as the web page. This is the most common method, but
there is also a ScriptTagProxy that can be used to retrieve data from a different
domain. All we need to provide for our proxy is the URL to fetch our data from.

Whenever we specify a 'proxy' we are actually using AJAX. This requires
that you have a web server running, otherwise AJAX will not work.
Simply running your code from the file system in a web browser will not
work.

Let's throw in a call to the load function at the end, so the data is loaded into our
combo box before the user starts to interact with it.

genres.load();

This gives us a combo box that's populated from our database, and should look
like this:

Another way to pre-load the data store is to set the autoLoad option to true in our
data store configuration:

var genres = new Ext.data.Store({
 reader: new Ext.data.JsonReader({
 fields: ['id', 'genre_name'],
 root: 'rows'
 }),
 proxy: new Ext.data.HttpProxy({
 url: 'data/genres.php'
 }),
 autoLoad: true
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[50]

TextArea and HTMLEditor
We are going to add a text field to our movie information form, and Ext has a couple
of options for this. We can either use the standard textarea that we were familiar
with from using HTML, or we can use the HTMLEditor field, which provides rich
text editing:

textarea: Similar to a typical HTML textarea field

htmleditor: A rich text editor with a button bar for common
formatting tasks

If we set hideLabel to true and clear out the label separator then we can have
a textarea that spans the entire width of our form panel. This gives a nice look to
the form:

{
 xtype: 'textarea',
 name: 'description',
 hideLabel: true,
 labelSeparator: '',
 height: 100,
 anchor: '100%'
}

By changing just the xtype, as shown below, we now have a fairly simple HTML
editor with built-in options for font face, size, color, italics, bold, and so on. This is
the first Ext component we have used that requires the QuickTips component to be
initialized before we can use it.

{
 xtype: 'htmleditor',
 name: 'description',
 hideLabel: true,
 labelSeparator: '',
 height: 100,
 anchor: '100%'
}

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[51]

Listening for form field events
Ext makes it extremely simple to listen for particular user actions, such as clicking on
an element or pressing a particular key.

A common task would be listening for the Enter key to be pressed, and then
submitting the form. So let's see how this is accomplished:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false,
 listeners: {
 specialkey: function(f,e){
 if (e.getKey() == e.ENTER) {
 movie_form.getForm().submit();
 }
 }
 }
}

The specialkey listener is called whenever a key related to navigation is pressed.
This listener is also called every time the arrow keys are pressed, along with Tab,
Esc, and so on. That's why we have to check to see if it was theThat's why we have to check to see if it was the Enter key before we
take action.

Now the form will only be submitted when you press Enter.

ComboBox events
It seems that combo boxes commonly need to have events attached to them. Let's
take our genre combo box and attach a listener to it that will run when an item in the
list is selected.

First let's add a dummy item to our data as the first item in the list and call it
New Genre:

var genres = new Ext.data.SimpleStore({
 fields: ['id', 'genre'],
 data : [
 ['0','New Genre'],
 ['1','Comedy'],
 ['2','Drama'],
 ['3','Action']
]
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[52]

Then, we add the listener to our combo:

{
 xtype: 'combo',
 name: 'genre',
 fieldLabel: 'Genre',
 mode: 'local',
 store: genres,
 displayField:'genre',
 width: 130,
 listeners: {
 select: function(f,r,i){
 if (i == 0){
 Ext.Msg.prompt('New Genre','Name',Ext.emptyFn);
 }
 }
 }
}

The listener is set up to wait for a select event and then run the function that
is specified. Each listener type has its own set of variables that is passed to the
function—these can be looked up in the API reference.

For the select event, our function is passed three things:

The form field

The data record of the selected combo item

The index number of the item that was clicked on

Once the list item is selected, we can see which item in the list was selected. The third
argument in our listener function is the index of the item that was clicked. If that has
an index of zero (the first item in the list), then we will prompt the user to enter a
new genre using the prompt dialog we learned about in the previous chapter.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[53]

Just about every component in Ext has a listener. A list of valid events for
these listeners can be found at the bottom of the API documentation page
for each component.

Buttons and form action
Now, we have quite a mess of a form with only one problem – it doesn't send data to
the server, which was the actual point behind creating our form in the first place. To
do, this we are going to add some buttons.

Our buttons are added to a buttons config object, similar to the way that the form
fields were added. These buttons really only need two things: the text to be displayed
on the button, and the function(which is called the handler) to execute when the
button is clicked.

buttons: [{
 text: 'Save',
 handler: function(){
 movie_form.getForm().submit({
 success: function(f,a){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(f,a){
 Ext.Msg.alert('Warning', 'Error');
 }
 });
 }
}, {
 text: 'Reset',
 handler: function(){
 movie_form.getForm().reset();
 }
}]

The handler is provided with a function—or a reference to a function—that will
be executed once the button is clicked. In this case, we are providing an
anonymous function.

Form submission
Our FormPanel has a url option that contains the name of the file that the form data
will be sent to. This is simple enough—just like an HTML form, all of our fields will
be posted to this url, so they can be processed on the server side.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[54]

Inside our Save button, we have an anonymous function that runs the following
code. This will run the actual submission function for our form, which sends the
data to the server using AJAX. No page refresh is needed to submit the form. It all
happens in the background, while the page you are looking at remains the same:

movie_form.getForm().submit({
 success: function(f,a){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(f,a){
 Ext.Msg.alert('Warning', 'Error');
 }
});

In order for our form submission to work properly, it must be run from a
web server.

success and failure options provided to the submit call handle the server's
response. These are also anonymous functions, but could just as easily be references
to functions created earlier on in the code.

Did you notice that the functions have a pair of arguments passed to them? These
will be used to figure out what response the server gave. But first, we need to discuss
how to provide that response on the server side.

Talking back—the server responses
When our form is submitted to the server, a script on the server side will process the
post data from the form, and decide if a true or false 'success' message should be
sent back to the client side. Error messages can be sent back along with our response,
and these can contain messages that correspond to our form field names.

When using forms and server-side validation, a success boolean value is required.
An example of a response from the server would look like this:

{
 success: false,
 errors: {
 title: "Sounds like a Chick Flick"
 }
}

When the success flag is set to false, it triggers the Ext form to read in the
error messages and apply them to the form's validation to present the user with
error messages.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[55]

Server-side validation of our form submission gives us a way to look up information
on the server side, and return errors based on this. Let's say we have a database of
bad movie names, and we don't want users to submit them to our database. We can
submit the form to our script, which checks the database and returns a response
based on the database lookup of that name.

If we wanted to filter out chick flicks the response could look something like this:the response could look something like this:

{
 success: false,
 errors: {
 title: "Sounds like a Chick Flick"
 },
 errormsg: "That movie title sounds like a chick flick."
}

The false success response triggers the forms error messages to be displayed. An
errors object is passed with the response. The form uses this object to determine
each of the error messages. A name/value pair exists in the errors object for each
form field's error.

Our example response also passes an errormsg, which is not used by the form, but is
going to be accessed separately to present our own error message.

Let's take the extra error message that we were passing back, and display it in a
message box.

buttons: [{
 text: 'Save',
 handler: function(){
 movie_form.getForm().submit({
 success: function(f,a){
 Ext.Msg.alert('Success', 'It worked');
 },
 failure: function(f,a){
 Ext.Msg.alert('Warning', a.result.errormsg);
 }
 });
 }
}, {
 text: 'Reset',
 handler: function(){
 movie_form.getForm().reset();
 }
}]

Our submit form action passes information back to the success and failure
handlers. The first argument is an Ext form object, and the second is an Ext action
object. Let's take a look at what's available in the Ext action object:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[56]

Option Description

failureType String Reports both client-side and server-side errors

response Object Contains raw information about the server's response,
including useful header information

result Object Parsed JSON object based on the response from the server

type String The type of action that was performed–either submit or load

Now that we know what is available to the failure handler, we can set up some
simple error checking:

failure: function(f,a){
 if (a.failureType === Ext.form.Action.CONNECT_FAILURE)
 {Ext.Msg.alert('Failure', 'Server reported:
 '+a.response.status+' '+a.response.statusText);
 }
 if (a.failureType === Ext.form.Action.SERVER_INVALID){
 Ext.Msg.alert('Warning', a.result.errormsg);
 }
}

By checking the failure type, we can determine if there was a server connection error
and act accordingly, even providing details about the server's specific error message
by using the result property.

Loading a form with data
There are three basic ways in which forms are used in a user interface:

To input data for a separate action—say, Google search

To create new data

To change existing data

It's the last option that we are interested in now. To accomplish this, we need to learn
how to load that data from its source (static or database) into our user interface.

Static data load
We can take data from somewhere in our code, and display it as the value in a form
field. This single line of code sets a fields value:

movie_form.getForm().findField('title').
 setValue('Dumb & Dumber');

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[57]

Once we start working with more complex forms, this method becomes a hassle.
That's why we also have the ability to load our data via an AJAX request. The server
side would work much as it did when we loaded the combo box:

<?php
// connection to database goes here

$result = mysql_query('SELECT * FROM movies WHERE id = '.$_
REQUEST['id']);

If (mysql_num_rows($result) > 0) {
 $obj = mysql_fetch_object($result);
 Echo '{success: true, data:'.json_encode($obj).'}';
}else{
 Echo '{success: false}';
}

?>

This would return a JSON object containing a success flag, and a data object that
would be used to populate the values of the form fields. The returned data would
look something like this:

{
 success: true,
 data:{
 "id":"1",
 "title":"Office Space",
 "director":"Mike Judge",
 "released":"1999-02-19",
 "genre":"1",
 "tagline":"Work Sucks",
 "coverthumb":"84m.jpg",
 "price":"19.95",
 "available":"1"
 }
}

To trigger this, we need to use the form's load handler:

movie_form.getForm().load({
 url:'data/movie.php',
 params:{
 id: 1
 }
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[58]

Providing it with a url and params config will do the trick. The params config
represents what is sent to the server side script as post/get parameters. By default,
these are sent as post parameters.

Object reference or component config
Throughout these first few chapters, we have started to use more and more
configuration objects to set up our Ext JS components, instead of instantiating them.
Let's do a quick comparison of the two methods.

Instantiated
var test = new Ext.form.TextField({
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
});

Here, the component has been created and memory used right away, even if it is
not displayed on the screen yet. Depending on how your end users work with your
application, they might never even need or use this particular text field. However,
when it is the time to display this field to the end users, it shows up really fast.

Component config
{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[59]

With the component config, we have a 'description' of what has to happen when it is
time to use the field. No memory is used right away. It's only when the user needs it
that the memory is used. At that point, the field is rendered after the user has clicked
on or interacted with something else, which can slow the initial display slightly.

This method of setting up components has many other advantages; one of them
is being able to send configurations 'over the wire'. The method of sending
configurations 'over the wire' means that server-side code can generate a
configuration to create a client-side component.

Summary
We have taken the foundation of the classic web application—forms—and injected
them with the power of Ext JS, creating a uniquely-flexible and powerful user
interface. The form created in this chapter can validate user input, load data from a
database, and send that data back to the server. From the methods outlined in this
chapter, we can go on to create forms for use in simple text searches, or a complexly
validated data entry screen.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars
The unsung heroes of every application are the simple things like buttons,
menus, and toolbars. In this chapter, we will cover how to add these items to
our applications.

Our example will contain a few different types of buttons, both with and without
menus. A button can simply be an icon, or text, or both. Toolbars also have some
mechanical elements such as spacers and dividers that can help to organize the
buttons on your toolbars items.

We will also cover how to make these elements react to user interaction.

A toolbar for every occasion
Just about every Ext component—panels, windows, grids can accept a toolbarpanels, windows, grids can accept a toolbarcan accept a toolbar
on either the top or the bottom. The option is also available to render the toolbar
standalone into any DOM element in our document. The toolbar is an extremely
flexible and useful component that will no doubt be used in every application.

Ext.Toolbar: The main container for the buttons

Ext.Button: The primary handler for button creation and interaction

Ext.menu: A menu

Toolbars
Our first toolbar is going to be rendered standalone in the body of our document. We
will add one of each of the main button types, so we can experiment with each:

Button—tbbutton: This is the standard button that we are all familiar with.

Split Button—tbsplit: A split button is where you have a default button
action and an optional menu. These are used in cases where you need to have
many options in the same category as your button, of which there is a most
commonly used default option.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars

[62]

Menu—tbbutton+menu: A menu is just a button with the menu config filled
in with options.

 Ext.onReady(function(){
 new Ext.Toolbar({
 renderTo: document.body,
 items: [{
 xtype: 'tbbutton',
 text: 'Button'
 },{
 xtype: 'tbbutton',
 text: 'Menu Button',
 menu: [{
 text: 'Better'
 },{
 text: 'Good'
 },{
 text: 'Best'
 }]
 },{
 xtype: 'tbsplit',
 text: 'Split Button',
 menu: [{
 text: 'Item One'
 },{
 text: 'Item Two'
 },{
 text: 'Item Three'
 }]
 }]
 });
 });

As usual, everything is inside our onReady event handler. The items config holds
all of our toolbars elements—I say elements and not buttons because the toolbar can
accept many different types of Ext components including form fields—which we will
be implementing later on in this chapter.

The default xtype for each element in the items config is tbbutton.
We can leave out the xtype config element if tbbutton is the type we
want, but I like to include it just to help me keep track.

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 4

[63]

The button
Creating a button is fairly straightforward; the main config option is the text that is
displayed on the button. We can also add an icon to be used alongside the text if we
want to.

Here is a stripped-down button:

{
 xtype: 'tbbutton',
 text: 'Button'
}

Menu
A menu is just a button with the menu config populated—it's that simple. The menu
items work along the same principles as the buttons. They can have icons, classes,
and handlers assigned to them. The menu items could also be grouped together to
form a set of option buttons, but first let's create a standard menu.

This is the config for a typical menu config:

{
 xtype: 'tbbutton',
 text: 'Button',
 menu: [{
 text: 'Better'
 },{
 text: 'Good'
 },{
 text: 'Best'
 }]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars

[64]

As we can see, once the menu array config is populated, the menu comes to life. To
group these menu items together, we would need to set the group config and the
boolean checked value for each item:

menu: [{
 text: 'Better',
 checked: true,
 group: 'quality'
}, {
 text: 'Good',
 checked: false,
 group: 'quality'
}, {
 text: 'Best',
 checked: false,
 group: 'quality'
}]

Split button
The split button sounds like a complex component, but it's just like a button and a
menu combined, with a slight twist. By using this type of button, you get to use the
functionality of a button while adding the option to select an item from the attached
menu. Clicking the left portion of the button that contains the text triggers the button
action. However, clicking the right side of the button, which contains a small down
arrow, triggers the menu.

{
 xtype: 'tbsplit',
 text: 'Split Button',
 menu: [{
 text: 'Item One'
 },{
 text: 'Item Two'
 },{
 text: 'Item Three'
 }]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 4

[65]

Toolbar item alignment, dividers, and spacers
By default, every toolbar aligns elements to the leftmost side. There is no alignment
config for a toolbar, so if we want to align all of the toolbar buttons to the rightmost
side, we need to add a fill as the first item in the toolbar. If we want to have items
split up between both the left and right sides, we can also use a fill:

{
 xtype: 'tbfill'
}

Pop this little guy in a tool-bar wherever you want to add space and he will push
items on either side of the fill to the ends of the tool bar, as shown below:

We also have elements that can add space or vertical dividers, like the one used
between the Menu Button and the Split Button.

The spacer adds a few pixels of empty space that can be used to space out buttons, or
move elements away from the edge of the toolbar:

{
 xtype: 'tbspacer'
}

A divider can be added in the same way:

{
 xtype: 'tbseparator'
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars

[66]

Shortcuts
Ext has many shortcuts that can be used to make coding faster. Shortcuts are a
character or two that can be used in place of a configuration object. For example,
consider the standard toolbar filler configuration:

{

 xtype: 'tbfill'

}

The shortcut for a toolbar filler is a hyphen and a greater than symbol:

'->'

Not all of these shortcuts are documented. So be adventurous, poke around the source
code, and see what you can find. Here is a list of the commonly-used shortcuts:

Component Shortcut Description

Fill '->' The fill that is used to push items to the right side of
the toolbar.

Separator '-' or 'separator' A vertical bar used to visually separate items.

Spacer ' ' Empty space used to separate items visually.
The space is two pixels wide, but can be changed by
overriding the ytb-spacer CSS class.

TextItem 'Your Text' Add any text or HTML directly to a toolbar by
simply placing it within quotes.

Icon buttons
The standard button can act as an icon button like the ones you see used in text
editors to make text bold or italic. Two steps need to be taken to make an iconicon
button—defining an image to be used as the icon and applying the appropriate class
to the button.

{
 xtype: 'tbbutton',
 cls: 'x-btn-icon',
 icon: 'images/bomb.png'
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 4

[67]

This could just as easily be an icon beside text by changing the style class and adding
the text config.

{
 xtype: 'tbbutton',
 cls: 'x-btn-text-icon',
 icon: 'images/bomb.png',
 text: 'Tha Bomb'
}

Button handlers—click me!
A button needs to do more than just look pretty—it needs to react to the user. This is
where handlers come in. A handler is a function that is executed when a button or
menu item is clicked.

The handler config is where we add our function:

{
 xtype: 'tbbutton',
 text: 'Button',
 handler: function(){
 Ext.Msg.alert('Boo', 'Here I am');
 }
}

This code will pop up an alert message when the button is clicked. Sometimes, we
need to make changes to the button when it's clicked, so each button handler passesach button handler passes
a reference to itself for this purpose. The first argument of our handler is a reference
to the component that triggered the event.

{
 xtype: 'tbbutton',
 text: 'Button',
 handler: function(f){
 f.disable();
 }
}

We can take this reference to the button—a reference to itself—and access all of the
properties and functions of that button. For this sample, we have called the disable
function which grays out the button and makes it unselectable.

We can have more fun than just disabling a button. Why don't we try something
more useful?

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars

[68]

Load content on menu item click
Lets take our button click and do something more useful with it. For this example,
we are going to add a config option to each menu item that will be used to
determine what content file to load in the body of our page:

{
 xtype: 'tbsplit',
 text: 'Help',
 menu: [{
 text: 'Genre',
 helpfile: 'genre',
 handler: Movies.showHelp
 },{
 text: 'Director',
 helpfile: 'director',
 handler: Movies.showHelp
 },{
 text: 'Title',
 helpfile: 'title',
 handler: Movies.showHelp
 }]
}

Note the helpfile config option that we have added to each of the menu items config.
We have made this config property up so that we have a way to store a variable that is
unique to each menu item. This is possible because config properties can be anything
we need them to be, and can be created on the fly. In this case, we are using a config
property as a variable that holds the name of the file we want to load.

The other new thing we are doing is creating a collection of functions to handle the
menu item click. These functions are all organized into a Movies class.

var Movies = function() {
 return {
 showHelp : function(btn){
 var helpbody = Ext.get('helpbody');
 if (!helpbody) {
 Ext.DomHelper.append(Ext.getBody(), {
 tag:'div',
 id:'helpbody'
 });
 }
 Movies.doLoad(btn.helpfile);
 },

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 4

[69]

 doLoad : function(file){
 Ext.get('helpbody').load({
 url: 'html/' + file + '.txt'
 });
 }
 };
}();

I don't want to get bogged down with too much detail about this Movies class just
yet, but essentially all it does is handle our menu item clicks. This class will load a
text file into the body of our web page via an AJAX request—which text file it loads
is related to which menu item is clicked. So once this Movies class is in place in our
page, we will be able to bring up this page in our browser and click on each menu
item to load the relevant help file into the body of the page.

.

Next, we will try using a text field to perform this same type of action.

Form fields in a toolbar
Like most things in Ext, a tool bar can accept just about any Ext component.
Naturally, form fields and combo boxes are very useful items to have on a toolbar.

{
 xtype: 'textfield'
}

In the same way as we created form fields in the last chapter, we have added the
form fields to the items array, which will place the form fields within the toolbar.
Now let's make the form field do something useful, by having it perform the same
functionality as our help menu, but in a more dynamic way.

{
 xtype: 'textfield',
 listeners: {
 specialkey: Movies.doSearch
 }
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Buttons, Menus, and Toolbars

[70]

This listener is added directly to the form field's config. For this, we are using a's config. For this, we are using as config. For this, we are using a
specialkey listener, which we used in the previous chapter. This is the listener
that is used to capture edit keystrokes, such as Enter and Delete among others. The
handler function will be added to our small Movies class created earlier:

doSearch : function(frm,evt){
 if (evt.getKey() == evt.ENTER) {
 Movies.doLoad(frm.getValue());
 }
}

Now we have a text field in our toolbar that enables us to type in the name of the text
file to load. Try some of the samples used in our menu, such as director or title.

Toolbars in windows, grids, and panels
All of the toolbars we have been working with have an items config. If we want to
place one of these toolbars into another Ext component, such as a panel or a window,
we can simply take the contents of the items config for a toolbar, and place it within
one of the two pre-set containers that exist for panel-type components.

Panel-type components, such as the window and the grid, have a top and bottom
toolbar config:

tbar: The top toolbar

bbar: The bottom toolbar

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 4

[71]

If we wanted to place a toolbar at the top of a window, filling the tbar config with an
array of toolbar items would give us what we wanted:

new Ext.Window({
 title: 'Help',
 id: 'helpwin',
 width: 300,
 height: 300,
 tbar: [{

 text: 'Close',

 handler: function(){

 Ext.getCmp('helpwin').close();

 }

 },{

 text: 'Disable',

 handler: function(t){

 t.disable();

 }

 }],

 autoLoad: 'html/' + btn.helpfile + '.txt'
}).show();

Ext also has a custom toolbar for paged grids that contains all of the buttons for
moving through pages of results. We will cover this special toolbar in the grid
chapter later in this book.

Summary
In this chapter, we had the chance to play with a couple of different ways to create
toolbar items, including using a config object or its shortcut. The many options
available for toolbars make them a useful component for everything from the
simplest button bar, to a complex combination of buttons, menus, and form
fields. Interacting with the buttons, menus and form fields is easy using the
built-in handlers.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data with Grids
The grid is, without doubt, one of the most widely-used components of Ext. We all
have data, and this needs to be presented to the end user in an easy-to-understand
manner. The spreadsheet (a.k.a.: grid) is the perfect way to do this—the concept has
been around for quite a while because it works. Ext takes that concept and makes it
flexible and downright amazing!

In this chapter we shall be:

Using a GridPanel to display structured data in a user-friendly grid

Reading data from the server (or database) to display in the grid

Working with a grid's events and manipulating the grid's features

Using some advanced data formatting techniques for grids

Paging data in a grid

We will cover how to define the rows and columns, but more importantly, we will
learn how to make the grid flashier. We can do this by adding custom rendered cells
that contain images, and change styles based on data values. In doing this we are
adding real value to our grid by breaking out of the boundaries of spreadsheets!

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[74]

What is a grid anyway?
Ext grids are similar to a spreadsheet; there are two main parts to each spreadsheet:

Columns

Rows

Here our columns are Title, Released, Genre, and Price. Each of the rows contains
movies such as The Big Lebowski, Super Troopers, and so on. The rows are really
our data; each row in the grid represents a record of data.

Displaying structured data with

a GridPanel
Displaying data in a grid requires two Ext components:

A store that acts like an in-memory database, keeping track of the data we
want to display

A grid panel that provides a way to display the data stored in a data store

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[75]

Before we start to create each of these, let's look at some of the terminology that will
be used, because this can be confusing at first:

Columns: This refers to a whole column of data, and would contain
information only relevant to the display of data down through the entire
column, including the heading. In Ext JS, this information is part of the
Column Model.

Fields: This also refers to an entire column of data, but is refers to the actual
data values. With Ext JS, this is used in the reader, for loading data.

Setting up a data store
The first thing we need to do is set up our data, which will be placed into a data
store. The data store types available in Ext give us a consistent way of reading
different data formats such as XML and JSON, and reading this data in a consistent
way throughout all of the Ext widgets. Regardless of whether this data it is JSON,
XML, an array, or even a custom data type of your own, it's all accessed in the same
way thanks to the data store.

Some data stores available, by default, in Ext are:

Simple (Array)

XML

JSON

A custom data store could be created to read data that does not fit into these
categories. The Ext JS forums provide user-contributed data readers for things such
as CSV and ColdFusion formats of data.

Adding data to our data store
In our first attempt, we are going to create a grid that uses simple local array data.
The data we're using below is taken from a very small movie database of some of my
favorite movies, and is similar to the data that will be pulled from an actual database
later in this chapter.

The data store needs two things: the data itself, and a description of the data—or
what could be thought of as the fields. A reader will be used to read the data from
the array, and this is where we define the fields of data contained in our array. The
reader acts as an interpreter of sorts; it knows how to interpret a string of data as
rows of data to be used with Ext JS.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[76]

The following code should be placed inside the Ext OnReady function:

var store = new Ext.data.Store({
 data: [
 [
 1,
 "Office Space",
 "Mike Judge",
 "1999-02-19",
 1,
 "Work Sucks",
 "19.95",
 1
],[
 3,
 "Super Troopers",
 "Jay Chandrasekhar",
 "2002-02-15",
 1,
 "Altered State Police",
 "14.95",
 1
]
 //...more rows of data removed for readability...//
],
 reader: new Ext.data.ArrayReader({id:'id'}, [
 'id',
 'title',
 'director',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 'price',
 'available'
]
});

If we viewed this code in a browser we would not see anything—that's because a
data store is just a way of loading and keeping track of your data. The web browser's
memory has our data in it. Now we need to decide how to display it to the user.

Defining your data for the data store
The reader needs to know which fields to read in as data for our data store, so we
will need to define these.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[77]

Fields are defined using an array of objects—or if the data is to be read verbatim, just
a string specifying the field name. All except one of our fields in this example can be
defined with a simple name. For example, the title field could be defined using an
object like this:

{name: 'title'}

However, in our case, because we are just reading in the data as a string, we can
simply pass the field name and save some typing:

'title'

The released field is different because we want to treat its data appropriately, as a
date type. For each field format type, there may be options to define the format of
the data more explicitly. With the date type, there is a dateFormat string that needs
to be defined. If you have used PHP, these date format strings will look familiar,
because Ext uses the same date format strings that PHP does.

{name: 'released', type: 'date', dateFormat: 'Y-m-d'}

Specifying data types
Ext JS has many ways to properly read in particular data types. They are shown here:properly read in particular data types. They are shown here:read in particular data types. They are shown here:

Field Type Description Information

string String data

int Number Uses JavaScripts parseInt function

float Floating point number Uses JavaScripts parseFloat function

boolean True/False data

date Date data dateFormat config needed

Below are a few useful data types that I take advantage of very often:

Field Type Description Usage

date Data
containing a
date

You also have to specify the dateFormat. This tells Ext
how to turn text data into dates

Y-m-d means 'full 4 digit year-numbered
month-numbered day'

dateFormat in Ext is the same as in PHP, and there's
a handy reference to different date formats online here:
http://www.php.net/date

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[78]

Field Type Description Usage

int Numeric data Treats the value as an integer—this is useful when you
plan on making comparisons of your data to perform other
actions, such as adding two columns together

boolean
or bool

True/False
data

Takes care of reading the different ideas of what boolean
values are, such as converting a string to an actual boolean
value, or translating zero and one to boolean values

If we were to display the data just as the reader sees it, we would end up with
something like this:

Now that is ugly—here's a breakdown of what happened:

The released date has been type set properly as a date, and interpreted
from the value in our data. It's provided in the standard ugly JavaScript date
format—luckily Ext has ways to make this look pretty.

The Price column has been type set as a floating point number. Note that
there is no need to specify the decimal precision.

The Avail column has been interpreted as a true boolean value, even if the
raw data was not a true boolean value.

This is why it's useful to specify the type of data that is being read, and apply any
special options that are available.

Displaying the GridPanel
The thing that pulls everything together is the GridPanel, which takes care of placing
the data into columns and rows, along with adding column headers, and boxing
everything together in a neat little package.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[79]

The movie data isn't much good to anybody just sitting in the computer's memory.
Let's display it in a grid:

1. Add your data store to the following GridPanel code:

 Ext.onReady(function(){

 // add your data store here

 var grid = new Ext.grid.GridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:200,
 width:500,
 store: store,
 columns: [
 {header: "Title", dataIndex: 'title'},
 {header: "Director", dataIndex: 'director'},
 {header: "Released", dataIndex: 'released',
 renderer: Ext.util.Format.dateRenderer('m/d/Y')},
 {header: "Genre", dataIndex: 'genre'},
 {header: "Tagline", dataIndex: 'tagline'}
]
 });

 });

2. Load it in a browser, and here's what you will see:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[80]

How did that work?
Our data store is passed into the grid along with a column model that determines
how the columns and column headers are to be displayed. This is different from the
field data used in the reader, which was defined so that the reader knew how to
read data.

Configuring the GridPanel
The GridPanel is the widget that ties everything together:

Ext.grid.GridPanel

Only a few basic things are needed to set up the GridPanel:

Field type Description Usage

renderTo Where
should the
grid panel be
displayed?

This needs to be a valid DOM object, or the ID of a DOM
element. Later on, we will pass the GridPanel directly
into the other widgets to be rendered. So this config
option will become obsolete.

frame Frames the
grid panel

This just adds a nice border around the GridPanel
along with a title bar. It's not required, but looks good
when rendered to the page.

height and
width

Size in pixels A height is almost always required when using a
grid, as the grid itself cannot determine its own height.
When we get into using grids in a layout, this will no
longer be needed.

store Our data This is a reference to a valid data store where our
data lives.

columns Column
model

This is an array of objects defining the columns
of our grid.

stripeRows Stripe rows This is set to true to alternate the colors in the rows of
data.

Our basic setup for a grid panel will look something like this:

var grid = new Ext.grid.GridPanel({
 renderTo: Ext.getBody(),
 frame:true,
 title: 'Movie Database',
 height:200,
 width:500,
 store: store,
 columns: [insert columns here]
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[81]

We can almost read through the configuration like a sentence:

Render our grid into the body of the document, frame it, and give it a title
of 'Movie Database'. The height will be 200 and the width 500; it will use
our 'store' data store and have the columns specified.

The one reason why I love object-based configuration so much is that it is human
readable. We never have to go to the manual to look up what argument 3 of function
x is; we simply say "make it 200 tall and 500 wide".

Defining a Grids column model
To define our grid's columns, we need to create an array of objects that define how
these columns are to be displayed and treated.

columns: [
 {header: 'Title', dataIndex: 'title'},
 {header: 'Director', dataIndex: 'director'},
 {header: 'Released', dataIndex: 'released'},
 {header: 'Genre', dataIndex: 'genre'},
 {header: 'Tagline', dataIndex: 'tagline'}
]

This will create grid column headers that look like this:

The object defining each column can have many config options, but requires that at
least a header and dataIndex be defined. The header config is simply the text to be
displayed in the column header. The dataIndex config is the name of the data field
to be used in that column. We defined these when we set up the data stores reader.

Here are some other useful config options for the column model:

Option Description Usage

renderer Specifies how the
data should be
displayed

Can be used to format the data for this column into your
preferred format. Any type of data can be transformed.
We will learn about these in the next few pages.

hidden Hides the column Boolean value defining whether or not the column
should be displayed.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[82]

Option Description Usage

width Specifies the
column width in
pixels

The width of the column. Default is 100 pixels;
overflowing content is hidden.

sortable Specifies whether
the column is
sortable

Boolean value specifying whether or not the column can
be sorted.

Using cell renderers
We can do some pretty neat things with cell rendering. There are few limitations to
stop us from making the cell look like or contain whatever we want. All that needs to
be done is to specify one of the built-in cell formatting functions provided by Ext JS,
such as usMoney, or create our own cell renderer that returns a formatted value.
Let's take a look at using the built-in cell renderers first. Then we can look at
creating our own.

Formatting data using the built-in cell

renderers
Many built-in formatting functions exist to take care of common rendering
requirements. One that I use quite often is the date renderer:

renderer: Ext.util.Format.dateRenderer('m/d/Y')

Some other renderers include some commonly-required formatting, such as money,
capitalize, and lowercase.

Here are some renderers that most people find useful:

Renderer Description Usage

dateRenderer Formats
a date for
display

Can be used to format the data for this column into
your preferred date format. Any type of date can be
transformed.

uppercase
lowercase

Upper and
lower case
conversion

Converts the string to completely upper or lower
case text.

capitalize Pretty text Formats a text string to have correct capitalization.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[83]

Creating lookup data stores—custom

cell rendering
We're going to start by taking the 'genre' column, which has a numeric value, and
looking up that value in the data store we created in the Forms chapter to find the
textual representation of our genre number.

First, we add a config option to the column model that tells it which function to use
for rendering the cell's content.

{header: 'Genre', dataIndex: 'genre', renderer: genre_name}

Now let's create that function. The function call is passed the value of its cell as the
first argument. The second argument is a cell object, while the third is the data store
for that grid—neither of which we will use for this renderer. So let's just leave them.

function genre_name(val){
 return genres.queryBy(function(rec){
 if (rec.data.id == val){
 return true;
 }else{
 return false;
 }
 }).itemAt(0).data.genre;
}

The renderer function is passed the value of the current cell of data. This value can
be tested, and actions can be performed on it—whatever value is returned by the
function is rendered to the grid cell. A queryBy handler is used to filter the data from
our store. It accepts a function that performs a comparison against each row of data,
and returns true to use the row that matches.

Just for good measure, here is a compacted version of the same function. It's not as
easy to read as the first version, but accomplishes the same result.

function genre_name(val){
 return genres.queryBy(function(rec){
 return rec.data.id == val;
 }).itemAt(0).data.genre;
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[84]

Combining two columns
The lookup data store is a very useful renderer. However, it's more common for
developers to combine two columns to form a single cell, for example, to perform a
calculation on a pair of columns to figure out a total, percentage, remainder, and so
on or to concatenate two or more text fields.

Let's just take the title of our movie, and append the tagline field underneath the
title. The first step will be to hide the tagline column, since it will be displayed along
with the title field—we don't need it shown in two places. Hiding the column can be
done in our column model.

{header: 'Tagline', dataIndex: 'tagline', hidden: true}

The next step is our renderer function that will take care of combining the fields.

function title_tagline(val, x, store){
 return ''+val+'
'+store.data.tagline;
}

I went ahead and bolded the title as well, to provide some contrast between the
two pieces of data. As you can see, HTML tags work just fine within grid cells. The
next step would be to add the renderer config to our column model, referencing the
title_tagline function that we just created.

{header: 'Title', dataIndex: 'title', renderer: title_tagline}

This will make the title column look like this:

Generating HTML and graphics
Let's get some visuals by placing an image into each row, which will show the cover
art for each movie title. As we just found out, we can use plain HTML within the cell.
So all that needs to happen is to create a renderer that grabs our field containing the
filename of the image and write that into an IMG tag as the SRC attribute.

function cover_image(val){
 return '';
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[85]

With this fairly straightforward function, and setting a column renderer, we have an
image in our grid:

{header: 'Cover', dataIndex: 'coverthumb', renderer:
 cover_image}

If you make all these renderer additions, the grid should now look like this:

Built-in features
Ext has some very nice built-in features to help complete the spreadsheet-like
interface. Columns have a built-in menus that provide access to sorting, displaying,
and hiding columns.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[86]

Client-side sorting
Unless specified as a server-side (remotely) sorted grid, an Ext grid is able to sort
columns on the client side. Server-side sorting should be used if the data is paged,
or if the data is in such a format that client-side sorting is not possible. Client-side
sorting is quick, easy, and built-in:

{header: 'Tagline', dataIndex: 'tagline', sortable: true}

We can also accomplish this after the grid has been rendered:

var colmodel = grid.getColumnModel();
colmodel.getColumnById('tagline').sortable = true;

Our column model controls the display of columns and column headers. If we
grab a reference to the column model by asking for it from the grid, then we can
make changes to the columns after it has been rendered. We do this by using the
getColumnById handler that the column model provides us with, and which accepts
the column ID as the argument.

Hidden/visible columns
Using the column header menu, columns can be hidden or shown. This can also be
changed at a config level, to have columns hidden by default, as shown below:

{header: "Tagline", dataIndex: 'tagline', hidden: true}

The more exciting way is to do this after the grid has been rendered, by using the
functions Ext provides:

Var colmodel = grid.getColumnModel();
colmodel.setHidden(colmodel.getIndexById('tagline'),true);

Grabbing a reference to the column model again will allow us the make this change.

Column reordering
Dragging a column header will allow the user to reorder the entire column into a
new order within the grid. All of this is enabled by default as part of the built-in
functionality of the grid.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[87]

Any column can be dragged to a different order in the grid . This screenshot shows
the Price column being moved to between the Title and Director columns.

We can disable this functionality entirely by setting a config option in the GridPanel:

enableColumnMove: false

This move event—and many other events in the grid—can be monitored and
responded to. For example, we could monitor the movement of columns and pop up
a message based on where the column was moved to:

grid.getColumnModel().on('columnmoved',
 function(cm,oindex,nindex) {
 var title = 'You Moved '+cm.getColumnHeader(nindex);
 if (oindex > nindex){
 var dirmsg = (oindex-nindex)+' Column(s) to the Left';
 }else{
 var dirmsg = (nindex-oindex)+' Column(s) to the Right';
 }
 Ext.Msg.alert(title,dirmsg);
 }
);

Many different events can be monitored using the same technique. The grid, data
store, and column model each have their own set of events that can be monitored, all
of which we will learn about in more detail later in this chapter.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[88]

Displaying server-side data in the grid
With Ext we can pull data into our web page in many ways. We started by pulling
in local array data for use in the grid. Now we are going to pull the data in from an
external file and a web server.

Loading the movie database from an XML file
We have this great movie database now, but each time I want to add a new movie I
have to edit the JavaScript array. So why not store and pull our data from an XML
file instead? This will be easier to update, and the XML file could even be generated
from a database query or a custom script.

Lets take a look at an example of how our XML file would be laid out like:

<?xml version="1.0" encoding="UTF-8"?>
<dataset>
 <row>
 <id>1</id>
 <title>Office Space</title>
 <director>Mike Judge</director>
 <released>1999-02-19</released>
 <genre>1</genre>
 <tagline>Work Sucks</tagline>
 <coverthumb>84m.jpg</coverthumb>
 <price>19.95</price>
 <active>1</active>
 </row>
 <row>
 <id>3</id>
 <title>Super Troopers</title>
 <director>Jay Chandrasekhar</director>
 <released>2002-02-15</released>
 <genre>1</genre>
 <tagline>Altered State Police</tagline>
 <coverthumb>42m.jpg</coverthumb>
 <price>14.95</price>
 <active>1</active>
 </row>
 //...more rows of data removed for readability...//
</dataset>

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[89]

The other change we would need to make is to alter the data reader, and set the
location of our XML file so that the data store knows where to fetch the data from.

There are four basic changes that need to happen when moving from local to
remote data:

The url config option, specifying the location of our data, needs to be
added—this will replace the data config option that we used to store
local data

The reader is changed from an ArrayReader to an XmlReader to deal
with the differences involved in reading from an XML format instead of
an array format

The XmlReader is told which element contains a record or row of data by
setting the record config option

A call needs to be added to the load function that tells our data store to pull
in the data from the file and parse it into memory

var store = new Ext.data.Store({
 url: 'movies.xml',
 reader: new Ext.data.XmlReader({
 record:'row',
 id:'id'
 }, [
 'id',
 'coverthumb',
 'title',
 'director',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 {name: 'price', type: 'float'},
 {name: 'available', type: 'bool'}
])
});

store.load();

Try making these changes and see if your grid still works—there should be no
noticeable difference when changing data sources or formats.

Note that to make the change from local to remote data, and from an array format
to an XML format, the only changes we needed to make were to the data store. Ext
isolates these types of changes by using a common data store that is able to use an
external reader to read many formats.

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[90]

Loading the movie database from a JSON file
We're in the same boat as XML with this data format. Just changing the reader and
setting up some config options will take care of everything.

The JSON rows of data are expected to be in the form of an array of objects— our
movies.json file will therefore contain data like this:

{
 success:true,
 rows:[
 {
 "id":"1",
 "title":"Office Space",
 "director":"Mike Judge",
 "released":"1999-02-19",
 "genre":"1",
 "tagline":"Work Sucks",
 "coverthumb":"84m.jpg",
 "price":"19.95",
 "active":"1"
 },{
 "id":"3",
 "title":"Super Troopers",
 "director":"Jay Chandrasekhar",
 "released":"2002-02-15",
 "genre":"1",
 "tagline":"Altered State Police",
 "coverthumb":"42m.jpg",
 "price":"14.95",
 "active":"1"
 }
 //...more rows of data removed for readability...//
]
}

The main difference between setting up a JSON reader versus an XML reader, is that
the JSON reader needs to know the name of the root element that holds our array
objects (the data). So instead of specifying a record config, we need to specify a
root config:

var store = new Ext.data.Store({
 url: 'movies.json',
 reader: new Ext.data.JsonReader({
 root:'rows',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[91]

 id:'id'
 }, [
 'id',
 'coverthumb',
 'title',
 'director',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 {name: 'price', type: 'float'},
 {name: 'available', type: 'bool'}
])
});

store.load();

This grid will have an identical look and the same functionality as the array and the
XML grids that we created earlier.

JSON is a format native to JavaScript, and will end up being the quickest
format for the data store to read, which means that our grid will be
displayed much faster.

Loading data from a database using PHP
The setup for our GridPanel stays the same. But instead of grabbing a static file with
the JSON data, we can pull the data from a PHP script that will fetch the data from a
database, and format it into JSON that Ext is able to read:

<?php

// connect to database

$sql = "SELECT * FROM movies";
$arr = array();

If (!$rs = mysql_query($sql)) {

 Echo '{success:false}';

}else{

 while($obj = mysql_fetch_object($rs)){
 $arr[] = $obj;
 }

 Echo '{success:true,rows:'.json_encode($arr).'}';

}

?>

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[92]

The PHP code used in these examples is meant to be the bare minimum
needed to get the job done. In a production environment you would want
to account for security against SQL injection attacks, other error checking,
and probably user authentication—which the example code does not
account for.

Programming the grid
Most of the code we have written so far concerns configuring the grid prior to it
being displayed. Often, we will want the grid to do something in response to user
input. One of the common interactions in a grid is to select or move the rows of data.
Ext JS refers to this interaction and how it's handled as the "selection model". Let's
see how to set one up.

Working with cell and row selections
Ext grids provide ways of monitoring user interaction with the grids rows, cells
and columns with a thing called the selection model. The selection model is used
to determine how rows, columns, or cells are selected, and how many items can be
selected at a time. This allows us to create listeners for these selection events, along
with giving us a way to query which rows have been selected.

Some of the selection models are:

CellSelectionModel: This lets the user to select a single cell from
the grid

RowSelectionModel: This lets the user select an entire row from the grid

ColumnSelectionModel: This lets the user select an entire column from the
grid

CheckBoxSelectionModel: This one uses a checkbox to enable row selections

Choosing a selection model is something that depends on your project's
requirements. For our movie database, we will use a row selection model, which is
the most commonly used type of selection model.

The selection model is defined in the GridPanel config by using the sm config option.

sm: new Ext.grid.RowSelectionModel({
 singleSelect: true
})

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[93]

We will also pass the selection model a config that specifies single row selections
only. This stops the user from selecting multiple rows at the same time.

Listening to our selection model for

selections
Listeners for a grid can be included in many different places depending on the
desired interaction. Earlier, we applied a listener to our column model because we
wanted to listen for column activity.

Here, we will add a listener to the selection model because we want to know when
a user has selected a movie.

sm: new Ext.grid.RowSelectionModel({
 singleSelect: true,
 listeners: {
 rowselect: {
 fn: function(sm,index,record) {
 Ext.Msg.alert('You Selected',record.data.title);
 }
 }
 }
})

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[94]

Selecting a row now brings up an alert dialog. Let's take a look at what
is happening here:

A listener is set for the rowselect event. This waits for a row to be selected,
and then executes our function when this happens.

Our function is passed a selection model, the numeric index of the row
selected (starting with zero for the first row), and the data record of the row
that was selected.

Using the data record that our function received, we can grab the title of
the movie selected and put it into a message dialog.

Manipulating the grid (and its data) with code
Many functions are available for manipulating the grid and the data in the
grid. These can be tied into other Ext widgets to create pretty much any
functionality needed.

Altering the grid at the click of a button
Here, we are going to add a top toolbar, which will have a button that brings up a
prompt allowing the movie title to be edited.

tbar: [{
 text: 'Change Title',
 handler: function(){
 var sm = grid.getSelectionModel();
 if (sm.hasSelection()){
 var sel = sm.getSelected();
 Ext.Msg.show({
 title: 'Change Title',
 prompt: true,
 buttons: Ext.MessageBox.OKCANCEL,
 value: sel.data.title,
 fn: function(btn,text){
 if (btn == 'ok'){
 sel.set('title', text);
 }
 }
 });
 }
 }
}]

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[95]

All we are really doing here is changing the data store. The data in our databasein our database
on the web server has stayed the same, and the web server has no idea whether
anything has changed. It's up to us to communicate this change to the server via an
AJAX request or via some other method you may prefer to use.

Let's take a quick look at what's happening here:

sm: The selection model is retrieved from our grid

sel: We used the selection model to retrieve the row that has been selected

sel.data: Using the data object of the selected item, we can grab its data

This basic method can be used to create many fun user interactions. Our limitation is
that there are only 24 hours in a day, and sleep catches up with everyone!

Advanced grid formatting
Because we are in the mood to create some user-grid interactions, let us add some
more buttons that do fun stuff.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[96]

Here is a button we can add to the top toolbar to allow us to hide or show a column.
We will also change the text of the button based on the visibility of the column:

{
 text: 'Hide Price',
 handler: function(btn){
 var cm = grid.getColumnModel();
 var pi = cm.getIndexById('price');
 if (cm.isHidden(pi)){
 cm.setHidden(pi,false);
 btn.setText('Hide Price');
 }else{
 cm.setHidden(pi,true);
 btn.setText('Show Price');
 }
 btn.render();
 }
}

We use a new handler here—getIndexById, which, as you can imagine, gets the
column index, and will be a number from zero to one less than the total number of
columns. This number is an indicator of where that column is in relation to the other
columns. In our grid code, the column price is the fourth column, which means that
the index is 3 because indexes start at zero.

Paging the grid
Paging requires that we have a server-side element (script) that will break up our
data into pages. Let's start with that. PHP is well-suited to this, and the code is
easy to understand and interpret into other languages. So we will use PHP for our
example.

When a paging grid is paged, it will pass start and limit parameters to the
server-side script. This is typical of what's used with a database to select a subset of
records. Our script can read in these parameters and use them pretty much verbatim
in the database query.

Here is a typical PHP script that would handle paging. We will name the file
movies-paging.php.

<?php

// connect to database

$start = ($_REQUEST['start'] != '') ? $_REQUEST['start'] : 0;
$limit = ($_REQUEST['limit'] != '') ? $_REQUEST['limit'] : 3;

$count_sql = "SELECT * FROM movies";
$sql = $count_sql . " LIMIT ".$start.", ".$limit;

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[97]

$arr = array();

If (!$rs = mysql_query($sql)) {

 Echo '{success:false}';

}else{

 $rs_count = mysql_query($count_sql);
 $results = mysql_num_rows($rs_count);

 while($obj = mysql_fetch_object($rs)){
 $arr[] = $obj;
 }

 Echo '{success:true,results:'.$results.',
 rows:'.json_encode($arr).'}';

}

?>

This PHP script will take care of the server-side part of paging. So now we just need
to add a paging toolbar to the grid—it's really quite simple!

Earlier we had used a top toolbar to hold some buttons for messing with the grid.
Now we are going to place a paging toolbar in the bottom toolbar slot (mostly
because I think paging bars look dumb on the top).

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[98]

The following code will add a paging toolbar:

bbar: new Ext.PagingToolbar({
 pageSize: 3,
 store: store
})

And of course we need to change theof course we need to change thewe need to change the url of our data store to the url of the PHP
server-side paging code. A totalProperty is also required when paging data. This
is the variable name that holds the total record count of rows in the database.

var store = new Ext.data.Store({
 url: 'movies-paged.php',
 reader: new Ext.data.JsonReader({
 root:'rows',
 totalProperty: 'results',
 id:'id'
 }, [
 // data column model removed for readability
])
});

Grouping
Grouping grids are used to provide a visual indication that sets of rows are similar
to each other. It also provides us with sorting that is confined to each group. So if we
were to sort by the price column, the price would sort only within each group
of items.

Grouping store
A special store is required, which is called...wait for it...the GroupingStore...tada!

The setup is similar to a standard store. We just need to provide a few more
configuration options, such as the sortInfo and the groupField. No changes to the
actual data are needed because Ext JS takes care of grouping on the client side.

 var store = new Ext.data.GroupingStore({
 url: 'movies.json',
 sortInfo: {
 field: 'genre',
 direction: "ASC"
 },
 groupField: 'genre',
 reader: new Ext.data.JsonReader({

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 5

[99]

 root:'rows',
 id:'id'
 }, // reader column model here //)
 });

We also need to add a view configuration to the grid panel. This view helps the grid
to visually account for grouped data.

 var grid = new Ext.grid.GridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:400,
 width:520,
 store: store,
 autoExpandColumn: 'title',
 columns: // column model goes here //,
 view: new Ext.grid.GroupingView()
 });

After making the changes needed for a grouping grid, we end up with something
that looks like this:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Displaying Data With Grids

[100]

If you now expand the context menu for the column headings, you will see a new
item in the menu for Group By This Field that will allow the user to change the
grouping column on the fly.

Summary
We have learned a lot in this chapter about presenting data in a grid. With this
new-found knowledge we will be able to organize massive amounts of data into easy
to understand grids.

Specifically, we covered:

Creating data stores and grids for display

Reading XML and JSON data from a server and displaying it in a grid

Rendering cells of data for a well formatted display

Altering the grid based on user interaction

We also discussed the intricacies of each of these elements, such as reading data
locally or from a server—along with paging. We also covered formatting cells using
HTML, images, and even lookups into separate data stores.

Now that we've learned about standard grids, we're ready to take it to the next level,
by making our grid cells editable just like a spreadsheet—which is the topic of the
next chapter.

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids
In the previous chapter we learned how to display data in a structured grid that
users could manipulate. But one major limitation was that there was no way
for the users to edit the data in the grid in-line. Fortunately, Ext provides an
EditorGridPanel, which allows the use of form field type editing in-line—and we
will learn about it in this chapter. This works much like Excel, allowing the user to
click on and edit cell data immediately.

In this chapter you will learn to:

Present the user with editable grids that are connected to a data store

Send edited data back to the server, enabling users to update server-side
databases using the Ext JS editor grid

Manipulate the grid from program code, and respond to events

Use tricks for advanced formatting and creating more powerful editing grids

But first, let's see what you can do with an editable grid.

What can I do with an editable grid?
The EditorGridPanel is very similar to the forms we were working with earlier. In
fact, an editor grid uses the exact same form fields as our form. By using form fields
to perform the grid cell editing we get to take advantage of the same functionality
that a form field provides. This includes restricting input, and validating values.
Combine this with the power of an Ext GridPanel, and we are left with a widget that
can do pretty much whatever we want.

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[102]

All of the fields in this table can be edited in-line using form fields such as the text
field, date picker, and combo box.

Working with editable grids
The change from a non-editable grid to an editable grid is quite a simple process to
start with. The complexity comes into the picture when we start to create a process to
handle edits and send that data back to the server. But once you learn how to do it,
that part can be quite simple as well.

Let's see how you would update the grid we created at the start of Chapter 5 to make
the title, director, and tagline editable. Here's what the modified code will look like:

var title_edit = new Ext.form.TextField();

var director_edit = new Ext.form.TextField({vtype: 'name'});

var tagline_edit = new Ext.form.TextField({
 maxLength: 45
});

var grid = new Ext.grid.EditorGridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:200,
 width:520,
 clickstoEdit: 1,
 store: store,
 columns: [
 {header: "Title", dataIndex: 'title',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[103]

 editor: title_edit},
 {header: "Director", dataIndex: 'director',
 editor: director_edit},
 {header: "Released", dataIndex: 'released',
 renderer: Ext.util.Format.dateRenderer('m/d/Y')},
 {header: "Genre", dataIndex: 'genre',
 renderer: genre_name},
 {header: "Tagline", dataIndex: 'tagline',
 editor: tagline_edit}
]
});

There are four main things that we need to do to make our grid editable. These are:

The grid definition changes from being Ext.grid.GridPanel to Ext.grid.
EditorGridPanel

We add the clicksToEdit option to the grid config—this option is not
required, but defaults to two clicks

Create a form field for each column that we would like to be editable

Pass the form fields into our column model via the editor config

The editor can be any of the form field types that already exist in Ext JS, or a custom
one of your own. We start by creating a text form field that will be used when editing
the movie title.

var title_edit = new Ext.form.TextField();

Then add this form field to the column model as the editor:

{header: "Title", dataIndex: 'title', editor: title_edit}

The next step will be to change from using the GripPanel component to using the
EditorGridPanel component, and to add the clicksToEdit config:

var grid = new Ext.grid.EditorGridPanel({
 renderTo: document.body,
 frame:true,
 title: 'Movie Database',
 height:200,
 width:520,
 clickstoEdit: 1,
 // removed extra code for clarity
})

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[104]

Making these changes has turned our static grid into an editable grid. We can click
on any of the fields that we set up editors for, and edit their values.

Here we see some changes have been made to the titles of a few of the movies,
turning them into musicals. The editor gets activated with a single click on the cell of
data; pressing Enter, the Tab key, or clicking away from the field will save the change,
and pressing the Escape key will discard any changes. This works just like a form
field, because, well… it is a form field.

The little red tick that appears in the upper-left corner indicates that the cell is
'dirty', which we will cover in just a moment. First, let's make some more complex
editable cells.

Editing more cells of data
For our basic editor grid, we started by making a single column editable. To set up
the editor, we created a reference to the form field:

var title_edit = new Ext.form.TextField();

Then we used that form field as the editor for the column:

{header: "Title", dataIndex: 'title', editor: title_edit}

That's the basic requirements for each field. Now let's expand upon this knowledge.

Edit more field types
Now we are going to create editors for the other fields. Different data types have
different editor fields and can have options specific to that field's needs.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[105]

Any form field type can be used as an editor. These are some of the standard types:

TextField

NumberField

ComboBox

DateField

TimeField

CheckBox

These editors can be extended to achieve special types of editing if needed, but for
now, lets start with editing the other fields we have in our grid—the release date
and the genre.

Editing a date value
A DateField will work perfectly for editing the release date column in our grid. So
let's use that. We first need to set up the editor field and specify which format to use:

release_edit = new Ext.form.DateField({
 format: 'm/d/Y'
});

Then we apply that editor to the column, along with the renderer that we
used earlier:

{header: "Released", dataIndex: 'released', renderer:
 Ext.util.Format.dateRenderer('m/d/Y'), editor: release_edit}

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[106]

This column also takes advantage of a renderer, which will co-exist with the
editor. Once the editor field is activated with a single click, the renderer passes the
rendering of the field to the editor and vice versa. So when we are done with editing
the field, the renderer will take over formatting the field again.

Edit with a ComboBox
Let's set up an editor for the genres column that will provide us with a list of the
valid genres to select from—sounds like a perfect scenario for a combo box.

var genre_edit = new Ext.form.ComboBox({
 typeAhead: true,
 triggerAction: 'all',
 mode: 'local',
 store: genres,
 displayField:'genre',
 valueField: 'id'
});

Simply add this editor to the column model, like we did with the others:

{header: "Genre", dataIndex: 'genre', renderer: genre_name,
 editor: genre_edit}

Now we end up with an editable field that has a fixed selection of options.

Reacting to a cell edit
Of course, we now need to figure out how to save all of this editing that we have
been doing. I am sure the end user would not be so happy if we threw away all
of their changes. We can start the process of saving the changes by listening for
particular edit events, and then reacting to those with our own custom handler.
Before we start coding this, we need to understand a bit more about how the editor
grid works.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[107]

What's a dirty cell?
A field that has been edited and has had its value changed is considered to be 'dirty'
until the data store is told otherwise. This 'dirty' value has been saved to a temporary
data store that contains a version of our data with all of the changes made. Our
original data store stays unchanged.

We can save the changes to the primary data store by calling the commit function,
or we can discard the changes by calling the reject handler. These handlers can
be called for the entire grid, for a single cell of data, or as the result of an event that
is happening.

Let's imagine e is an edit event object. We could reject a record by calling the
reject handler:

e.record.reject();

Alternatively, we can save our change by committing it:

e.record.commit();

Reacting when an edit occurs
To save our changes to the data store, we are going to listen for an edit being
completed, which is accomplished by listening for the afteredit event.

The listener we need is added to the grid panel:

var grid = new Ext.grid.EditorGridPanel({
 // more config options clipped //,
 title: 'Movie Database',
 store: store,
 columns: // column model clipped //,
 listeners: {
 afteredit: function(e){
 if (e.field == 'director' && e.value == 'Mel Gibson'){
 Ext.Msg.alert('Error','Mel Gibson movies not allowed');
 e.record.reject();
 }else{
 e.record.commit();
 }
 }
 }
});

As with other listeners in Ext, the editor grid listeners are given a function to execute
when the event occurs. The function for afteredit is called with a single argument:
an object, which has a number of useful properties. We can use these properties to
make a decision about the edit that just happened.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[108]

Property Description

grid The grid that the edit event happened in

record The entire record that's being edited; other column values can
be retrieved using this objects 'data' property

field The name of the column that was edited

value A string containing the new value of the cell

originalValue A string containing the original value of the cell

row The index of the row that was edited

column The index of the column that was edited

For instance, if we wanted to make sure that movies directed by Mel Gibson never
made it into our database, we could put a simple check in place for that scenario:

if (e.field == 'director' && e.value == 'Mel Gibson'){
 Ext.Msg.alert('Error','Mel Gibson movies not allowed');
 e.record.reject();
}else{
 e.record.commit();
}

First, we check to see that the director field is the one being edited. Next, we make
sure the new value entered for this field is not equal to Mel Gibson. If either of these
is false, we commit the record back to the data store. This means that once we call the
commit handler, our primary data store is updated with the new value.

e.record.commit();

We also have the ability to reject the change—sending the changed value into the
black hole of space, lost forever.

e.record.reject();

Of course, all we have done so far is update the data that is stored in the browsers'
memory. I'm sure you're just dying to be able to update a web server. We will get to
that soon enough.

Deleting and adding in the data store
We are going to create two buttons to allow us to alter the data store—to add or
remove rows of data. Let us set up a top toolbar (tbar) in the grid to house
these buttons:

var grid = new Ext.grid.EditorGridPanel({
 // more config options clipped //,

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[109]

 tbar: [{
 text: 'Remove Movie'
 }]
}

Removing grid rows from the data store
Let's add a remove button to the toolbar in our grid. When this button is clicked, it
will prompt the user with a dialog that displays the movie title. If the Yes button is
clicked, then we can remove the selected row from the data store, otherwise we will
do nothing.

{
 text: 'Remove Movie',
 icon: 'images/table_delete.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 var sm = grid.getSelectionModel();
 var sel = sm.getSelected();
 if (sm.hasSelection()){
 Ext.Msg.show({
 title: 'Remove Movie',
 buttons: Ext.MessageBox.YESNOCANCEL,
 msg: 'Remove '+sel.data.title+'?',
 fn: function(btn){
 if (btn == 'yes'){
 grid.getStore().remove(sel);
 }
 }
 });
 };
 }
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[110]

Let's take a look at what is happening here. We have defined some variables that we
will use to determine if there were selections made, and what the selections were:

sm: The selection model is retrieved from our grid

sel: We used the selection model to retrieve the row that has been selected

grid.getStore().remove(sel): Passing the data stores remove function,
a row will remove that row from the store and update the grid

It's as simple as that. The local data store that resides in the browser's memory
has been updated. But what good is deleting if you can't add anything—just be
patient, grasshopper!

Adding a row to the grid
To add a row we have a bit of a twist. We need to have a definition of what
the data looks like in order to be able to create a new row—just like it was created for
the data reader.

var ds_model = Ext.data.Record.create([
 'id',
 'coverthumb',
 'title',
 'director',
 {name: 'released', type: 'date', dateFormat: 'Y-m-d'},
 'genre',
 'tagline',
 {name: 'price', type: 'float'},
 {name: 'available', type: 'bool'}
]);

Once we have this definition of the data, we can insert a new row fairly easily. A
button can be added to the same top toolbar that will be used to insert the row:

{
 text: 'Add Movie',
 icon: 'images/table_add.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 grid.getStore().insert(
 0,
 new ds_model({
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[111]

 })
);
 grid.startEditing(0,0);
 }
}

The first argument to the insert function is the point at which to insert the record.
I have chosen zero, so the record will be inserted at the very top. If we wanted to
insert the row at the end we could simply retrieve the row count for our data store.
Because the row index starts at zero, and the count at one, incrementing the count is
not necessary because the row count will always be one greater than the last item in
the index.

grid.getStore().insert(
 grid.getStore().getCount(),
 new ds_model({
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''
 })
);
grid.startEditing(grid.getStore().getCount()-1,0);

Now we are back to inserting a row. The second argument is the new record
definition, which can be passed with some default values.

 new ds_model({
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''
 })

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[112]

After inserting the new row, we call a function that will activate a cells editor.
This function just needs a row and column index number to activate the editor for
that cell.

grid.startEditing(0,0);

This gives our user the ability to start typing the movie title directly after clicking the
Add Movie button.

Saving edited data to the server
Everything we have done so far is related to updating the local data store residing in
the memory of the web browser. More often that not, we will want to save our data
back to the server to update a database, file system, or something along those lines.

This section will cover some of the more common requirements of grids used in web
applications to update server-side information.

Updating a record

Creating a new record

Deleting a record

Sending updates back to the server
Earlier, we had set up a listener for the afteredit event. We will be using this
afteredit event to send changes back to the server on a cell-by-cell basis.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[113]

To update the database with cell-by-cell changes, we need to know three things:

field: What field has changed

Value: What the new value of the field is

record.id: Which row from the database the field belongs to

This gives us enough information to be able to make a distinct update to a
database. We communicate with the server (using AJAX) by calling the
connection request method.

listeners: {
 afteredit: function(e){
 var conn = new Ext.data.Connection();
 conn.request({
 url: 'movie-update.php',
 params: {
 action: 'update',
 id: e.record.id,
 field: e.field,
 value: e.value
 },
 success: function(resp,opt) {
 e.commit();
 },
 failure: function(resp,opt) {
 e.reject();
 }
 });
 }
}

This will send a request to the movie-update.php script with four parameters in
the form of post headers. The params that we pass as a config object into the data
connection are all sent through the headers to our script on the server side.

The movie-update.php script should be coded to recognize the 'update' action
and then read in the id, field, and value data and then proceed to update the file
system or database, or whatever else we need to make it happen.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[114]

This is what's available to us when using the afteredit event:

Option Description

grid Reference to the current grid

record Object with data from the row being edited

field Name of the field being edited

value New value entered into the field

originalValue Original value of the field

row Index of the row being edited—this will help in finding it again

column Index of the column being edited

Deleting data from the server
When we want to delete data from the server, we can handle it in very much the
same way as an update—by making a call to a script on the server, and telling it
what we want done.

For the delete trigger, we will use another button in the grids toolbar.

{
 text: 'Remove Movie',
 icon: 'images/table_delete.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 var sm = grid.getSelectionModel();
 var sel = sm.getSelected();
 if (sm.hasSelection()){
 Ext.Msg.show({
 title: 'Remove Movie',
 buttons: Ext.MessageBox.YESNOCANCEL,
 msg: 'Remove '+sel.data.title+'?',
 fn: function(btn){
 if (btn == 'yes'){
 var conn = new Ext.data.Connection();
 conn.request({
 url: 'movie-update.php',
 params: {
 action: 'delete',
 id: e.record.id
 },
 success: function(resp,opt) {
 grid.getStore().remove(sel);

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[115]

 },
 failure: function(resp,opt) {
 Ext.Msg.alert('Error',
 'Unable to delete movie');
 }
 });
 }
 }
 });
 };
 }
}

Just as with edit, we are going to make a request to the server to have the row
deleted. The movie-update.php script would see that the action is delete and
execute the appropriate action.

Saving new rows to the server
Here we are going to add another button that will add a new row. It sends the
request to the server with the appropriate parameters and reads the insert id from
the server's response. Using this insert id, we are able to add the row to our data
store with the unique identifier generated on the server side for that row.

{
 text: 'Add Movie',
 icon: 'images/table_add.png',
 cls: 'x-btn-text-icon',
 handler: function() {
 var conn = new Ext.data.Connection();
 conn.request({
 url: 'movies-update.php',
 params: {
 action: 'insert',
 title:'New Movie'
 },
 success: function(resp,opt) {
 var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;
 grid.getStore().insert(0,
 new ds_model({
 id:insert_id,
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Editor Grids

[116]

 })
);
 grid.startEditing(0,0);
 },
 failure: function(resp,opt) {
 Ext.Msg.alert('Error','Unable to add movie');
 }
 });
 }
}

Much like editing and deleting, we are going to send a request to the server to have
a new row inserted. This time, we are actually going to take a look at the response to
get the insert id (the unique identifier for that row) to pass back to our grid so that
when we start editing that row, it will be easy to save our changes.

success: function(resp,opt) {
 var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;
 grid.getStore().insert(0,
 new ds_model({
 id:insert_id,
 title:'New Movie',
 director:'',
 genre:0,
 tagline:''
 })
);
 grid.startEditing(0,0);
}

Our success handler function has a couple of arguments, the first is the response
object, which contains the response text from our movie-update.php script. Because
that response is in a JSON format, we're going to decode it into a usable object and
grab the insert id value.

var insert_id = Ext.util.JSON.decode(
 resp.responseText
).insert_id;

When we insert this row into our data store, we can use the insert id that
was retrieved.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 6

[117]

Summary
The Ext JS grid functionality is one of the most advanced portions of the framework.
With the backing of the Ext.data package, the grid can pull information from a
remote server in an integrated manner—this support is built into the grid class.
Thanks to the array of configuration options available, we can present this data easily
in a variety of forms, and set it up for manipulation by our users.

In this chapter, we've seen how the data support provided by the grid offers an
approach to data manipulating that will be familiar to many developers. The
amend-and commit approach allows fine-grained control over the data that is sent
to the server when used with a validation policy, along with the ability to reject
changes. As well as amending the starting data, we've seen how the grid provides
functionality to add and remove rows of data.

We've also shown how standard Ext JS form fields such as the ComboBox can
be integrated to provide a user interface on top of this functionality. With such
strong support for data entry, the grid package provides a very powerful tool for
application builders.

In the next chapter, we'll demonstrate how components such as the grid can be
integrated with other parts of an application screen by using the extensive layout
functionality provided by the Ext JS framework.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts
A layout turns your forms, grids, and other widgets into a true web application.
The most widely-used layout styles can be found in operating systems such as
Microsoft's Windows, which uses border layouts, resizable regions, accordions, tabs,
and just about everything else you can think of.

To keep looks consistent between browsers, and to provide common user interface
features, Ext JS has a powerful layout management system. The sections are
manageable, and can be moved or hidden, and they can appear at the click of ak of a of a
button, right when and where you need them to.

In this chapter you will learn to:

Lay out an application style screen

Create tabbed sections

Manage Ext widgets within a layout

Learn advanced and nested layouts

What are layouts, regions, and

viewports?
Ext uses Panels, which are the basis of most layouts. We have used some of these,
such as FormPanel and GridPanel, already. A viewport is a special panel-like
component that encloses the entire layout, fitting it into the whole visible area of our
browser. For our first example, we are going to use a viewport with a border layout
that will encapsulate many panels.

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[120]

A viewport has regions that are laid out in the same way as a compass, with North,
South, East and West regions—the Center region represents what's left over in
the middle. These directions tell the panels where to align themselves within the
viewport and, if you use them, where the resizable borders are to be placed:

North

West Center East

South

The example we're creating will look like the following image, and combines many
of the previous examples we have created:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[121]

This layout is what's called a 'border' layout, which means that each region is
separated by a somewhat three dimensional border bar that can be dragged to resize
the regions. This example contains four panel regions:

North: The toolbar

West: A form

Center: Grid in a tab panel

East: A plain panel containing text

Note that there is no 'South' panel in this example—not every region needs to be
used in every layout.

Our first layout
Before we create our layout that uses only four regions let's go ahead and create a
layout that utilizes all the regions, and then remove the South panel. We are going
to create all of the regions as 'panels', which can be thought of as blank canvases to
which we will add text, HTML, images, or even Ext JS widgets.

var viewport = new Ext.Viewport({
 layout: 'border',
 renderTo: Ext.getBody(),
 items: [{
 region: 'north',
 xtype: 'panel',
 html: 'North'
 },{
 region: 'west',
 xtype: 'panel',
 split: true,
 width: 200,
 html: 'West'
 },{
 region: 'center',
 xtype: 'panel',
 html: 'Center'
 },{
 region: 'east',
 xtype: 'panel',
 split: true,
 width: 200,
 html: 'East'
 },{
 region: 'south',
 xtype: 'panel',
 html: 'South'
 }]
});

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[122]

Each region is defined as one of the four compass directions—East, West, North, and
South. The remainder in the middle is called the center region, which will expand to
fill all of the remaining space. Just to take up some blank space in each region and to
give a visual indicator as to where the panels are, we defined an 'HTML' config that
has just text. (This could also contain complex HTML if needed, but there are better
ways to set the contents of panels which we will learn about soon.)

Ext JS provides an easy, cross-browser compatible, speedy way to get a
reference to the body element, by using Ext.getBody().

If everything works out ok, you should see a browser that looks like this:

Now we have a layout with all five regions defined. These regions can have other
text widgets added into them, seamlessly, by using the xtype config. Alternatively
they can be divided up separately into more nested regions—for instance, the center
could be split horizontally to have its own South section.

A 'Center' region must always be defined. If one is not defined, the layout
will produce errors and appear as a jumbled set of boxes in the browser.

Splitting the regions
The dividers are set up for each panel by setting the split flag—the positioning of
the dividers is determined automatically based on the region the panel is in.

split: true

For this page, we have set the West and East regions as 'split' regions. This, by
default, makes the border into a resizing element for the user to change the size of
that panel.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[123]

I want options
Typically, when a split is used, it's combined with a few other options that make the
section more useful, such as width, minSize, and collapseMode.

Here are some of the more commonly-used options:

Option Value Description

split true/false Boolean value that places a resizable bar between the
sections

collapsible true/false Boolean value that adds a button to the title bar
which lets the user collapse the region with a single
click

collapseMode Only option is
mini mode, or
undefined for
normal mode

When set to 'mini', this adds a smaller collapse button
that's located on the divider bar, in addition to the
larger collapse button on title bar; the panel also
collapses into a smaller space

title String Title string placed in the title bar

bodyStyle CSS CSS styles applied to the body element of the panel.

minSize Pixels, ie: 200 The smallest size that the user can drag this panel to

maxSize Pixels, ie: 250 The largest size that the user can drag this panel to

margins In pixels: top,
right, bottom,
left, i.e.,: 3 0 3 3

Can be used to space the panel away from the edges
or away from other panels; spacing is applied outside
of the body of the panel

cmargins In pixels: top,
right, bottom,
left, i.e.,: 3 0 3 3

Same idea as margins, but applies only when the
panel is collapsed

Let's add a couple of these options to our west panel:

{
 region: 'west',
 xtype: 'panel',
 split: true,
 collapsible: true,
 collapseMode: 'mini',
 title: 'Some Info',
 bodyStyle:'padding:5px;',
 width: 200,
 minSize: 200,
 html: 'West'
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[124]

Adding these config options to our west panel would give us the following look:

 Normal/Expanded Collapsed

Expanding and collapsing a panel that does not have a width specified
can produce rendering problems. Therefore, it's best to specify a width
for panels—of course this is not needed for the center, as this panel
automatically fills the remaining space.

Tab panels
With Ext JS, tab panels are also referred to as a "card" layout because they work
much like a deck of cards where each card is layered directly above or below the
others and can be moved to the top of the deck, to be visible. We also get pretty
much the same functionality in our tab panel as a regular panel, including a title,
toolbars, and all the other usual suspects (excluding tools).

Adding a tab panel
If the Ext JS component is a panel type component, for instance, for instance GridPanel and
FormPanel, then we can add it directly to the layout using its xtype. Let's start by
creating a tabPanel:

{
 region: 'center',
 xtype: 'tabpanel',
 items: [{
 title: 'Movie Grid',
 html: 'Center'
 }]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[125]

The items config is an array of objects that defines each of the tabs contained in
this tabpanel. The title is the only option that's actually needed to give us a tab,
and right now html is just being used as a placeholder, to give our empty tab
some content.

We will also need to add an activeTab config that is set to zero to our tab panel.that is set to zero to our tab panel.to our tab panel.
This is the index of the tabs in the panel left to right starting with zero and counting
up for each tab. This tells the tab panel at position zero to make itself active by
default, otherwise, we would have no tabs displayed, resulting in a blank section
until the user clicked a tab.

{
 region: 'center',
 xtype: 'tabpanel',
 activeTab: 0,
 items: [{
 title: 'Movie Grid',
 html: 'Center'
 }]
}

If we take a look at this in a browser, we should see a tab panel in the center section
of our layout.

Adding more tabs is as easy as adding more items into the items array. Each tab
item is basically its own panel, which is shown or hidden, based on the tab title that
has been clicked on the tab panel.

{
 region: 'center',
 xtype: 'tabpanel',
 activeTab: 0,
 items: [{
 title: 'Movie Grid',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[126]

 html: 'Center'
 },{
 title: 'Movie Descriptions',
 html: 'Movie Info'
 }]
}

Both the Movie Grid and Movie Descriptions tabs are just plain panels right now.
So let's add some more configuration options and widgets to them.

Widgets everywhere
Earlier, I mentioned that any type of panel widget could be added directly to a
layout, just as we had done with the tabs. Let's explore this by adding another
widget to our layout—the grid.

Adding a grid into the tabpanel
As we now have these tabs as part of our layout, let's start by adding a grid panel to
one of the tabs. Adding the xtype config option to the grid config code you created
in Chapter 5, will produce a grid that fills one entire tab:

{
 region: 'center',
 xtype: 'tabpanel',
 activeTab: 0,
 items: [{
 title: 'Movie Grid',
 xtype: 'gridpanel',
 store: store,
 autoExpandColumn: 'title',
 columns: // add column model //,
 view: // add grid view spec //
 },{
 title: 'Movie Descriptions',
 html: 'Movie Info'
 }]

}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[127]

xtypes offer a quick way to instantiate a new component with minimal
typing. This is sometimes referred to as 'lazy rendering' because the
components sit around waiting to be displayed before they actually
execute any code. This method can help conserve memory in your
web application.

As we are adding this grid to a tab—which is essentially just a panel—there are some
things that we no longer need (like the renderTo option, width, height, and a frame).
The size, title, and border for the grid are now handled by our tab panel.

Now we should have a layout that looks like this:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[128]

Accordions
The accordion is a very useful layout that works somewhat like a tab panel, where
we have multiple sections occupying the same space, with only one showing at a
time. This type of layout is commonly used when we're lacking the horizontal space
needed for a tab panel, but instead have more vertical space available. When one of
the accordion panels is expanded, the others will collapse. Expanding and collapsing
the panels can be done either by clicking the panel's title bar or by clicking the plus/
minus icons along the rightmost side of the panel.

Nesting an accordion layout in a tab
We can nest a layout within a panel to create a more complex layout. For this
example, we will nest an accordion panel within one of our tabs.

By setting the layout to 'accordion' and adding three items, we will end up with three
panels in our accordion.

{
 title: 'Movie Descriptions',
 layout: 'accordion',
 items: [{
 title: 'Office Space',
 autoLoad: 'html/1.txt'
 },{
 title: 'Super Troopers',
 autoLoad: 'html/3.txt'
 },{
 title: 'American Beauty',
 autoLoad: 'html/4.txt'
 }]
}

This gives us a tab that has within it three accordion panels, which will load text fileswithin it three accordion panels, which will load text filesthree accordion panels, which will load text files
into their body sections. Note that the config on this is very similar to a tab panel—
the consistency between widgets in Ext JS makes it easy to set up different types of
widgets without having to look at the API reference for each one.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[129]

Now we should have a layout that looks like, this when we switch to the Movie
Descriptions tab:

Each panel now has a description of the movie, which was loaded from a text file on
the web server. Let's take a closer look at that.

autoLoad: 'html/1.txt'

This loads the file from the URL specified into the body section of the panel. The
file loaded can contain any type of HTML, which will show up just as if it were in a
browser by itself. As this is done via AJAX, if you're running the examples from your
file system instead of a local web server they will not load.

Note that the JavaScript contained within the loaded content will not
be executed and any HTML will be ignored.

Placing a toolbar in your layout
Next, let's add a toolbar to the North section of our layout. We can use the toolbar for
menus, buttons, and a couple of form fields, or maybe just a blinking marquee with
our name scrolling across it. We can change these easily later.

Let's take our toolbar items we used in the example code in Chapter 4—Buttons,
Menus, and Toolbar—and add them to this toolbar. We should also copy over the
Movies class we created in the toolbar chapter, if we want the buttons to work.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[130]

By changing the xtype to toolbar and copying the array of toolbar items over, we
will end up with a snazzy menu bar at the top of the screen.

{
 region: "north",
 xtype: 'toolbar',
 items: [{
 xtype: 'tbspacer'
 },{
 xtype: 'tbbutton',
 text: 'Button',
 handler: function(btn){
 btn.disable();
 }
 },{
 xtype: 'tbfill'
 },
 // more toolbar items here //]
}

This gives us a toolbar that fits nicely into the top of our layout—like an application
toolbar or menu bar that you would typically see in desktop applications.

You should end up with something that looks like this:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[131]

Even though this toolbar does not contain a blinking marquee with my name in it, it
will be quite useful for our application. All of the navigation for your application can
be placed in it, which might trigger new tabs to be added to the center region, or be
used used to search for movie titles, or whatever else that is needed.

A form to add new movies
A form panel will fit nicely into that currently-empty West region, and since it's
a panel type component, it can be added directly to our layout. Let's add the
movie form that we used in the forms chapter to the West section. But instead of
instantiating it, let's use the xtype config to perform lazy instantiation for the entire
form panel.

{
 region: 'west',
 xtype: 'form',
 items: // form fields //
 buttons: // form panel buttons //
}

The items config holds all of our form fields:

items: [{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director',
 anchor: '100%',
 vtype: 'name'
},{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
},{
 xtype: 'radio',
 fieldLabel: 'Filmed In',
 name: 'filmed_in',
 boxLabel: 'Color'
}, // more fields go here //]

Many xtypes exist, and the names are not exactly what you would
guess—for a full reference, look under the Component section in the
API reference.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[132]

After adding the form items and buttons, our layout should look like this:

Tricks and advanced layouts
Some of the more complex web applications will need to do things that are not as
simple as setting a few configuration values, for example nesting one layout within
another layout, or adding icons to your tabs. But with Ext JS these kinds of things are
made easy.

Nested layouts
When we nest one layout within another layouts region, we will occupy that entire
region's body so it cannot be used any more. Instead, the nested layout regions are
used for content.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[133]

For example, if we wanted the center region split into two horizontal regions, we could
add a nested layout with center and North regions. This is typical of an application
where you have a data panel (Center) to list email messages and a reader panel (South)
to preview the entire email when it's selected in the list in the North panel.

North

North
West

Center
East

South

A couple of things are needed for a nested layout—the layout type must be set,
and in this case, we are turning off the border so we don't get a doubled-up border,
as the container has its own border. Each of the items represents one of our
nested regions:

{
 title: 'Nested Layout',
 layout: 'border',
 border: false,
 items: [{
 region: 'north',
 height: 100,
 split: true,
 html: 'Nested North'
 },{
 region: 'center',
 html: 'Nested Center'
 }]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[134]

This produces a layout that would look like this:

Percentages are not allowed in border type layouts. There must always be
a 'center' region that fills the remaining space not taken up by the other
regions', which are all defined in pixel sizes.

Icons in tabs
Don't you just love it when you can have a visual indicator to show which tab does
what? That's where icons come into play. The icons on tabs work much like the icons
we added to the buttons in an earlier chapter. All we need to do is create a style with
the icon and add that style to our tabs configuration.

The style would look like this:

bomb {
 background-image:url(images/bomb.png) !important;
}

The tab config will need to have the iconCls property set to the style we've
just created:

{
 title: 'The Bomb',
 iconCls: 'bomb',
 html: 'Boom!'
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 7

[135]

Don't click on that tab too quickly, it might go off!

Programmatically manipulating a layout
We have the ability to modify just about anything, after the layout has been
rendered. For example, we can, like add new tabs, hide, and display panels and
change the content of any of the panels. Let's experiment with a couple of different
things we can do.

Now you see me, now you don't
Expanding and collapsing sections of your layout programmatically is a requirement
in most applications. So it should be no surprise by now that this can be done in Ext
JS as well.

The first thing we need to do is give our panel and viewport ids, so that we can
locate them. We can do this by setting the id config option in our layout and
panel configurations:

var viewport = new Ext.Viewport({
 layout: 'border',
 id: 'movieview',
 renderTo: document.body,
 items: [{
 // extra code removed //
 region: 'east',
 xtype: 'panel',
 id: 'moreinfo'
 // extra code removed //
 }
});

Now that both the layout and the panel have been given unique ids, we can use the
ids to interact with these components by using getCmp.

var moreinfo = Ext.getCmp('movieview').findById('moreinfo');

if (!moreinfo.isVisible()){
 moreinfo.expand();
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Layouts

[136]

This little bit of code will check to see if the panel is visible (expanded), and if its not
will expand it.

Give me another tab
Adding a tab is as easy as creating a single tab. We first need to locate the tab panel
within our layout. Luckily we just need to add an id config to our tab panel so that
we can easily locate it.easily locate it.locate it.

{
 region: 'center',
 xtype: 'tabpanel',
 id: ' movietabs',
 activeTab: 0,
 items: [{
 title: 'Movie Grid',
 // extra code removed //
 },{
 title: 'Movie Descriptions',
 html: 'Movie Info'
 }]
}

Then we can call the add handler for our tab panel and pass a basic config into it:

Ext.getCmp('movieview').findById('movietabs').add({
 title: 'Office Space',
 html: 'Movie Info'
});

This will add a tab that is titledthat is titled Office Space to theto the movietabs tab panel.

The add function is a way to add new items to a layout or a widget. Typically,
anything that you can pass into the items config of a component can also be passed
to the add handler.

Summary
In this chapter, we have been able to use many of the components outlined in the
previous chapters, within a layout. The layout really takes the various components
of Ext JS and uses them to create a true web application. We have seen that the layout
can integrate the different components of Ext JS into one fluid application. We
also learned how to change the state of panels, create nested layouts, and load
content dynamically.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow on Trees
Hierarchical data is something that most developers are intimately familiar with.
The root-branch-leaf structure is the underlying feature for many user interfaces,
from the file and folder representations in Windows Explorer to the classic family
tree showing children, parents, and grandparents. The Ext.tree package enables
developers to bring these data structures to the user with only a few lines of
code, and provides for a range of advanced cases with a number of simple
configuration options.

Although the default Ext JS icon set shows tree nodes as files and folders, it is not
restricted to the file system concept. The icons and text of the items, or nodes in your
tree, can be changed based on the dynamic or static data used to populate it—and
without requiring custom code. How about a security screen showing permission
groups containing a number of users, with icons showing a photo of each user, or
a gallery showing groups of photos, or image previews in the icons? Ext JS's tree
classes puts all of these scenarios within your grasp.

Planting for the future
Ultimately, the Ext JS tree doesn't care about the data you're displaying, because it's
flexible enough to deal with any scenario that you can come up with. Data can be
instructed to load up-front, or in logical bursts, which can become a critical feature
when you've got a lot of information to load. You can edit data directly in the tree,
changing labels and item positions, or you can modify the appearance of the
overall tree or of each individual node, all of which will contribute to a customized
end-user experience.

The Ext JS tree is built on top of the Component model, which underlies the whole
Ext JS framework. This means that developers receive the benefits of working with
the familiar Component system, that users get a consistent and integrated interface
experience, and that you can be sure your tree will work seamlessly with the rest of
your application.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[138]

From tiny seeds...
In this chapter, we'll see how you can build a tree from first principles with a
minimal of code. We'll also discuss the unique data structure that is used to populate
the tree, and the way in which clever use of that data can let you harness important
configuration options. The Ext JS tree natively supports advanced features such as
sorting, and drag-and-drop, so we'll be discussing those as well. But if you need
a truly bespoke tree, we'll also explore the way in which configuration options,
methods, and events can be overridden or augmented to provide it.

The tree itself is created via the Ext.tree.TreePanel class, which in turn contains
many Ext.tree.TreeNodes classes. These two classes are the core of the Ext JS tree
support, and as such will be the main topics of discussion throughout this chapter.
However there are a number of other relevant classes that we'll also cover. Here's the
full list from the Ext.tree package:

AsyncTreeNode Allows TreeNode children to be loaded asynchronously

DefaultSelectionModel Standard single-select for the TreePanel

MultiSelectionModel Provides support for multiple node selection

RootTreeNodeUI Specialized TreeNode for the root of TreePanel

TreeDragZone Provides support for TreeNode dragging

TreeDropZone Provides support for TreeNode dropping

TreeEditor Allows node labels to be edited

TreeFilter Filter support for TreePanel child nodes

TreeLoader Populates a TreePanel from a specified URL

TreeNode The main class representing a node within a TreePanel

TreeNodeUI Provides the underlying interface for the TreeNode

TreePanel A tree-like representation of data—the main tree class

TreeSorter Supports sorting of nodes within a TreePanel

Ouch! Fortunately, you don't have to use all of them all at once. TreeNode and
TreePanel provide the basics, and the rest of the classes are bolted on to provide
extra functionality. We'll cover each of them in turn, discussing how they're used,
and showing a few practical examples along the way.

Our first sapling
By now, you're probably thinking of the various possibilities for the Ext JS tree, and
want to get your hands dirty. Despite the fact that the Ext.tree classes are some of
the most feature-rich available in the framework, you can still get everything up and
running with only a few lines of code.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[139]

In the examples that follow, we'll assume that you have a blank-slate HTML page
ready and waiting, with all of the Ext JS dependencies included. Most of the code we
will use builds on what came before, to make sure that we're only working with
bite-sized pieces. Bear this in mind when you look at them in isolation.

It is best practice to put the JavaScript in a separate file and wrap it in an Ext.
onReady call. However, you can also do it according to your individual coding style.

Preparing the ground
First, we need to create a containing <div> element on our HTML page. We will be
rendering our TreePanel into this container. So we have to set it to the size we want
our tree to be:

<div id="treecontainer" style="height:300px; width:200px;"></div>

The JavaScript for the tree can be broken down into three parts. Firstly, we need
to specify the manner in which it's going to be populated. The Ext.tree.
TreeLoader class provides this functionality, and here we're going to use it in the
simplest manner:

var treeLoader = new Ext.tree.TreeLoader({
 dataUrl:'http://localhost/samplejson.php'
});

The dataUrl configuration parameter specifies the location of the script that is going
to supply the JavaScript Object Notation (JSON) used to populate our tree. I'm not
going to go into the details of the structure of JSON now; let's save that for later.

Each tree requires a root node, which acts as a great-granddaddy for all of its
descendants. To create that root node, we use the Ext.tree.AsyncTreeNode class:

 var rootNode = new Ext.tree.AsyncTreeNode({
 text: 'Root'
 });

The reason we're using AsyncTreeNode, rather than the basic TreeNode that is also
available, is because we're fetching our nodes from the server and are expecting child
nodes to be populated branch-by-branch rather than all at once. This is the most
typical scenario for a tree.

AsyncTreeNode uses AJAX on-the-fly to ensure your users aren't
waiting too long for your data to load and for the first nodes to
be rendered.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[140]

Finally, we create the tree itself, using the Ext.tree.TreePanel class:

 var tree = new Ext.tree.TreePanel({
 renderTo:'treecontainer',
 loader: treeLoader,
 root: rootNode
 });

This is just a matter of passing the root node and the TreeLoader in as configuration
options, as well as using the renderTo config to specify that we'd like the TreePanel
rendered into our treeContainer element.

Again, you should remember that you need to wrap all of this code in a call to
Ext.onReady, to make sure that the DOM is available when our code runs.

A tree can't grow without data
We've seen that it only takes eleven lines of code to create a tree interface using
Ext JS. You can see an example of the finished product here:

I guess it doesn't look like much, but we've got quite a bit of functionality for
our eleven lines of code. We've got a consistent and attractive look and feel, with
asynchronous remote loading of child nodes. To be fair, it's not as simple as that,
because we skimmed over a crucial part of building an Ext JS tree—the data.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[141]

JSON
The standard TreeLoader supports JSON in a specific format—an array of node
definitions. Here's a cut-down example:

[
 { id: '1', text: 'No Children', leaf: true },
 { id: '2', text: 'Has Children',
 children: [{
 id: '3',
 text: 'Youngster',
 leaf: true
 }]
 }
]

The text property is the label of the node as it appears in the tree. The id property is
used to uniquely identify each node, and will be used to determine which nodes are
selected or expanded. Using the id property can make your life a whole lot easier if
you're using some of the advanced features of the TreePanel, which we'll see later.
The children property is optional. The leaf property can be thought of as marking
a node as either a folder or a file. As a leaf, the file is contained within the folder.
In the tree, leaf nodes will not be expandable and won't have the plus icon which
identifies folders.

A quick word about ID
By default, TreeNodes are assigned an automatically-generated ID, meaning that the
ID configuration property is actually optional. The generated ID is a text string in the
form ynode-xx, with xx being replaced by a number. IDs can be useful for retrieving
a node you have previously referenced. However, it is quite likely that you'd want
to assign the ID value yourself. Whenever you expand a node with children to
trigger an asynchronous load of data from the server, your server script needs to
know exactly which node was clicked in order to send its children back. By explicitly
setting the ID, you'll find it a lot easier to match nodes with their actions when you're
working with the server.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[142]

Extra data
Although the id, text, and leaf properties are the most commonly-used properties,
the way in which they are populated by JSON isn't exclusive to them. In fact, any
configuration property of a TreeNode can be initialised by JSON, which will prove
to be a useful trick when we begin to explore the other features of the tree. You're
also able to include application-specific data; perhaps your nodes are products and
you want to hold the price of them. Any property that isn't recognized as a TreeNode
config option will still be included on the TreeNode.attributes property for
later access.

XML
XML is not natively supported by the tree. However, it is possible to use Ext JS's datanatively supported by the tree. However, it is possible to use Ext JS's datasupported by the tree. However, it is possible to use Ext JS's data
support to make this happen. Generally, using JSON will ease your pain, although
some applications may use XML as their data transport. So it's worth discussing
some general approaches.

We can use Ext.data.HttpProxy to pull in the data, but we need to transform the
XML as it is being read:

var xmltree = new Ext.tree.TreePanel({el: 'treeContainer'});
var proxy = new Ext.data.HttpProxy({url:
 'http://localhost:81/ext/treexml.php'});
proxy.load(null, {
 read: function(xmlDocument) {
 parseXmlAndCreateNodes(xmlDocument);
 }
}, function(){ xmltree.render(); });

We create a new TreePanel and HttpProxy, and specify that when the proxy
loads we want an Ext.data.Reader to handle the incoming XML data. We then
tell the reader to pass the XML to parseXmlAndCreateNodes. In this function, you
would create a root TreeNode and children based on the XML data, which is pretty
straightforward given that HttpProxy is XML-aware and passes you a true XML
document rather than a plain string.

JavaScript is fully capable of handling XML data, although you may be more
comfortable approaching it as you would approach traversing the DOM of an
XHTML document. By navigating and reading the XML document you can build
up a TreeNode hierarchy, incorporating XML attributes as extra data for each node,
and using textnodes as the text label. Because you have access to the raw XML
nodes in this manner, you have full control over the resultant tree structure and the
TreeNodes that comprise it.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[143]

Tending your trees
We're now going to discuss the main features that you can bolt on to your tree to
make it a little bit more useful. Drag-and-drop, sorting, and node editing, are the
kinds of things that lift the TreePanel from being a clever way of displaying data, to
being a great way of manipulating it.

Drag and drop
Ext JS takes care of all of the drag-and-drop UI for you when you're using a
TreePanel. Just add enableDD: true to your configuration, and you'll be able to
rearrange nodes with a drop target graphic, and add them to folders, with a green
plus icon to indicate what you're about to do.

The TreePanel doesn't care about just its own nodes. If you've got more
than one TreePanel on the page, then you can happily drag-and-drop
branches or leaves between them.

But that's only half the story. When you refresh your page, all of your rearranged
nodes will be back to their starting positions. That's because the TreePanel doesn't
automatically know how you want to persist your changes, and in order to educate
it, we've got to hook into some events.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[144]

The TreePanel's beforemovenode event fires at just the right time for us—after the
mouse button is released to signify we want to do a drop, but before the TreePanel
UI is updated to reflect that. We are most likely to add code such as the following to
tell the server about node move events:

tree.on('beforemovenode', function(tree, node,
 oldParent, newParent, index) {
 Ext.Ajax.request({
 url: 'http://localhost/node-move.php',
 params: {
 nodeid: node.id,
 newparentid: newParent.id,
 oldparentid: oldParent.id,
 dropindex: index
 }
 });
});

Augmenting our previous code, we're adding a new event handler for the
beforemovenode event. The handler function is called with a few useful arguments:

1. tree: The TreePanel that raised the event

2. node: The TreeNode being moved

3. oldParent: The previous parent of the node being moved

4. newParent: The new parent of the node being moved

5. index: The numerical index where the node was dropped

We use these arguments to form the parameters of an AJAX call to the server. As you
can pull out pretty much any information you need about the current state of the
tree, your server-side script can perform any action that it needs to.

In some cases, that could include canceling the move action. If the logic you place
within the beforemovenode handler fails, you need to roll back your changes. If
you're not doing an AJAX call, this is pretty straightforward—just return false at
the end of the handler and the action will be canceled. For AJAX though, it's more
difficult, because the XMLHttpRequest happens asynchronously, and the event
handler will proceed with its default action, which is to allow the move.

In these circumstances, you need to make sure that you provide a failure handler
for your AJAX request, and pass enough information back to that failure handler to
allow it to manually return the tree to its previous state. Because beforemovenode
provides a lot of information through its arguments, you can pass the necessary data
to take care of these error events.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[145]

Sorting
We can sort nodes in a TreePanel in a very flexible manner by using the
TreeSorter. Again, building on our previous code, we can create a TreeSorter
such as this:

new Ext.tree.TreeSorter(tree, {
 folderSort: true,
 dir: “asc"
});

Because TreeSorter assumes a couple of defaults—specifically, that your leaf nodes
are marked with a property called leaf and that your labels are in a property called
text—we can perform an alphabetical sort very easily. The dir parameter tells the
TreeSorter to sort in either ascending (with the asc value) or descending (desc)
order, and the folderSort parameter indicates that it should sort leaf nodes that are
within folders—in other words, the whole tree hierarchy.

If you've got data that isn't simple text, you can specify a custom method of sorting
with the sortType configuration option. sortType takes a function as its value, and
that function will be called with one argument: a TreeNode.

The purpose of the sortType function is to allow you to cast a custom property of
the TreeNode—presumably something you've passed from the server and that is
specific to your business needs—and convert it to a format that Ext JS can sort, in
other words, one of the standard JavaScript types such as integer, string, or date.

This feature can be useful in cases where data passed to the tree is in a format that
isn't conducive to normal searching. Data generated by the server might serve
multiple purposes, and hence may not always be right for a particular purpose. For
example, we may need to convert dates into a standard format—from US style
MM/DD/YY to YYYYMMDD format that is suitable for sorting—or maybe we need
to strip extraneous characters from a monetary value so that it can be parsed as
a decimal.

sortType: function(node) {
 return node.attributes.creationDate
}

In the above example, we return some custom data from our node, and because this
value is a valid JavaScript date, Ext JS will be able to sort against it. This is a simple
demonstration of how the sortType option can be used to allow the TreeSorter to
work with any kind of server data.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[146]

Editing
There are many scenarios in which editing the value of your nodes could be useful.
When viewing a hierarchy of categorized products, you may wish to rename either
the categories or the products in-line, without navigating to another screen. We can
enable this simple feature by using the Ext.tree.TreeEditor class:

var editor = new Ext.tree.TreeEditor(tree);

The defaults of the TreeEditor mean that this will now give your tree nodes a
TextField editor when you double-click on their label. However, as with basic
drag-and-drop functionality, enabling this feature doesn't automatically mean that
your changes will be persisted to the server. We need to handle the event that fires
when you've finished editing the node:

editor.on('beforecomplete', function(editor, newValue, originalValue)
{
 // Possible Ajax call?
});

The beforecomplete event handler gets called with three arguments:

1. editor: The editor field used to edit the node

2. newValue: The value that was entered

3. originalValue: The value before you changed it

However, it is important to note that the editor parameter is no ordinary
Ext.form.Field. It is augmented with extra properties, the most useful of which is
editNode, a reference to the node that was edited. This allows you to get information
such as the node ID, which would be essential in making a server-side call to
synchronize the edited value in the database.

As with the TreePanel's beforemovenode event, beforecomplete allows
cancellation of the edit action by returning False at the end of its handler processing;
AJAX requests will need to provide a failure handler to manually restore the
edited value.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[147]

This has been a quick overview of how to create a very simple in-line editor.
There are also means of using this class to create more complicated features. The
TreeEditor constructor can take up to two optional parameters on top of the single
mandatory parameter shown in the example above. These are a field configuration
object and a configuration object for the TreeEditor. The field config can be one of
two things: a field config object to be applied to the standard TextField editor, or
an already-created instance of a different form field. If it is the latter, it will be used
instead of the default, which means that you can add NumberField, DateField or
another Ext.form.Field in a similar manner.

The second parameter allows you to configure the TreeEditor, and is more for
fine-tuning rather than introducing any exciting functionality. For example, we can use
cancelOnEsc to allow the user to cancel any editing by pressing the Escape key, or use
ignoreNoChange to avoid firing completion events if a value has not changed after
an edit.

Trimming and pruning
There a few other tricks that the TreePanel supports, which assist in the creation of
rich applications. Varying selection models, node filtering, and context menus are
commonly-used features in many solutions. So let's take a look at these now.

Selection models
In our previous example code, we dragged and edited TreeNodes to alter them
immediately. But nodes can also be selected for further processing. The TreePanel
uses a single-selection model by default. In our previous code, we've already done
everything we need to enable node selection. As with many aspects of the tree,
simply selecting the node doesn't do anything; instead we need to hook in to some of
the features provided to manipulate the selection.

A great example of this would be to select a node and have an information panel
automatically populated with further details of that node. Perhaps you have a tree
of named products, and clicking a node will display the price and stock level of
the selected product. We can use the selectionchange event to make this happen.
Again, using our previous code as a starting point, we could add the following:

tree.selModel.on('selectionchange', function(selModel, node) {
 var price = node.attributes.price;
});

The second node argument that is passed to the selectionchange event makes it
very easy to grab any custom attributes in your node data.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[148]

What if we want to allow multiple nodes to be selected? How can we do that, and
how can we handle the selectionchange event in that configuration? We can use
Ext.tree.MultiSelectionModel when creating our TreePanel:

var tree = new Ext.tree.TreePanel({
 renderTo:'treeContainer',
 loader: treeLoader,
 root: rootNode,
 selModel: new Ext.tree.MultiSelectionModel()
 });

Configuration is as simple as that. Although handling the selectionchange
event is very similar to the default selection model, there is an important difference.
The second argument to the event handler will be an array of nodes rather than a
single node.

Selection models don't just expose the means of retrieving selection information.
They also allow manipulation of the current selection. For example, the
MultiSelectionModel.clearSelections() method is useful for wiping the
slate clean after you have finished handling an event involving multiple nodes.
DefaultSelectionModel has methods (selectNext and selectPrevious) for
navigating the tree, moving up or down the node hierarchy as required.

Round-up with context menus
We've already covered a lot of the functionality that the TreePanel can provide,
so let's consolidate a little bit with a practical example. Adding a context menu that
appears when you right-click a TreeNode is a trivial task with Ext JS. However, it can
be an extremely useful means of adding shortcuts to your interface. We'll be building
on the code that has been used in the previous sections. First, let's create the menu,that has been used in the previous sections. First, let's create the menu, has been used in the previous sections. First, let's create the menu,
and then we'll hook it up to the TreePanel:

var contextMenu = new Ext.menu.Menu({
 items: [
 { text: 'Delete', handler: deleteHandler },

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[149]

 { text: 'Sort', handler: sortHandler }
]
});
tree.on('contextmenu', treeContextHandler);

The TreePanel provides a contextmenu event which fires when the user right-clicks
on a node. Note that our listeners are not anonymous functions as they have been in
the previous examples—instead they have been split off for easy reading.

First, the treeContextHandler that handles the contextmenu event:

function treeContextHandler(node) {
 node.select();
 contextMenu.show(node.ui.getAnchor());
}

The handler gets called with a node argument, so we need to select the node to allow
us to act upon it later. We then pop up the context menu by calling the show method
with a single parameter that tells the pop-up menu where to align itself—in this case
it's the text of the TreeNode we've clicked on.

Handling the menu
We've got two context menu entries—Delete and Sort. Let's first take a look at the
handler for Delete:

function deleteHandler() {
 tree.getSelectionModel().getSelectedNode().remove();
}

Using our previous knowledge of selection models, we get the node that we selected
in the treeContextHandler, and simply call its remove method. This will delete the
node and all of its children from the TreePanel. Note that we're not dealing with
persisting this change to the server, but if this was something that you needed to do,
TreePanel has a remove event that you could use a handler for to provide
that functionality.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[150]

The handler for our Sort menu entry is given here:

function sortHandler() {
 tree.getSelectionModel().getSelectedNode().sort(
 function (leftNode, rightNode) {
 return (leftNode.text.toUpperCase() < rightNode.text.
toUpperCase() ? 1 : -1);
 }
);
}

Again, we use the selection model to get the selected node. Ext JS provides a sort
method on the TreeNode that takes a function as its first parameter. This function
gets called with two arguments: the two nodes to compare. In this example, we are
sorting by the node's text property in descending order, but you can sort by any
custom node attribute you like.

You can use this sorting method in conjunction with a TreeSorter
without issues. That's because TreeSorter only monitors the
beforechildrenrendered, append, insert, and textchange
events on the TreePanel. Any other changes will be unaffected.

The Delete context menu action will completely remove the selected node from the
TreePanel, while the Sort action will order its children according to their text label.

Filtering
The Ext.tree.TreeFilter class is marked as "experimental" in Ext JS 2.2, so I'm
going to touch upon it only briefly. It's designed for scenarios where the user needs
to search for nodes based on a particular attribute. This attribute could be the text,
the ID, or any custom data that was passed when the node was created. Let's take the
context menu that we just built and use it to demonstrate filtering. First, we have to
create the TreeFilter:

var filter = new Ext.tree.TreeFilter(tree);

You need to go back to the configuration for the context menu and add a new entry
to the items configuration property:

{ text: 'Filter', handler: filterHandler }

We now need to create a filterHandler function that performs the filter action:

function filterHandler() {
 var node = tree.getSelectionModel().getSelectedNode();
 filter.filter('Bee', 'text', node);
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[151]

As with our other handler functions, we start by getting the currently-selected node
in the tree, and then call the filter function. This function takes three arguments:

1. The value to filter by

2. The attribute to filter on; this is optional and defaults to text

3. The starting node for the filter

We pass the selected node as the starting node for the filter, which means that the
node we right-clicked on in order to to pop up the menu will have its children
filtered by the specified value.

Our aardvark, bee, and cockroach examples don't really require this level of filtering,
but there are other situations in which this could prove to be a useful user feature.
Online software documentation, with multiple levels of detail, could be represented
in a tree and a TreeFilter could be used to search by topic. In a more advanced
scenario, you could use checkboxes or pop-up dialogs to get the user's input for the
filter, providing a much more flexible experience.

The roots
Although we've demonstrated a number of powerful techniques using the Ext tree
support, its real strength lies in the wealth of settings, methods, and hook points that
the various classes expose. We've already reviewed a number of ways of configuring
the TreePanel and TreeNode classes, which give access to a number of powerful
features. However, there are more configuration options that can be used to tweak
and enhance your tree, and we're going to review some of the more interesting
ones now.

TreePanel tweaks
By default, there are a number of graphical enhancements enabled for the TreePanel
which, depending on your application requirements, may not be desirable. For
example, setting animate to false will prevent the smooth animated effect being
used for the expansion and contraction of nodes. This can be particularly useful in
situations where nodes will be repeatedly expanded and collapsed by a user and
slower animated transitions can be frustrating.

Because TreePanel extends from Ext.Panel, it supports all of the standard Panel
features. This is easy to remember, because it means that support for toolbars at the
top and the bottom (via the tbar and bbar config options), separate header and
footer elements, and expand/collapse functionality for the Panel are all supported.
The TreePanel can also be included in any Ext.ViewPort or Ext.layout.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[152]

Cosmetic
In terms of purely cosmetic options, TreePanel provides the lines option, which,
when set to false, will disable the guide-lines that show the hierarchy of the
TreeNodes within the panel. This can be useful if you're creating a very simple tree
for which lines would just clutter the interface.

hlColor is applicable for drag-and-drop enabled trees, and controls the start color
for the fading highlight (supplied as a hex string, such as 990000) which is triggered
when a node is dropped. This can be completely disabled by setting dlDrop to
false. Setting trackMouseOver to false will disable the highlight that appears
when you hover over a node.

Tweaking TreeNode
In many cases, you won't be manually creating TreeNodes, other than your root
node, so you might think that the configuration options aren't of much use to you.
Not so, because it's not just the id and text properties from your JSON that are used
when generating nodes—any property in your JSON that matches with a config
option on the TreeNode will be used to create the node. If you have a JSON that
like this:

[
 { text: 'My Node', disabled: true, href: 'http://extjs.com'}
]

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[153]

You'll get a node that starts off as disabled, but when enabled will act as a link to the
Ext JS website.

This feature is extremely useful for passing application-specific information to your
TreeNodes. For example, your server logic may dictate that particular nodes cannot
have children. Setting allowChildren:false means that the node can't be used as a
drop target for a node that is being dragged. Similarly , you can set individual nodes
to be disallowed for dragging by using the draggable: false option. We can set the
status of a checkbox on the node by using checked: true. In fact, simply specifying
the checked option—whether true or false—will cause the checkbox to appear
next to the node. These configuration options allow you to set the behavior of your
nodes based on some server logic, but do not require any manual handling in order
to see your preferences enacted.

There are a few other useful configuration options available for TreeNode. You can
provide custom icons by using the icon option, or provide a CSS styling hook by
using the cls option. The qtip option lets you provide a pop-up tooltip, perhaps
providing a description of the node, while the text label shows its name.

Manipulating
Once the TreePanel is configured, we can begin to work with its nodes. The panel
mostly allows for navigation of the hierarchy, starting at a selected node and moving
to a parent or child, or up and down the current branch. We can also select nodes or
expand them by their path, which could be used to search for specific nodes.

The expandAll and collapseAll methods are pretty self-explanatory, and can be
useful for resetting the tree to a default state. Each method takes a single Boolean
parameter to state whether the change should be animated or not.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[154]

The expandPath method's first parameter is the "path" of a node. The path uniquely
identifies the node within the hierarchy, and takes the form of a string which fully
qualifies the location of a node in the tree. For example, a path could look like this:

/n-15/n-56/n-101

Here, we have a representation of the location of the node with the ID n-101. n-15
is the root node, with a child n-56; and n-101 is in turn a child of n-56. If you're
familiar with XPath, then this notation will be well-known to you. If you're not
familiar with XPath then you can think of it as a postal address or a web IP address—
a unique way of referring to this node.

By passing this value to expandPath, the tree will drill down to the specified node,
expanding branches as necessary. Imagine the following code:

Ext.Msg.prompt('Node', 'Please enter a product name',
 function(btn, text){
 if (btn == 'ok'){
 var path = GetNodePathFromName(text);
 tree.expandPath(path);
 }
});

The GetNodePathFromName function could perform a server lookup and return
the node ID, enabling quick navigation of the tree based on the user's input.
Alternatively, TreePanel.getNodeById could be used in a similar way. Rather than
expand to the node, further manipulation could occur.

In some circumstances, you may need to perform the reverse action, that is, you have
a node but you need to get the path for it. TreeNode.getPath is provided for just
this purpose, and can be used as a means of storing the location of a node.

Further methods
The TreeNode has a number of other useful methods as well. We've already
covered sort and remove, but now we can add some basic utility methods such
as collapse and expand, enable and disable, as well as some handy extras such
as expandChildNodes and collapseChildNodes, which can traverse all child
nodes of an arbitrary root, and change their expansion states. The findChild and
findChildBy methods allow both simple and custom searching of child nodes, as
shown in the following example where we search for the first node with a price
attribute of 300:

var node = root.findChild('price', 300);

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[155]

In some cases you may need to mass-manipulate the attributes of your node
hierarchy. You can do this by using the TreeNode.eachChild method:

root.eachChild(function(currentNode) {
 currentNode.attributes.price += 30;
});

Because the first parameter to eachChild is a function, we can perform any logic that
is required of our application.

Event capture
We've already demonstrated a couple of methods of watching for user interaction
with the tree, but there are many events available as hooks for your custom code.
Earlier, we discussed the use of the checked configuration option on a TreeNode.
When the node checkbox is toggled, the checkchange event is fired. This could be
useful for visually highlighting the check status:

tree.on('checkchange', function(node, checked) {
 node.eachChild(function(currentNode) {
 currentNode.ui.toggleCheck();
 });
}

We're propagating the check down through the children of the TreeNode. We could
also highlight the nodes in question to clearly show that their check status has
changed, or perform some other logic, such as adding information about the
newly-checked nodes to an informational display elsewhere on the page.

A more common use of the TreePanel events is to verify changes or persist them
to a server-side store. For example, a tree of categorized products may have some
logical restrictions—certain bargain categories may specify the maximum price of a
product. We could use the beforeappend event to check for this:

tree.on('beforeappend', function(tree, parent, node) {
 return node.attributes.price < parent.attributes.maximumPrice;
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Ext JS Does Grow On Trees

[156]

This example demonstrates a pattern that you have seen throughout
Ext JS—returning false from an event handler will cancel the action. In this case, if
the price of the node being added is greater than the maximumPrice assigned to its
parent, the function will return false, and the node will not be added.

Remembering state
In many applications, TreePanels are used as navigation aids, showing a
hierarchical structure, with its nodes being HTML links to node detail pages. In this
scenario, if a user wishes to view multiple node detail pages, one after the other, the
default behavior of the TreePanel can lead to frustration. This is because the tree
doesn't save its state between page refreshes, so any expanded node will be rendered
as collapsed when the user navigates back to the page. If the user needs to drill down
to the branch they are interested in every time they navigate back to the tree, they are
quickly going to lose patience with the interface.

StateManager
Now that we have a good grasp of the way we can manipulate the TreePanel,
working out how we can save and restore its state should be fairly straightforward.
Essentially, what we need to do is record each expansion of a TreeNode, and when
the page reloads, "playback" those expansions. We can use Ext.state.Manager
with a CookieProvider to store our expansion. We can initialize this with:

Ext.state.Manager.setProvider(new Ext.state.CookieProvider());

This is standard fare for setting up a state provider. We now need to establish
exactly what we're going to store, and the logical choice would be the path of the lastwhat we're going to store, and the logical choice would be the path of the last
expanded node. This means that we can simply expand out that path and present
the user with the last part of the hierarchy they were interested in. Here's a naive
implementation of that idea:

tree.on('expandnode', function (node){ Ext.state.Manager.
set(“treestate", node.getPath());
});

In this code, we simply handle the TreePanel's expandnode event to record the
path, using TreeNode.getPath, of any node that is expanded. Because we overwrite
that value on each expansion, the treestate should hold the path of the last node
that was expanded. We can then check for that value when the page is loaded:

var treeState = Ext.state.Manager.get(“treestate");
if (treeState)
 tree.expandPath(treeState);

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 8

[157]

If treestate has previously been recorded, we use that to expand the tree out to thepreviously been recorded, we use that to expand the tree out to thebeen recorded, we use that to expand the tree out to the
last-expanded node.

Caveats
As mentioned, this is a naive implementation. It doesn't handle cases where the
user expands and, then collapses a node, and then navigates away and back. In such
cases, the collapse of the node wouldn't be saved. So when we restore the state, the
user will see it expanded again. By handling the collapsenode event, we could
take this issue into account. We also have a problem with the expansion of multiple
nodes. If more than one branch is expanded our code will only expand the one the
user clicked most recently. Storing an array of expanded nodes is one approach that
could address this shortcoming.

Summary
Getting a feature-rich tree interface such as Ext.tree.TreePanel up and running
in eleven lines of code is pretty impressive, and we've shown that it is possible.
Over and above that, this chapter has demonstrated that the TreePanel's strength
is not simply in its ease of use, but in the way we can use its wealth of configuration
options to deliver application-specific functionality.

The use of asynchronous loading is an important feature of the TreePanel, because
it provides a way of consuming large amounts of dynamic data in a scalable fashion.
It's also handled transparently by Ext.tree, which means that the implementation is
as beneficial for the developer as it is for the end user.

Despite all of their power, the Ext.tree classes still manage to feel pretty
lightweight in use. It's easy to tame that power by using the configuration options,
the methods, and the events that the TreePanel and TreeNode provide, but it's not
just about these classes. TreeSorter and TreeNodeUI are key parts of the puzzle,
adding functionality and allowing customization for a standardized look and feel.

Because the Ext.TreePanel extends the Panel, which in turn extends
BoxComponent, we get all of the strong component and layout support that comes
from a fully-fledged Ext JS component. BoxComponent support will be particularly
interesting as we move forward, because it means that trees can easily be included
in various configurations within an Ext.Window. Which just happens to be our
next topic.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs
In the olden days of the web, users of traditional backend systems would spend
their time crunching data in list and form-based interfaces. Pick an item from a list
of customer orders, then navigate to a detail form, rinse, and repeat. The trouble is
that we're talking about thousands of entries in a list, and lots of detail in the forms.
The chances are that in our customer order example, we might even need sub-forms
to show all of the information that is available, and each time we move to another
screen we're refreshing the whole page and getting all of that data all over again.

That's fine; it's how the web works. But in a data processing scenario, where
your users are going back and forth throughout the day, there's a real benefit in
optimizing the speed at which screens appear and data is refreshed. The Ext JS
grid plays a key part in this, as we've seen, by bringing AJAX-powered paging and
sorting of GridViews into play, to replace the old-style static lists.

Now we're going to take a look at the other part of the puzzle—Ext JS Window and
dialog support. These classes allow developers to present any kind of information to
their users, without forcing the users to navigate to another screen. By popping up as
an overlay on top of the current page, a window, or dialog can present detailed data
in the form of grids, tree, images, and text. We can also use them in a simplified form
to show informational alerts or to quickly capture user data.

Opening a dialog
In this chapter, we'll talk about the main Ext.Window class and the Ext.MessageBox
subclass, both of which have extensive applications in our enhanced user interface.
While the Window itself is designed to be a flexible, multipurpose component, the
MessageBox is a more specialized solution. It is used in a similar way to standard
JavaScript pop ups such as alert and prompt, albeit with many more behavioral and
presentational options available for it.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[160]

Ext.Window is another fully-blown Ext.Container, giving it a wealth of underlying
settings which will be familiar from the other parts of the Ext JS framework. It also
hints at the types of interfaces that we can build in a Window, given that we can set
the internal layout of a Container to a range of different options.

We're also going to cover some extra classes which help us to manipulate multiple
Windows: Ext.WindowGroup and Ext.WindowManager. In advanced applications,
we can use more than one window to present drill-down views of information, or
we can allow the user to view more than one record at once in separate windows.
Window groups assist with these applications, giving us the power to act upon many
windows at once.

Despite the fact that dialogs build on Ext.Window, we're going to address dialogs
first. That's because the dialogs abstract away many of the powerful options of Ext.
Window, making it a cut-down version of the superclass.

Dialogs
As previously mentioned, dialogs can be likened to the prompt and alert functions
that are available in most browser implementations of JavaScript. Although the
appearance of those pop ups is controlled by the browser and operating system, and
their behavior is limited to the most common cases, these restrictions don't apply to
the Ext JS dialogs.

Although the dialog class is actually Ext.MessageBox, Ext JS provides
a shorthand version - Ext.Msg. This shorthand version can make your
code a little more concise, but it's up to you which one you use, as they're
both functionally equivalent.

Let's take a look at the ready-made pop ups that Ext JS makes available.

Off the shelf
We've talked about how Ext provides a replacement for the JavaScript alert, so let's
have a look at that first:

Ext.Msg.alert('Hey!', 'Something happened.');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[161]

The first thing to notice is that Msg.alert takes two parameters, whereas the
standard alert takes only one. The first allows you to specify a title for the alert
dialog, and the second specifies the body text. The previous code results in a
messagebox like this:

As you can see, it performs very much the same function as a standard alert but with
that familiar Ext JS look and feel. We can also convey a little bit more information
by using the title bar. Showing Msg.alert doesn't temporarily halt script execution
in the same way that a normal alert will; be conscious of this when using the Ext
version. Later, we'll look at ways to use callbacks to replicate that halt functionality
should you need it.

You can only use a single Ext.MessageBox at a time. If you try to pop
up two boxes at the same time, the first will be replaced by the second. So
in some cases, you'll want to check for the presence of an existing dialog
in case you inadvertently overwrite the message it is presenting.

Let's take a look at another replacement, the Ext.Msg.prompt. This allows the
capture of a single line of text in the same way that the JavaScript prompt does.
However, instead of simply returning a value, it gives you a few more options.
Here's a comparison of doing the same thing with each method:

var data = prompt('Tell me something');

Ext.Msg.prompt('Hey!', 'Tell me something', function(btn, text){
 if (btn == 'ok'){
 var data = text;
 }
}, this, false, '');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[162]

Again, Msg.prompt allows you to pass a title as the first argument, and the body
text is the second. The third argument is a callback function that will be called when
a button—either OK or Cancel—is clicked in the prompt. The callback has two
arguments: the button that was clicked and the text that was provided by the user;
you can use these as demonstrated in the example code.

Note the other three options that come after the callback function. They are
scope, multiline, and initial value, respectively. The multiline argument is
interesting—accepting a boolean value, it allows a more flexible capture of text
than the standard prompt.

Confirmation
Our final replacement messagebox is for the confirm pop up, which allows the user
to choose between confirming an action or rejecting it. The code should be pretty
familiar by now:

Ext.Msg.confirm('Hey!', 'Is this ok?', function(btn, text){
 if (btn == 'yes'){
 // go ahead and do more stuff
 } else {
 // abort, abort!
 }
});

Again we're using the title, body text, and callback arguments that we saw in the
Msg.prompt, so there are no surprises here. An interesting difference between this
and the standard confirm is that whereas the standard confirm gives the options OK
and Cancel, the Ext JS one gives the user the choice of Yes and No. This is arguably a
better default, particularly when you use a question in the body text of the
confirm messagebox.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[163]

It's all progressing nicely
There's a fourth standard messagebox which is included with Ext JS one that
isn't just a replacement for a basic JavaScript pop up. This is the progress dialog.
Ext.Msg.progress isn't designed to be used independently like the other Ext
messageboxes, and doesn't need user input. In fact, if you trigger it like this:

Ext.Msg.progress('Hey!', 'We\'re waiting...', 'progressing');

Then you're going to be waiting for a while, because you'll get a modal dialog which
never progresses anywhere. The first two arguments are the title and body text as in
the previous examples, while the third is the text that will appear in the progress bar.

So, if we don't want to be stuck with an eternal progress bar, how can we get things
moving? The Ext.Msg.updateProgress method is provided just for this purpose.
Here's an example which illustrates its use:

var count = 0;

var interval = window.setInterval(function() {
 count = count + 0.04;

 Ext.Msg.updateProgress(count);

 if(count >= 1) {
 window.clearInterval(interval);
 Ext.Msg.hide();
 }
}, 100);

This is a very contrived example, in which we're calling updateProgress every 100
milliseconds via a timer, and incrementing the progress using the count variable
every time. The first argument to updateProgress is a value between zero and one,
with zero representing start and one representing finish, the second allows you to
update the progress bar text, and the third lets you change the body text. Updating
the text can be handy if you'd like to provide additional feedback to the user,
even if this is just to show a percentage representation—"x% complete"—of the
current progress.

Back in our example code, note that you must also call Ext.Msg.hide in order to
clear the progress dialog from the screen—updateProgress doesn't handle this for
you, even if you set the current progress to a value of greater than one.

The four included messageboxes, alert—prompt, confirm, and progress—are the
foundation of the Ext JS dialog support, but we can also weak their functionality to
support some custom scenarios.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[164]

Roll your own
The four methods for creating messageboxes that we've just covered are essentially
shortcuts to a fifth method: Ext.Msg.show. This method takes a configuration object
as its single argument, and the configuration options within this object allow the
creation of a messagebox that supports all of the features available via our shortcut
methods. The simplest example of this method is:

Ext.Msg.show({
 msg: 'AWESOME.'
});

This is closer replication of the JavaScript alert than the standard Ext JS one—but it's
not as functional. Something a little better would be:

Ext.Msg.show({
 title: 'Hey!',
 msg: 'Icons and Buttons! AWESOME.',
 icon: Ext.MessageBox.INFO,
 buttons: Ext.MessageBox.OK
});

Now we've got our title back as well as our button, but there's an icon as well.

The means of configuring buttons and icons is interesting: pass in one of the
constants that Ext JS provides, and you'll get a pre-configured button or CSS class
that shows an icon. Here's the list of the icon constants:

Ext.Msg.ERROR

Ext.Msg.INFO

Ext.Msg.QUESTION

Ext.Msg.WARNING

And the button constants:

Ext.Msg.CANCEL

Ext.Msg.OK

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[165]

Ext.Msg.OKCANCEL

Ext.Msg.YESNO

Ext.Msg.YESNOCANCEL

This variety of ready-made options provides you with a fair bit of flexibility
when it comes to the appearance of your messageboxes, but we can go further. As
mentioned, the icon constants are simply strings representing CSS class names.
For example, Ext.Msg.QUESTION provides the ext-mb-question string. This ties
in to the Ext JS stylesheets and provides the styles for a question icon. The logical
conclusion is that we can provide our own strings in place of these constants,
allowing full customization of the icon areas.

The button constants are a bit less flexible, and contain object literals specifying
how the dialog buttons should be displayed. For example, Ext.Msg.YESNOCANCEL
contains the following (represented in JavaScript Object Notation for easy reading):

{ cancel:true, yes: true, no:true }

This is specifying that all of the yes, cancel, and no buttons should be included.
You can use this to selectively turn off particular buttons, but you can't change the
order or add new buttons in this manner. This means that providing custom button
definitions in this way is of limited use.

In addition to accepting the Ext.Msg button constants, the show method
options will also accept a standard Ext JS button configuration object.

However, we can tweak the dialog in other ways. It's possible to supply Ext.Msg.
show with width and height options to restrict the dimensions of your pop up. This
could be handy in a situation where you have a long message to display and would
like to prevent it from stretching to one long line across the screen.

The show configuration object also allows us to use the cls option to specify a CSS
class to apply to the container of the dialog. A developer could use this to target any
child objects of the container by using custom CSS rules, potentially paving the way
for multiple dialogs that have totally different appearances. Do you need to provide
a bright-pink pop up for your users? This configuration option allows you to do this.

Behavior
So far, the configuration options for Ext.Msg.show have addressed appearance,
but there are a few options that can also adjust behavior. If we use the progress
property, then we can replicate the standard Ext JS progress dialog:

Ext.Msg.show({progress:true});

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[166]

By using this in tandem with other options such as title and msg, you can create a
custom progress dialog.

Similarly, the prompt and multiline options allow the creation of a custom
input pop up:

Ext.Msg.show({prompt:true, multiline:true});

Here, we create a pop up that accepts multiple lines of input. But by omitting the
multiline value or setting it to false, we can limit the pop up to a single line.
Again, using the other configuration options for Ext.Msg.show allows us to expand
this sample code into a fully-featured input dialog.

Another option that changes the default behavior of a pop up is modal. This option
allows you to specify whether the user can interact with the items behind the pop up.
When set to true, a semi-transparent overlay will prevent interaction.

As we have discussed earlier, the Ext.Msg pop ups don't block script execution in
the same way as standard JavaScript pop ups. This means that we need to use a
callback to trigger code after the dialog is dismissed. We can do this using show's
fn configuration option, which gets called with two arguments: the ID of the button
that has been clicked, and the text entered into the text field in the dialog (where
the dialog includes an input field). Obviously, for a simple alert prompt, you're not
going to receive any text back, but this function does provide a consistent means of
consuming callbacks across the whole range of dialogs that you can build using Ext.
Msg.show.

We briefly touched on the fact that the Ext.Msg messageboxes are actually
customized Ext.Windows. If you think we're able to tweak Ext.Msg a lot…wait till
you see what Ext.Window can let us do.

Windows
Any computer user will be familiar with the concept of windows; an informational
panel that appears on the screen to provide more data on the current user's actions.
We can replicate this concept using the Ext.Window class, a powerful component
that supports many advanced scenarios.

Starting examples
We can open a window using a very minimal amount of code:

var w = new Ext.Window({height:100, width: 200});
w.show();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[167]

Running this gives you an empty pop up window that in itself is…well, completely
useless; but it does show off a few of the interesting default features of an Ext.
Window. Straight out of the box, without any configuration, your window will be
draggable, resizable, and will have a handy close icon in the upper right corner of
the dialog box. It's still not a very impressive demonstration, however, because our
window doesn't actually show anything.

The easiest way to populate a window is with plain old HTML. Here's an extended
example that demonstrates this feature:

var w = new Ext.Window({
 height: 150, width: 200,
 title: 'A Window',
 html: '<h1>Oh</h1><p>HI THERE EVERYONE</p>'
});
w.show();

We've added two new configuration options here. First, a title option that allows
you to set the text in the title bar of the window, and second, an html option that
accepts a string of raw HTML that will be displayed in the window.

The use of this approach is immediately apparent—we can go back to basics and
inject whatever HTML we require directly into the content area of the window. This
allows us to tweak our window right down to the markup level, and provide lots
of CSS hooks for styling. Even so, it's not the truly integrated experience that we've
come to expect from Ext JS. However, another configuration option lets us take a
more familiar approach.

Paneling potential
Remember that Window is a subclass of Panel, and Panel has all kinds of interesting
tricks up its sleeve. The items configuration option accepts an array of configuration
objects or component instances:

var w = new Ext.Window({
 items:[
 { xtype: 'textfield', fieldLabel: 'First Name'},
 new Ext.form.TextField({fieldLabel: 'Surname'})
]
});
w.show();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[168]

In the above example we have added two textfields, the first one using "lazy"
xtype initialization, and the second one using standard object initialization. These
two items will be added to the window's internal panel, but the manner in which
they are displayed can be controlled based on the window's layout property.

Layout
Ext JS defines a number of layout models within the Ext.layout package, and
each of these layouts is used with a panel to allow the components within it to be
arranged in a specific manner. In our previous example, we showed how we can add
a couple of textboxes to a Window, but we can also enhance the appearance of the
window simply by using the appropriate layout. In this case, we need Ext.layout.
FormLayout, which provides support for field labels and the general spacing and
positioning you'd expect from an edit form:

var w = new Ext.Window({
 layout: 'form',
 items:[
 { xtype: 'textfield', fieldLabel: 'First Name'},
 new Ext.form.TextField({fieldLabel: 'Surname'})
]
});
w.show();

We use the layout configuration option to specify that we want to use a form layout,
and immediately the difference in appearance becomes clear. In the next figure, the
first dialog box does not use a layout, and the second one does.

This is not a feature of Ext.Window; it comes straight from the Panel superclass. But
the fact that Window supports this feature is extremely important for an application
developer—especially when you consider how long it would take to create a rich
form using our previous HTML injection technique. The other layouts within the
Ext.layout package provide many more approaches to windows design, expanding
the scenarios that a window can support.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[169]

Configuration
In addition to the various ways of filling the window's content area, we also have
a great deal of flexibility when it comes to the appearance and behavior of each
pop up. There are many configuration options provided by the Ext.Window's
superclass hierarchy, which starts with Ext.Panel, while also having a wealth of
options of its own.

When I'm cleaning windows
In our very first window example, I demonstrated how we get a number of great
features for free—resizing, dragging, and a close button. Windows with strict
layouts aren't really meant to be resized, so we can prevent this behavior with the
configuration option resizable set to false. Dragging is often just a matter of
preference, and in most cases there's little harm in leaving it enabled. That said, there
are times when it's simply not necessary functionality, so I prefer to disable it by
using the draggable option set to false.

var w = new Ext.Window({
 height:50,
 width: 100,
 closable: false,
 draggable: false,
 resizable: false
});
w.show();

When using a form window, it's often preferable to have text buttons explaining
that different actions will, for example, either save a record, or cancel any changes
that have been made, and in such cases, the close icon can be disabled by having
the closable option set to false. There's a second option that gives a little bit more
control over this behavior: closeAction can be set to either hide or close, with
hide simply causing the window to vanish, but not destroying it, and close actually
removing the window from the DOM. This is an important difference if you think
you're going to be re-using the window later, as simply hiding and
re-showing it is more efficient than re-creating the window every time.

The extras
With the default functionality under control, we can begin to review the ways we
can further tweak and augment the features of the Ext.Window. We've already
demonstrated the use of the height and width options that set the fixed dimensions
of the window and crop any content that exceeds these dimensions dimensions.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[170]

We do have another option. The autoHeight and autoWidth config settings, which
are both booleans, allow you to fill your window with components without having to
to worry about ensuring that your height and width values are absolutely correct.
This is a really useful tool during development, when it's unlikely that you know the
exact dimensions of whatever you're creating; just set autoHeight and autoWidth
to true and forget about it. Even better, these options can be used separately, so that
you can set your width, but have the height automatically calculated. This is useful
if you're putting dynamic content into a window, because you will need to make
sure that it doesn't stretch the window off the sides of your screen.

Desktopping
The most pervasive example of a windowing system is the computer desktop, with
multiple windows representing applications or elements of the filesystem. In such
systems, users are allowed to hide windows for later use, or minimize them; they're
also able to expand windows to fill the screen, or maximize it (also referred to as
maximizing the window). These are familiar terms, and are of course supported by
Ext.Window via the maximizable and minimizable boolean configuration options.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[171]

These features are disabled by default, but they are fully-featured and work in much
the same way as their desktop equivalents. When set to true, new icons appear
in the upper right of the window that are similar in appearance to the ones on the
Windows operating system. Maximizable allows the window to be expanded to fill
the whole of the browser viewport, as expected, but minimizable is a little trickier.
Ext JS doesn't know where you want the window to vanish to—on the Windows
operating system it would be the task bar, but for other operating systems it could
be somewhere else. So you've got to provide the minimize functionality yourself.
Ext only gives you the icon and a minimize event that must be handled in a
manner appropriate to your application. Later in this chapter, we'll provide a
brief example on how this can be achieved using the events available for the
Ext.Window class.

Further options
Ext JS windows support another means of cutting down the real-estate of your
window, and this is built right into the framework. The collapsible boolean adds
another button to the upper right of the window and allows the user to shrink it
down to cause only the title bar to be shown. A second click expands the window
back to its original state.

We can also use the expandOnShow configuration to specify that a hidden window
will always be expanded to its full dimensions when it is shown. This is useful for
windows that have been previously hidden and need to be brought back to the
user's attention.

Framing our window
As well as the standard title bar and body content area, we also have the ability to
add further content areas to a window. Some of these areas can be fully customized,
and some are a little bit more restrictive, but together they provide yet another
method for creating functional windows.

Every window has the built-in capability to add toolbars to the top and the bottom.
These toolbars can include any valid toolbar items, be it buttons, menus, or text. In
addition, we can use the footer element to contain some further buttons via the
buttons configuration option.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[172]

Depending on your requirements, you may choose to use one or more of these
content areas to provide tools to allow your users to manipulate and consume the
information within the window. A typical example would be to create a window
with a form layout, which then includes the Save and Cancel buttons within the
footer. This reflects the typical style of a data entry form, and will be positioned
automatically by Ext JS with little configuration being required.

Manipulating
When our windows are on-screen, we have a range of methods that we can use to
change their position, appearance, and behavior. In fact, we've already used one of
these methods in our examples—show—which is used to display the window in the
first place. Although we've always used show in its most simple form, it can take up
to three arguments—all of which are optional.

myWin.show('animTarget', function() { alert('Now Showing'); }, this);

Firstly, we can specify an element, or the ID of an element, to form the starting point
from which the window should animate when opening. This cosmetic effect can also
be specified using the animateTarget configuration option. The second argument
is a callback function, fired when the rendering of the window is complete, and the
third argument is simply the scope for the callback. It turns out the show method isn't
so basic after all!

The obvious companion to show is hide. Indeed, it takes the same arguments, and
will cause the window to vanish from the screen for later use. If you're sure that you
don't want to use the window later then it's probably better to use the close method,
which will remove it from the DOM and destroy it.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[173]

The functionality delivered by the close and hide methods has already been
demonstrated—it is provided by the window's close icon. There are a few more
methods that allow programmatic control over items, that we've already covered,
such as the minimize and maximize methods. This basic functionality is augmented
by the restore method, which is used after maximize to return the window to its
previous dimensions, and toggleMaximize, which is simply a shortcut to switch
between maximize and restore. And in terms of setting the window back to its
defaults we can also use the center method, which sets the window in the middle of
the browser's viewport.

We can further manipulate the position of our windows: alignTo allows a
developer to programmatically move a window to next to a specified element.
This method has three parameters:

The element to align to—as a string or full element

The position to align with—as detailed in the Element.alignTo
documentation, and briefly discussed in Chapter 10—Effects

A positioning offset, specified as an [x,y] array

This method is useful when you have an application with a dynamic
workspace—you need to ensure that your windows appear in the correct place in
relation to other items being displayed. A useful compliment to this feature is the
anchorTo method, which takes the same arguments and allows a window to remain
anchored to another element, even when the browser window has been resized
or scrolled.

While many of the Ext.Window methods simply give a developer access to existing
functionality via their code, there are a few additional ones that provide for
advanced scenarios or for features that would be laborious to code by hand.

Events
Pretty much all of the actions we've covered so far have their own events that serve
as hooks for your custom code. Minimize is one which we've explicitly mentioned
earlier, because you have to handle this event if you want the minimize icon
to do anything. Ideally, you'd expect the window to be stored in some kind of
'taskbar'-style area for later retrieval.

var w = new Ext.Window({
 height: 50,
 width: 100,
 minimizable: true
});
w.on('minimize', doMin);
w.show();

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[174]

In the above example, we're creating a new window, which we set as minimizable,
and then add an event listener for the minimize event. We then show the window on
the screen. Our doMin event handling function looks like this:

function doMin() {
 w.collapse(false);
 w.alignTo(document.body, 'bl-bl');
}

We simply tell our window to collapse down to the title bar (passing in a parameter
of false simply indicates that we don't want to animate the collapse) and then use
the alignTo method, which we've discussed previously. With the parameters we've
chosen, the window's bottom left will be aligned to the bottom left of the document
body—just like the first window in a taskbar would be.

Of course, with further windows, you'd end up with an overlapping stack in the
bottom-left; not ideal for a real world application. However, it does show how
the minimize event can be handled, and can be used as an alternative to the
collapse method.

State handling
State handling with windows is a relatively simple process. Windows are fully
integrated with the standard Ext JS state management facilities via the stateful
configuration flag. Assuming that we want to track the position, minimize status,
size and z-order of a window through page refreshes and user sessions, we can
use code such as this:

var w = new Ext.Window({
 stateful: true,
 stateevents:['resize'] // track the resize event'resize'] // track the resize eventresize'] // track the resize event'] // track the resize event] // track the resize event
});

We use the stateevents option to set an array of window events, which will
cause the component to save its state. Unlike state handling with the TreeNodes
in Chapter 8—Ext JS Does Grow On Trees, we don't need to hook into the
beforestatesave event this time around. The window component will look after
itself, and automatically set its configuration to reflect its previous state.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[175]

Window management
In a rich Internet application, it can be desirable to allow the user to have many
windows open simultaneously, reviewing a variety of information without having
to navigate to separate pages. Ext JS allows for this: you can create any number
of non-modal windows and manipulate them as you see fit. However, we face a
problem when using a multitude of windows—how do we manage them as a group?
For example, the users may wish to clear their workspace by minimizing all open
windows. We can achieve this functionality, and more, by using a window group.

Default window manager behavior
When you create an Ext.Window, it will automatically be assigned to a default
Ext.WindowGroup which, by default, can always be referred to via the
Ext.WindowMgr class. However, you can create as many additional WindowGroups
as your application requires, assigning windows to them via the manager
configuration option.

Why would your application require a method of grouping windows? Well, multiple
windows are affected by z-order, in that they can be stacked on top of each other.
We can use WindowMgr.bringToFront to bring a particular window to the top of
the stack, perhaps if it has been updated with new information and we want to
draw the user's attention to this. In some situations, this would be the same as using
Ext.Window.toFront. However, the WindowMgr approach will respect the z-order
grouping of individual WindowGroups, and so is a safer method when building a
large application with many windowing options.

The grouping and z-ordering of windows is a confusing topic, so let's put these
advanced features into a real-world context.

Multiple window example
We're going to build a very basic simulation of a customer service application. Our
user will be the supervisor of a live chat system, where customers who are online
can ask questions and get answers straight away. The supervisor will take some of
these questions, but they also monitor the status of other agents who are dealing
with customer sessions. We'll only be interested in the windowing aspect of this
application, so it's going to be filled with a lot of dummy data to illustrate our point.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[176]

Here's a screenshot of the a simple application developed to support this:

The lists have deliberately been left plain to avoid the need for extra JavaScriptdeliberately been left plain to avoid the need for extra JavaScriptbeen left plain to avoid the need for extra JavaScript
code—an application such as this could really benefit from grids or data views
displaying the sessions and agents, but we really don't need them just to demonstrate
our windowing code.

We're going to use a JavaScript object literal to structure our example. Here's
the shell:

var customerService = {

 sessionsGroup : null,
 agentsGroup : null,

 init : function() {

}
};
Ext.onReady(customerService.init, customerService);

We have a couple of local variables that will hold our window groups, and an empty
init function that gets called, with the customerService object as its scope, from
the Ext.onReady statement. Now that we've got our JavaScript skeleton, we need to
take a look at the markup that is going to power our customer service app:

<div id="mySessions">
 <h2>My Sessions
 <button id="hideSessions">Hide All</button>
 <button id="tileSessions">Tile</button>
 </h2>
 <div id="s-p1">

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[177]

 <h3>Bill</h3>
 <p>Started at 12:31pm</p>
 <div class="content"></div>
 </div>
</div>
<div id="agents">
 <h2>Agents
 <button id="hideAgents">Hide All</button>
 <button id="tileAgents">Tile</button>
 </h2>
 <div id="a-h1">
 <h3>Heidi</h3>
 <p>Is dealing with 3 sessions...</p>
 <div class="content"></div>
 </div>
</div>

This is the HTML that will go straight into the body of our document. We've got
two main containers—mySessions and agents—which then contain h2 tags with
a few buttons, and some div tags. For example, within mySessions, we have the
div #s-p1, containing an h3, a paragraph, and another div with the content class.
The #s-p1 div is one of many that could appear within mySessions, with these divs
being named as #s-xxx, with xxx being a unique identifier for that session.

Within agents, we have a similar structure with slightly different IDs—for example,
the agent divs are named as #a-xxx. The various IDs in the HTML are extremely
important for our JavaScript, as they'll be used to hook up event handlers, as we'll
see in a moment. Let's take a look at our full init function (note that each code
snippet will build on what came before).

init : function() {
 var s = Ext.select;
 var g = Ext.get;
 this.sessionsGroup = new Ext.WindowGroup();
 this.agentsGroup = new Ext.WindowGroup();

 s('#mySessions div').on('click', this.showSession, this);
 s('#agents div').on('click', this.showAgent, this);
}

The first two lines of this block of code are just shortcuts to clean up our code—we're
storing references to the Ext functions in a variable with a smaller name. Nothing
fancy. The next two lines see us creating two distinct window groups—one that will
hold our session information window, and one for the agent information windows.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[178]

The next few lines make more sense given the HTML we discussed previously.
We use our shortcut to Ext.select to add event listeners to all of the divs
within #mySessions—handled by the showSession function—and within
#agents—handled by showAgent. The third argument to the on function ensures
that we maintain scope when the handlers are called. Let's take a look at the
showSession function:

showSession : function(e){
 var target = e.getTarget('div', 5, true);
 var sessionId = target.dom.id + '-win';
 var win = this.sessionsGroup.get(sessionId);

 if(!win) {
 win = new Ext.Window({
 manager: this.sessionsGroup,
 id: sessionId,
 width: 200,
 height: 200,
 resizable: false,
 closable: false,
 title: target.down('h3').dom.innerHTML,
 html: target.down('.content').dom.innerHTML
 });
 }

 win.show();
 win.alignTo(target);
}

There's a lot happening here. The first line ensures that our target variable contains
the session div that was clicked on, regardless of whether it was actually one of the
session's child elements that was clicked. We then store a unique sessionId by
taking the ID of the target session div and appending -win to it. Finally, we check if
the session window group already has a reference to the window that we're about to
create, by looking it up using the unique sessionId.

If the window doesn't exist then we need to create it. Most of the configuration
options shown will be familiar from earlier in this chapter, but take note of our
explicit assignment of the sessionsGroup as the managing group for this window.
We're also using the sessionId as the ID for the window rather than relying on the
automatically-generated ID that will be used by default. With the title and html
options, we're using the Ext.Element DOM traversal facilities to assign the text of
the session div's h3 and div.content elements respectively.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[179]

We're now sure that the win variable holds a valid reference to a window, so we
can go ahead and show the window. After we do so, we want to align it with the
div that was clicked to show it, so the window's alignTo function is called. That's
a whistle-stop tour of the showSession function. The showAgent function is almost
identical, but refers to agentsGroup rather than sessionsGroup. Together these two
functions make sure that our session and agent windows pop up successfully, so it's
now time to take a look at how our WindowGroups can be used to manage them as
a unit.

Customer service WindowGroups
We can add two lines to our init function that use window groups to perform a
clearout of our customer service workspace:

g('hideSessions').on('click', this.sessionsGroup.hideAll);
g('hideAgents').on('click', this.agentsGroup.hideAll);

We can add event listeners to our hideSessions and hideAgents buttons that are
directly handled by the hideAll functions of the sessionsGroup and agentsGroup.
This short code snippet allows us to hide all of the agent or session windows with
a click on the associated button. In a similar vein, we're going to add a couple more
event listeners to our other buttons that will cause our windows to be tiled across the
screen—organised into an easy overview:

g('tileAgents').on('click', this.tileAgents, this);
g('tileSessions').on('click', this.tileSessions, this);

This time the events are handled by tileAgents and tileSessions that look
like this:

tileAgents : function(e) {
 this.sessionsGroup.hideAll();
 this.tile(this.agentsGroup);
},
tileSessions : function(e) {
 this.agentsGroup.hideAll();
 this.tile(this.sessionsGroup);
}

Again, we call the hideAll function to make sure that the other set of windows is
cleared from the screen. When we've prepared the workspace, we can then pass the
relevant window group to the tile function:

tile : function(group) {
 var previousWin = null;
 group.each(function(win){

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Windows and Dialogs

[180]

 if(previousWin) {
 if(win.getEl().getWidth() + previousWin.getEl().getRight() >
 Ext.getBody().getWidth()) {
 win.alignTo(document.body, 'tl-tl',
 [0, previousWin.getEl().getHeight()]);
 } else {
 win.alignTo(previousWin.getEl(), 'tl-tr');
 }
 } else {
 win.alignTo(document.body, 'tl-tl');
 }

 previousWin = win;
 });
}

The key here is the WindowGroup.each function, which allows us to loop through
every window assigned to the group and perform further actions and calculations.
In this case, if it's our first iteration, then we align the window to document.body.
For further iterations, the windows are aligned to the previous window in the
loop, taking care to add a vertical offset if the window would have pushed off the
rightmost side of the screen.

hideAll and each are useful ways of manipulating multiple windows. In this
example, we've shown how two distinct groups of windows can be handled with
very little coding overhead.

Summary
For me, the Ext.Window is one of the most fundamental aspects of a rich Ext JS
application. Many of the other big components within the framework, such as the
grid and tree, can display information in an easily-consumable and browsable
manner, but the chances are that if you need to display or manipulate a record with
a lot of information, need and do so without disrupting the user's workflow by
navigating to a different page, you're going to want to use a window.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 9

[181]

The great thing is that Window is flexible enough to slot straight into any application
you may want to build with it. For ultimate power, simply fill it with custom
HTML, or to create an integrated experience use Ext components. The fact is that the
window subclasses panel provides you with the ability to construct complex pop
ups by using the most suitable Ext.layout—be that of a form, or an accordion, or
whatever—and have it look and feel the same as the rest of your application.

Although windows and dialogs will most likely have a place in your application,
they should be used with care. There's a tendency to identify a requirement for
displaying extra information and simply popping it up in the user's face; it could be
that a less disruptive interface would be more suitable. Ultimately, Window and Msg
sit alongside the other parts of Ext JS as tools that can be easily integrated into any
application that requires them.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects
The easiest thing to do when writing a software application is to switch into
programmer mode—to focus on the code, and not on the end user experience. The
architecture of a system is extremely important, but if the user is not satisfied with
their interactions with the system, then the project can only be seen as a failure.

Ext JS contributes to solving this issue by providing many slick components that
react well to user input and maintain a consistent look and feel across the entire
framework. "Feel" is a very fuzzy word when it comes to software design; the way
a link acts when you hover over it or the way in which a window appears onscreen
can be the difference between a pleasurable experience and a confusing one.

Many of Ext JS's components have transitional animations built in by default,
allowing you to smoothly expand a treenode rather than suddenly pop it open, or to
shrink down a window to a specified button that can be used to re-activate it later.

Features like this aren't just an added layer on top of the rest of the Ext framework;
they're baked in at a low level to provide a consistent experience for both the
developer and the end user.

It's elementary
The Ext.Element underlies many of the feature-rich widgets in Ext JS; indeed the
Ext.Component.getEl method reflects the fact that widgets such as windows form
fields and toolbars are supported by this fundamental building block.

Ext.Element mixes many methods from Ext.Fx, the class that is designed to
provide slick transitions and animations for HTML elements and components alike.
We're going to discuss the exciting possibilities that Ext.Fx provides, and also talk
about the way in which it works together with Ext.Element.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[184]

Fancy features
As well as the building blocks of animation, we're going to examine various pieces of
eye candy that you can find dotted around the Ext framework. There are a number
of classes that provide added functionality to give your users feedback or assistance
when they're using your application, and many components support these features
straight out of the box. We can also use them in a standalone manner to create
rich tooltips, mask items that are in the process of loading new data, or highlight
individual parts of the screen to draw the user's attention to them.

It's ok to love
In truth, many of the functions we're going to cover in this chapter are superficial
in nature. They add some whizz-bang transitions that are not strictly essential.
There are two lines of defense for criticism. Firstly, a good developer understands
that users are not machines—they're people—and a little bit of whizz-bang is good
for everyone. Secondly, and perhaps more scientifically, it's much better to have
a transition to signify a change than simply have something appear. A transition
draws the eye and gives the user the opportunity to consume the visual cue that
was presented.

A sudden change on screen results in a "what happened" response; a smooth
transition provides a hint as to what's going on. As we tour the various features of
Ext.Fx, bear in mind that they can be used for more than just eye-candy; they're
great for adding value to your user experience.

Fxcellent functions
Ext.Fx is presented as a standalone class, architecturally independent of Ext.
Element, but in reality it cannot be used on its own. Instead, it is automatically
mixed into the methods and properties of the Ext.Element class, so that each action
from Ext.Fx is available for each Ext.Element instance. The examples that follow
will illustrate this point.

Methodical madness
As mentioned earlier, Ext.Fx has a range of methods that are called upon to perform
the magic. Each of these methods is available for Ext.Element instances. So in the
examples that follow, we're going to assume that you have a div element with an ID
of "target" on your ready-to-go HTML page.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[185]

Fading
The term "fading" is used in Ext.Fx to refer to a change in opacity—from 100%
opaque to 0%(fade out) and vice versa(fade in). In other words, we're making
something disappear and reappear—but as this is the Effects chapter, the transition is
animated. The two methods that perform these transitions are Ext.Fx.fadeOut and
Ext.Fx.fadeIn, and both support simple zero-argument usage:

Ext.get('target').fadeOut();

window.setTimeout(function() {
Ext.get('target').fadeIn();

}, 3000);

This usage will cause the target element to fade away slowly until it is completely
invisible. The timeout happens three seconds later and causes the target to slowly
re-appear, or fade in, until it is fully visible again.

You can tweak the behavior of these methods using the endOpacity configuration
option. In theory, this allows you to specify that the element will not fade out to
complete invisibility, which can be useful if you simply want to indicate that an item
is now less important. Alternatively, you can use it to dictate that an item will not
return to total solidity:

Ext.get('target').fadeOut({endOpacity:0.25});

window.setTimeout(function() {
Ext.get('target').fadeIn({endOpacity: 0.75});

}, 3000);

Note that I say "in theory"; actually, a limitation in Ext JS 2.2 means that the item in
question will actually just vanish after reaching the endOpacity. I'd expect this to be
fixed in the next release of the framework.

In the example just given, the initially-solid item is supposed to fade out to
one quarter opacity before being restored after three seconds to only threeto only three
quarters opacity..

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[186]

In addition to the configuration options such as endOpacity that are specific to
individual effects methods, there are also a number of common options shared by all
Ext.Fx methods. These allow you to tweak the behavior of your effects even further.
We'll discuss these later in this chapter.

Framing
Framing is reminiscent of a video game radar "ping". It radiates out from the point
of origin, fading away with distance. A great use of this feature is to highlight a
particular element on the screen—and the Ext.Fx.frame method also allows us to
ensure that the user's attention is drawn by using multiple "pings". The simplest way
of using it is without arguments:

Ext.get('target').frame();

This causes the target element to radiate a single light blue ping to draw attention to
the element, which may be useful in some scenarios. However, to make sure that the
user knows about a more important event, we could use something like this:

Ext.get('target').frame('ff0000', 3);

The first argument is the hexadecimal color of the framing effect, in this case, an
angry red. The second argument specifies the number of times the ping is to be
repeated. So here, we're using three red pulses to indicate that something pretty bad
is about to happen.

These are the real strengths of the frame method: repetition, and the ability to use
different colors to represent different situations and priorities.

Woooo: ghosting
Ghosts!-or rather ghosting—this is the term Ext JS gives to fading an element while
it moves in a specified direction. This effect is used to give the impression that an
element is transitioning from one area to another, for example the act of paging
through a number of images could trigger ghosting when the next or previous link
is selected. The default usage of ghost causes the element to drop down while
fading out.

Ext.get('target').ghost();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[187]

The default settings could be used to discard elements that are no longer
needed—perhaps deletion events could be signified with a call to Ext.Fx.ghost. As
mentioned previously, we can also cater for other situations by specifying different
direction for the ghosting depending on the situation. The standard Ext.Fx anchor
points, used in animation and alignment, can also be used with the ghost method:

Ext.get('target').ghost('tr');

Here, we indicate that the target will ghost out in the direction of its upper-right
corner, but any anchor point is accepted. We'll talk more about anchoring later in
the chapter. But it is this parameter that would allow us to replicate the paging
functionality which was described earlier, that is, we can use left and right anchor
points to move the ghost in the relevant directions.

Highlighting
If you're familiar with the term "Web 2.0", then you may also have heard of the
"yellow fade technique". A quick web search will turn up numerous references to
this JavaScript feature, which became popular when Web 2.0 was first becoming a
buzzword. Typically used when an action has been completed and the user has been
redirected to a new page, this effect causes a portion of the page—often an error
message—to have its background highlighted in a different color. The highlight
slowly fades away over a few seconds. Traditionally, the highlighted color has been a
friendly yellow, but for error messages, we might favor something stronger. Having
said that, yellow is the default for Ext.Fx.highlight:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[188]

This is triggered by the following basic code:

Ext.get('target').highlight();

Ext JS takes highlighting to the next level. While the standard usage affects the CSS
background color of the target element, you can choose any CSS property, such as
the color or border color. You can also specify the endColor of the highlight. In our
second and more complex example, we can cause the text itself to start out white and
end up green:

Ext.get('target').highlight('ffffff',{
 attr: 'color',
 endColor: '00ff00'
});

This is an extremely flexible method that can be used to highlight large portions of
a page—perhaps a fieldset in a form, or just a block of text—perhaps in an online
spellchecker. The point to be noted is that we can use it to respond and react to
user input, and use its flexibility to indicate the state of our system in a
noticeable manner.

Huffing and puffing
Ext.Fx's puff method tries to replicate the look of a puff of smoke slowly
dissipating into the air. While some of the Ext.Fx effects are used to highlight areas,
puff is used to transition an element off the screen. To do this, the element expands
while becoming more transparent, eventually fading away completely. Puff doesn't
have any special options of its own, so the default usage is pretty obvious:

Ext.get('target').puff();

Puff could be used with a quick transition to dismiss a window from the workspace,
or a slower transition could illustrate the removal of an element, maybe an image
from a gallery. However, there is one important point to note about this method:
when used within the document flow, it will affect the position of the elements
around it.

Although absolutely-positioned windows will not affect their surroundings, in our
gallery example, it is possible that when you use puff, you'll get unexpected results
as the expanding dimensions push your other images out of the way.

Developers who are aware of the potential side effects of using Ext.Fx.puff can
add it to their toolkit, providing another interesting method of creating dynamic
transitions in their applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[189]

Scaling the Ext JS heights
Scaling is one of the few Ext JS effects that has a specific use, rather than simply
being an overlay on top of another action. It changes the dimensions of an element
using a smooth transition, which has numerous applications. We can expand text
areas to give more space for user input; we can replicate maximize and restore effects
seen in the windowing applications; we can change the focus of a workspace by
shrinking one portion and expanding another. The basic usage of Ext.Fx.scale
looks like this:

Ext.get('target').scale(50, 150);

In this example, the target element will be smoothly-scaled to a width of 50 pixels
and a height of 150 pixels. Both of these options also accept null values, which
indicate that they should not be changed. This is useful if you want to restrict the
scale to only horizontally or vertically.

Ext.Fx.scale works only with those elements that have their display
style set to block, to allow the width and height changes to take effect.
Using it on inline elements won't trigger an error, but you will not see any
change in the dimensions of the element, either.

Sliding into action
Within Ext JS, sliding refers to the transition of an element into or out of view. This is
the same effect used in the Ext.Fx.ghost method, so we've seen it in action already.
But in reality, there are two methods that fall under this heading—:Ext.Fx.slideIn
and Ext.Fx.slideOut.

We can use these methods to either drop out an element that is no longer required,
or introduce a new element onto the screen. An obvious application for this would
be addition and deletion of records, where new items slideIn to the list and deleted
items slideOut.

Ext.get('target').slideOut();

window.setTimeout(function() {
Ext.get('target').slideIn();

}, 3000);

In the above example, we move the target out of view, and three seconds later bring
it back in. By default, elements will slideIn and slideOut from their top edge,
but the first argument to both functions allows you to use anchors to specify the
direction of the movement:

Ext.get('target').slideOut('tr');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[190]

Here, we dictate that the target will slideOut to the top right. As with Ext.Fx.puff,
you must be aware of the elements that surround the item you're sliding; text and
other non-absolutely-positioned elements may be pushed around during the slide.

Switching from seen to unseen
The switchOff method is another means of removing an element from the screen.
This one combines two actions: firstly a the element fades slightly to acknowledge
the start of the effect, and then the element slowly collapses from the top and the
bottom until it disappears. This two-stage effect means it can be used to draw the
user's eye before the real vanishing act takes place. We can use Ext.Fx.switchOff in
the following way:

Ext.get('target').switchOff();

As you can see, there are no unique arguments for this method, so it would seem that
you're stuck with the default effect. But later we'll discuss the configuration options
that are available for all of the Ext.Fx methods—the secret to complete control over
your effects.

SwitchOff comes in pretty handy in situations where you'd like to cause an element
to vanish without user interaction. For example, you might have some kind of
monitoring screen on your website that displays the current visitors to your site,
and tracks them as they move between pages. When their session expires, they will
be removed from the list. Rather than simply transitioning off the screen you can
highlight to the user that this is about to happen using switchOff: a quick flash to
indicate that the action is about to occur, and then the actual collapse transition.

Shifting
The Ext.Fx.shift method may sound like a function in the same vein as ghost
and slideOut, but in actual fact it's a little different. There's no default behavior
associated with the method, so simply call it in this fashion:

Ext.get('target').shift();

This will have no effect. Instead, shift must be supplied with a literal containing
one or more values from the following:

width

height

x

y

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[191]

By setting one of these values and passing it to shift, we can cause the target
element to move to the x,y coordinates and resize to the width, height
dimensions—in the smooth manner which we've come to expect of Ext.Fx. Here's
an example:

Ext.get('target').shift({
 x: 5,
 y: 300,
 width: 300,
 height: 200
});

In this example, our target element will move to a position of 5 pixels from the
left and 300 from the top of the viewport, and will resize to 300x200 pixels. These
changes happen simultaneously, with the element resizing as it moves.

Effectively, shift is a version of Ext.Fx.scale that adds the ability to reposition the
element. This is a great mechanism for re-organizing a workspace—shifting panels
of data from a place of prominence to a place more unobtrusive, and doing so in a
smooth, dynamic manner.

And now, the interesting stuff
All of the methods that we've just covered have some broad similarities. But each of
them has certain distinct differences which make them applicable as solutions for a
range of very different problems. We're now going to discuss how an extra feature of
Ext.Fx can tweak and tailor the effects we've already reviewed.

In many of the above examples, the functionality on offer is slightly limited. What's
been glossed over until now is that each of the methods we've discussesd also
accepts a standard configuration object that provides a host of common options to
bring their full functionality to your fingertips.

The Fx is in
We've briefly touched upon the way in which anchoring options are used within
Ext.Fx, for example, methods such as a ghost accepting a string representing the
direction in which to move. Over the next few pages, we'll not only discuss this in
detail, but we'll also go over the numerous configuration options that are common to
all of the Ext.Fx methods.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[192]

Anchoring yourself with Ext
Specifying directions, anchors, alignment, and more is all based around a scheme
of anchor positions. These are used by Ext JS's animation system to determine the
direction of movement, and they have a pretty simple naming convention:

Anchor Position String Description

tl Top left corner

t Center of the top edge

tr Top right corner

l Center of the left edge

r Center of the right edge

bl Bottom left corner

b Center of the bottom edge

br Bottom right corner

These options allow eight-way movement when using methods such as
Ext.Fx.ghost. But the same concept is seen in methods such as Ext.Element.
alignTo and Ext.Element.anchorTo, where two anchor points can be combined,
and the "?" character can be used to dictate that the alignment will be constrained
to the viewpoint.

In short, it pays to familiarize yourself with the Ext JS anchor positions, as you'll
almost certainly use them in your application—either to move elements or to
just bend them to suit your many needs. More than that, Ext.Components have
underlying elements. So you'll most likely use these features when developing a
solution with rich widgets.

Now, back to the topic at hand—taming the Ext.Fx class.

Options
As mentioned earlier, each of the Ext.Fx methods we've covered can take an optional
configuration literal as its last parameter, which provides 11 settings for tweaking
your effects. The simplest is probably duration, which specifies how long the effect
should last. This is useful for ensuring that your transitions last long enough for your
users to catch them. Although the default durations of each effect are usually pretty
sensible, there are many use-cases for overriding this value. Here's an example of using
duration, and indeed the configuration option argument in general:

Ext.get('target').switchOff({
 duration: 10
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[193]

In this example, we pass a standard object literal to the switchOff method, and the
duration property is set to 10, indicating that the switchOff should take place over
ten seconds.

With the default behavior of some of the Ext.Fx methods, you end up with some
sub-optimal transitions. For example, many of the effects that cause an element to
vanish will actually just leave a big gap where the element used to be. This is because
they complete the transition by setting the visibility of the element to hidden, rather
than removing it from the DOM or from the document flow. We can rectify this
using two more configuration options: remove and useDisplay.

The first, remove, signifies that we'd like to completely destroy the element when
the transition has completed. The second, useDisplay, means that the element
will be hidden using display:none rather than visibility:hidden, so that it
will no longer affect the nodes around it. Using remove and useDisplay together
is redundant. If the node is completely removed, it makes no difference how it's
hidden. If you're planning on re-using or re-showing the element in question, then
stick with useDisplay; otherwise you may as well be tidy (and avoid potential
memory leaks) and use remove.

The configuration options also allow us to dictate what else happens when the effect
has completed. We have two options that control the look of our element: afterCls
and afterStyle, which allow a CSS class or raw CSS rules to be applied to the
element at the end of our transition. This can be used to add a permanent change to
the element in question, perhaps highlighting it as a newly-introduced item.

We have two more options that give us the power to perform further actions when
the effect has completed: callback, which allows us to specify a function to be called
at the end of the transition, and scope, which is the scope of the callback function.
For example:

Ext.get('target').switchOff({
 callback: function() {
 alert('Effect complete!');
 }
});

The Ext.Fx class handles the queuing of effects automatically, so don't use this to
trigger another effect. Instead, use it to trigger actions associated with the animation.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[194]

Easy does it
Our next configuration option is easing. In animation terminology, easing refers to
the means by which the transition eases from a stop to movement and back to a stop
again. By default, Ext JS effects will abruptly start and stop, but by using the easing
option, we can specify how it will accelerate and decelerate at the start and end of
the effect respectively.

The easing effects supported by Ext JS vary depending on which adapter
you're using. If you're using the Ext JS Base adapter, then you'll get the
full works.

A basic example of this in action is the easeBoth value. This causes the
animation to gradually speed up and then slow down in order to provide a
smooth-looking transition:

Ext.get('target').scale(50, 150, {easing: 'easeBoth'});

Here, we're applying the easing option to the scale effect, and by using easeBoth,
we can have a less jarring movement as it progresses. There are many more
easing options:

easeNone

easeIn

easeOut

easeBoth

easeInStrong

easeOutStrong

easeBothStrong

elasticIn

elasticOut

elasticBoth

backIn

backOut

backBoth

bounceIn

bounceOut

bounceBoth

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[195]

That's a list of the options supported by Ext JS Base. Ones like bounceIn provide a bit
of a spring to the effect, which is perhaps more useful in a gaming application than
in data entry, but the beauty of having such a wide choice is that you are likely to
find something that fits your requirements.

The final few configuration options apply to the way your current effect interacts
with other effects that may occur within its lifetime. For example, block will specify
that no other effects are queued up while this one is running, which is useful in
scenarios where triggering further changes could adversely affect your application's
state. The block option tells all other effects to "bide your time" until things have
calmed down.

Ext.get('target').shift({
 x: 5,
 y: 300,
 width: 300,
 height: 200,
 block: true
});

Here, we see an interesting usage of the Ext.Fx.shift method, in which the
shift-specific configuration options are augmented by the common Fx ones.

We also have the stopFx and concurrent options. stopFx allows us to cancel
all effects that get triggered after this one, while concurrent specifies whether
subsequent effects will run in parallel with this one, or will be queued up until after
this one has completed. By default, they'll queue up and run in sequence, but there
are situations in which you will be able to apply multiple effects at a time, and we'll
talk more about that in the next few sections.

Multiple effects
Most of the time, you'll use effects one at a time on different elements to achieve the
look you're after, but in some circumstances, it can be useful to use multiple effects.
There are a few different ways of handling this scenario, and in the next few sections,
we're going to review these ways. We're also going to see how we can influence any
running effects from our code.

Chaining
An easy way to set up a second effect to run after your first is completed, is to
use method chaining. Because each of the main Ext.Fx methods returns the Ext.
Element that was the target of the effect, you can then call further Ext.Element
methods, including those provided by Ext.Fx:

Ext.get('target').slideIn().highlight();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[196]

As you can see from this example, we're calling slideIn followed by highlight,
which indicates that highlight will be added to the effects queue to run after
slideIn completes.

Queuing
Queuing is the default behavior for effects set up either by method chaining, or
by multiple calls. The following code sample is functionally-identical to our
previous example:

Ext.get('target').slideIn();
Ext.get('target').highlight();

In both cases, the highlight effect will be queued up behind slideIn. This negates
the need for any complicated timing or callback-based set-ups to trigger effects that
run sequentially.

Concurrency
Although queuing is the default, we also have the option of running effects in
parallel by using the previously-discussed concurrent configuration option. This
gives us the opportunity to combine effects—for example, we could highlight an
element as it scales up:

Ext.get('target').scale(300, 200 ,{
 concurrent:true
}).highlight();

This provides a very powerful capacity for customization.

Blocking and Ext.Fx utility methods
There are a number of extra methods within the Ext.Fx class that aren't directly
responsible for creating effects. Instead, they can be used to manage and monitor
effects that are already in the queue. A great example of this is the stopFx method,
which is as simple as it sounds—we can call it to cancel any animations that are
currently running. It also clears the effects queue, and primes the element for user
interaction or further manipulation.

Interestingly, stopFx returns the target Ext.Element, allowing the developer to
chain up further methods. Perhaps you have set up a slideIn that is subsequently
canceled and replaced with slideOut:

Ext.get('target').stopFx().slideOut();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[197]

Such code is useful if we need to interrupt an animation to give control back to the
user—an ability that can be crucial in giving the user the responsiveness they require.
However, in other circumstances you may want to prevent the user from interfering
with the current state of the application, and if that's the case, we have the hasFxBlock
method. Typically, this is used to make sure that the user can't queue up the same
effect many times—we can prevent additional effect calls to the element if hasFxBlock
returns true.

Elemental
As we've seen, the Ext.Element is the key to using Ext.Fx. It's important that, when
rolling your own custom versions of Ext JS, you make sure that you include Ext.
Fx if you want to be able to use its methods for Ext.Element. However, even when
used stand-alone, Ext.Element has a number of methods all of its own that can
provide some interesting possibilities for animation.

Making a move
There are many methods on Ext.Element that can be used to manipulate a target
element, but some of them have a free extra. Pass in a true value as the last
parameter, and the manipulation will be animated.

Ext.get('target').moveTo(300, 500, true);

In this case, the target element will move to a location 300 pixels from the left and 500
from the top of the viewport. But, because of this last parameter, it will not simply
jump to that location, but will smoothly transition to the specified point.

In addition to simply passing in true as the third parameter, we can pass in a full
configuration object instead. This uses the same animation options for Ext.Fx that
we discussed earlier in the chapter.

Ext.Element animations can be used at the same time as the ones from
Ext.Fx, but they are not guaranteed to support the queuing features that
are always available with the Ext.Fx methods.

There are many methods, such as setOpacity and scroll, that can be used inthat can be used in
this fashion to provide the means for adding simple transitions. This is a goodto provide the means for adding simple transitions. This is a good
foundation, which Ext.Fx builds upon.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[198]

There's another piece of the animation puzzle that we're yet to touch upon:
Ext.Element.animate. This is the generic means of applying animations to
an element, and is a shortcut to the same underlying methods that are used by
all of the Ext.Element methods that support animation.

Advanced applications of this method involve using the Ext.lib.anim entries
that register all of the stock animation types available to Ext JS, and adding new
registered animation handlers to support custom scenarios. In most cases, using the
stock Ext.Element methods or the Ext.Fx methods will be sufficient, even for
advanced cases.

Using Ext components
The animations which are available on Ext.Element are particularly interesting
when you consider that many Ext.Components, such as the Window or FormPanel,
have an underlying Element as their container. This means that you can apply these
effects to full components as well as to standard elements, providing an added utility
for these methods.

Bring out the flash
We've covered Ext.Fx and the other animation techniques that Ext JS offers in depth,
now. But we've still got a few more features to cover when it comes to showing off
with the framework. There are a number of Ext classes that provide a little extra
sparkle to the top of the standard solutions. We've got LoadMask that allows you to
mask off a portion of the screen while it's being refreshed, and QuickTip that offers a
rich, configurable tooltip system.

These classes open up a new range of options when it comes to creating compelling
user-experiences, and we're going to examine them in detail over the next few pages.
A key feature of each is that they are reasonably simple to use, which is partly the
reason why you'll want use them in many of your Ext JS applications.

You're maskin', I'm tellin'
The Ext.LoadMask class has a couple of different use cases. We can use it to
simply display a message that keeps the user informed, or we can use it to prevent
interaction with a component that is being refreshed.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[199]

Let's look at the first scenario-that is, using an Ext.LoadMask to simply overlay an
element with a message.

var target = Ext.get('target');
var mask = new Ext.LoadMask(target);
mask.show();

In the above example, once we obtain an element using Ext.get, we pass it into
the Ext.LoadMask constructor and call the show method on the LoadMask instance.
There is also an optional second parameter for the Ext.LoadMask constructor: a
configuration object with four properties:

Property Name Description

msg The loading message to be displayed in the center of the mask

msgCls The CSS class to use for the loading message container

removeMask Boolean; set to True to destroy the mask after the load is complete

store Discussed later

When creating a load mask in this way, we can dismiss it by calling the mask.hide
method. Although this masking approach is pretty straightforward, it's also a
little verbose. So in some cases, it's better to use the shortcut method that
Ext.Element provides:

Ext.get('target').mask('Loading...', 'x-mask-loading');

In this example, we're explicitly passing the message text and message CSS class
as the first and second arguments respectively. This allows us to replicate the
functionality provided by a basic Ext.LoadMask call, as shown in the first example,
but they're both optional. When you're done with the mask, you can hide it by calling
the unmask method of your Ext.Element instance. If you have stored a reference to
the mask, you can call the hide method of that instance instead.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[200]

Data binding and other tales
Although it initially seems that the Ext.Element approach is better, there are
actually a few compelling reasons for using the full LoadMask. The most interesting
reason is that it can be tied to a specified Ext.data.Store instance, allowing you to
automatically mask and unmask your element based on when the store is loading.
This cuts down on your code when showing the mask, but it also negates the need to
hook up an event listener for your load complete events. Let's take a look at how this
feature can be used:

var slowStore = GetSlowStore();

var mask = new Ext.LoadMask(Ext.get('target'), {
 store:slowStore
});

slowStore.load();

We're not interested in how to create a store, so that's been hidden away in a
function call. All we care is that our example store is going to take a couple of
seconds to finish loading. We instantiate a new LoadMask with an element as the
first constructor parameter, and a configuration literal as the second one. The store
property accepts our slowStore as its value.

Now that everything's set up, we simply call the load method of the store. This will
mask over our target element, and in a few seconds when it has finished loading, the
mask will automatically be dismissed.

Considering components
As we've seen, there are a number of ways of manually masking elements, and
you could use any of these approaches to the Ext.Elements that under-lie many
Ext.Components. However, it's important to note that some components provide
this functionality for you, cutting down on the code that you need to write in order
to enable this feature in your applications. For example, the Ext.grid.GridPanel
has a boolean loadMask configuration option, which not only masks the panel but
also automatically ties in to the datasource that is feeding the GridPanel.

QuickTipping
It's often very useful to be able to supply further information for a button or
form field, just in case your users are unclear as to its purpose. In many cases,
it's impractical to put this information inline, next to the item in question, simply
because it would make the interface highly cluttered. In this situation, tooltips are a
great alternative to inline information, and with Ext JS these little pop-up snippets
can contain any HTML that you'd like to show.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[201]

The Ext.QuickTips class is a singleton that provides a very easy method of creating
rich tooltips. It allows you to put your QuickTip setup information directly into the
markup of your page—a great method for reducing the configuration required. In
many cases, having the description text within your main HTML makes the most
sense. This approach is supported by the use of a number of extra attributes for any
HTML element that you'd like to tie the QuickTip to, with ext:qwidth, ext:qtitle
and ext:qtip being the most commonly-used:

<input type="text" ext:qtitle="Information" ext:qtip=
 "This field can contain text!" ext:qwidth="200" />

We need to activate the global QuickTips handler before this will start working:

Ext.QuickTips.init();

It's also worth mentioning that nonstandard attributes will cause After completing
these two steps, you'll end up with the tooltip you see here:

As well as using markup-based tooltips, we can also programmatically create
more customizable ones with the Ext.ToolTip class. This provides a range of
configuration options to change the behavior and appearance of the tooltips, and also
allows you to pull tooltip data from an external source, by using the power of AJAX.

The simplest usage of this class is as follows:

new Ext.ToolTip({
 target: 'tipTarget',
 html: 'This is where our information goes!'
});

The constructor for Ext.ToolTip accepts a configuration literal as its only argument,
and here we're using the mandatory target property to specify which element will
trigger the tooltip; in this case it will be the one with the ID tipTarget. Note that
we're using a string to refer to the ID, but in fact you can pass in an Ext.Element
reference or a standard HTML node. We're then setting the html property to the text
that we'd like to show in the tooltip. As the name of the property indicates, you can
add any extra markup you like—even images.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Effects

[202]

Ext.ToolTip has a number of other interesting options, such as the ability to tweak
the time it takes for the tooltip to appear and then vanish, by using the showDelay
and hideDelay configuration properties. This can be useful if you need the tooltip to
appear promptly when the user hovers over its associated element, or if you want to
make sure that the information is on-screen long enough to be taken in.

We've also got the ability to set the title of the tooltip in the same way as we did
with the markup-based solution, that is, by using the title option. In fact, many
of the options, such as title, come from the fact that Ext.ToolTip is a subclass of
Ext.Panel. This means that we can use features such as the autoLoad configuration
option to grab content from a URL, or use the closable option, to force the user to
dismiss the tooltip using a close widget.

QuickTips and ToolTips are great examples of Ext JS classes that aren't essential to
an application, but that provide a layer of functionality that can take your solution
from something ordinary to something highly usable.

Summary
There's a fine line between visual cues and annoying effects. Although we've reviewed
many of the Ext JS features that allow you to gear your application towards either
extreme, this chapter has only been about the tools—not how you should use them.

That said, we've also looked at a couple of examples that illustrate just how useful
eye candy can be when helping out your users. By providing a little something
extra when you're deleting a record or closing a data display, you can turn a
potentially-confusing experience into one that is supported by gradual changes in
visual state, rather than immediate shifts from one click to another.

The key is to ensure that those gradual changes aren't too gradual, that your
animations aren't in-your-face, and that they aren't triggered every time the user
presses a button. Software applications are about getting things done, and having
portions of the page whizzing around the screen isn't likely to help with that.

Ext JS isn't just about these fancy effects, though. We've demonstrated a couple of
classes that are utility tools with style. ToolTips and LoadMasks are genuinely useful
in many scenarios, and could rarely be used in an "in your face" manner.

Using ToolTips can add a lot of value to a busy application, removing clutter by
moving inline text into pop ups, and providing unified and attractive assistance to
your users. Images, and even HTML links, can provide more information than could
possibly be shown next to a form field.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 10

[203]

The second of the classes we covered, LoadMask, can form a critical part of a system,
ensuring not only that your users are prevented from interrupting a load operation,not only that your users are prevented from interrupting a load operation,that your users are prevented from interrupting a load operation,your users are prevented from interrupting a load operation,are prevented from interrupting a load operation,
but also that the mask that appears is attractive, consistent, and can contain
customized information that keeps the users informed.

In the next chapter, we're going to take a look at one of the most typical examples of
Web 2.0 glitz: drag-and-drop. In a typical Ext JS manner, we're going to see how it's
not only simple to use, but also powerful in its functionality.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop
In the world of software development, desktop applications are still number one.
Although web sites and, latterly, web applications are developing rapidly using
frameworks such as Ext JS, they are yet to reach the level of complexity that we see in
our most extensive desktop programs.

Drag-and-drop, the subject matter of this chapter, is a good example of this.
Moving items across the screen using the mouse on a standard computer desktop is
all-pervasive; it is available for a great many actions and it is available in virtually
every application, even if this is in a limited form.

Part of the reason for this is that implementing drag-and-drop using JavaScript is
pretty hard. Coming up with a consistent methodology for turning any element into
a draggable widget that can then be placed on another element, and have it work in
every browser, and have it support scrolling, and take into account iframes is, to say
the least, problematic.

At the start of the Web 2.0 revolution, we started to see some more consistent
implementations of drag-and-drop appearing—ones that fulfilled many of the
criteria we've just outlined. But even then, the Web didn't start using it in such a free
and easy manner as the desktop, perhaps because of the poor use cases that were
used as demonstrations for this new functionality. After all, does anyone really want
to work with a drag-and-drop shopping cart system?

Drop what you're doing
The implementation of drag-and-drop that Ext JS provides succeeds on many levels.
It is cross-browser and easy to use, but more importantly, it is used in multiple
widgets within the framework, such as the GridPanel and TreePanel, making it
easy to implement in useful real-world applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[206]

In addition, the Ext.dd package contains a number of classes that allow you to
create simple drag-and-drop features with ease—shopping carts included. There is
sufficient granularity to support more advanced scenarios as well, providing you
with a means of creating custom drag-and-drop solutions that are fully integrated
into your Ext application.

In this chapter, we'll review the Ext.dd package and ways in which it can extend
your toolkit, but we'll also be looking at how to extend the drag-and-drop
functionality provided by the various Ext components.

Life's a drag
There are clearly two parts to creating a working drag-and-drop feature—the
dragging, and the dropping. As these are two separate operations, we'll handle them
separately for our simple use case.

Sourcing a solution
The first part we need to look at is the drag action. Ext will enable this using the Ext.
dd.DragSource, which actually makes the whole thing a breeze. Assume that you've
got a <div> element on your page with an ID, dragMe:

new Ext.dd.DragSource("dragMe");

That's all you need to get up and running!

Try running this code and grab hold of your element. You can now drag it around
the page, but there's a little bit more to it than that. Ext JS provides a few extra
features by default which will be demonstrated by this code.

Approximating
When you begin dragging the element, you'll see that you don't actually drag the full
element as you would in some drag-and-drop implementations that you might have
seen. Instead, Ext JS automatically provides a proxy—a lightweight representation of
whatever element you're dragging. This facility is provided by Ext in the form of the
Ext.dd.StatusProxy class.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[207]

If you're using an element with a little bit of text in, you'll see that Ext uses that as
the contents of the status proxy, but that's as far as it goes in trying to replicate your
element when creating a visualization of the drag action. The dimensions of your
element will be discarded, and the proxy will try and fit the content in as best it can.
But if you've got a lot of data inside your element you may find that the status proxy
is somewhat out of shape.

What's the advantage of having a status proxy, rather than just using the element
itself? Well, one thing that you'll also see from our demonstration code is that Ext
provides a little no-entry icon as you move the proxy around. That changes to a
green tick when you move the proxy over a valid drop point, as we'll see shortly. But
the great thing is that using a proxy will give you this indicator for free.

Another advantage of using the status proxy instead of the full element is that it's
much more workable, both in terms of processing power and in terms of the actual
stuff you're going to be dragging across the screen; moving a 10 column, 200 row
table isn't going to be smooth and isn't going to look good either. A status proxy
makes for a neat solution to these kinds of problems, and has some bonus features
too—as we'll see later.

Snap!
Another built-in feature of an Ext.dd.DragSource is the action that occurs when
you drop the element in a place that isn't a valid drop target—that is, when the
proxy's red no entry sign is showing. It immediately "snaps" back to where it came
from, highlighting the original element in light-blue to notify the user that it has
returned to its original position.

Drop me off
Now that we've managed to drag something around, we can move to the second part
of the plan—dropping. The idea is that we have a drop target—an element that
triggers that green tick in the proxy to signify that you can drop the proxy into it.

In order to do this, we make use of the Ext.dd.DropTarget class, in pretty much the
same way as we used DragTarget:

new Ext.dd.DropTarget("dropHere");

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[208]

The DropTarget constructor accepts a mixed element object—in this case, the ID
of an element on our page—and defines that element as a valid target for any drop
operations. Running these two examples together will illustrate the changing status
of the drag proxy icon—from red to green, when it's hovering over a drop target.

But wait: Nothing's happening!
The tricky thing about this kind of basic drag-and-drop is that nothing really
happens when you perform the drop action. In fact, the dragged element just snaps
back to its source just as it would if you'd dropped it when the proxy icon was red.

The trick lies in providing a function that overrides the DropTarget.notifyDrop
method. By default, this method has no implementation and simply returns false,
causing the dragged element to snap back to its source. By writing a little bit of
custom code, we can make the drop action complete in whichever way we see fit.

Why is this step necessary? Surely Ext JS should know that we want to drag
that over to there? There are so many variations of drag-and-drop that it's
impossible for Ext to understand what you're trying to do. Instead, it makes
it trivial to add your own actions to drag-and-drop operations.

We're going to take a look at some sample code that hooks into this facet of the
drag-and-drop support by creating a simple example that causes the dragged
element to be inserted within the drop target. This is probably the behavior that
you expected to see with the default setup. Although it won't be that useful within
itself, it should help fill in some of the gaps.

Assuming that we have the same code as in our previous few examples, with
a DragSource and a DropTarget, we now need to add an implementation of
notifyDrop to the DropTarget:

new Ext.dd.DragSource('drag');
new Ext.dd.DropTarget('drop', {
 notifyDrop: function() { return true; }
});

This simple addition, which overrides the default implementation of notifyDrop,
returns true and signifies that we do not wish the drag target to snap back to its
original position. This is enough to partially fulfill our expectations of what our
drag-and-drop code should have done in the first place. The drag source can
be released over the drop target without snapping back to its original position.
However, we do need to do a little more work to actually make the element move
into the target, and we'll look at how to do this, shortly.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[209]

Interacting the fool
While the previous examples are interesting in the abstract sense—they give us an
idea of how the Ext JS drag-and-drop system works—they aren't going to be setting
your newest development alight. For that, we need to consider how multiple drag
targets and drop targets can interact, and how we can set up more complicated
systems for dragging around items of data.

Zones of control
We've seen how to hook up a single draggable item, but often, you'll want to have a
number of elements ready to be moved around the screen. The solution here is to use
Ext.dd.DragZone and Ext.dd.DropZone to enable the movement of multiple nodes.
We're going to replicate a simple to-do list application, which will allow the user to
move items from one list to another. However, this functionality will be seriously
limited, allowing us to focus only on the relevant topics. First, we need to set up
some basic HTML:

<h1>Today</h1>
<ul id="today">
 Shopping
 Haircut

<h1>Tomorrow</h1>
<ul id="tmrw">
 Wash car

We've got two lists, one with an id of today and one with an id of tmrw. Our user
will be able to move items between the two lists to simulate reorganization of their
next few day's tasks. Our first snippet of JavaScript will use the Ext.dd.DragZone to
set these lists as containers of draggable items. Remember that your JS code needs to
go inside an Ext.onReady call.

new Ext.dd.DragZone('today');
new Ext.dd.DragZone('tmrw');

This looks pretty straightforward, but there is one sticking point. Testing the
code at this point will highlight the fact that it doesn't actually enable any
functionality—nothing happens. Alongwith setting up the DragZone, we need to
explicitly say which child nodes within those DragZones are going to be draggable.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[210]

Why the extra step? In complex applications, we may have many nested
child nodes. So automatically setting all of them up as draggable could
cause performance problems and unexpected behavior. Instead, we could
do so manually, avoiding these potential issues.

In order to make our list items draggable, we need to register them with the
Ext.dd.Registry:

var drags = document.getElementsByTagName('li');
for(var i =0; i< drags.length; i++){
 Ext.dd.Registry.register(drags[i]);
}

This is a pretty naïve implementation, simply registering all of the elements on
the page, but it should give you an idea of what is required. If you test the code now,
you'll see that all of the items can be dragged around as you'd expect. So we need to
move on to providing a place to drop them:

var cfg = { onNodeDrop: drop }
new Ext.dd.DropZone('tmrw', cfg);
new Ext.dd.DropZone('today', cfg);

We create a cfg object, which holds configuration data common to both of our
Ext.dd.DropZone instances. The onNodeDrop method of DropZone is called
by DropZone.notifyDrop automatically when it realizes that you've dropped
a registered node. In this case, we're pointing to a function called drop that
will override the existing, empty, implementation of onNodeDrop. The new
implementation looks like this:

// dropNodeData-drop node data object
// source-drag zone which contained the dragged element
// event-the drag drop event
// dragNodeData-drag source data object
// this-destination drop zone
function drop(dropNodeData, source, event, dragNodeData) {

var dragged = source.dragData.ddel;
 var sourceContainer = source.el.dom;
 var destinationContainer = this.getEl();

 sourceContainer.removeChild(dragged);
 destinationContainer.appendChild(dragged);

 return true;
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[211]

We use the arguments passed to this function to get hold of three elements: the item
that is being dragged, the list that it came from, and the list it's being dragged to.
With this information, we can remove the item from the source list and then append
it to the destination list. We then return a value of true to prevent the item's proxy
from snapping back to its point of origin.

Changing our lists
With this sample code, we've demonstrated the use of Ext JS drag-and-drop
functionality in a practical manner. It's a very simple application, of course, but it's
good. We can see how the powerful aspects of the Ext.dd package can be applied in
a straightforward manner.

Later, we'll see how many aspects of the Ext JS framework support drag-and-drop
with very little configuration, and how a knowledge of how the underlying classes
work is essential if such support is to be shaped to your requirements.

Registering an interest
We've already discussed how the child nodes of a DragZone must be registered in
the Ext.dd.Registry before they can be dragged around. This extra step can be a
little painful, and we'll see ways around this later, but for now, let's concentrate on
the advantages you get when a node is added to the Ext.dd.Registry.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[212]

In our previous examples, we used the Ext.dd.Registry.register method with
a single parameter: the element to be registered. However, register also takes a
second, optional parameter that allows you to add an extra metadata object to the
item being dragged around. This metadata can be leveraged in any way you see fit
for your application, but a possible use would be to pass "compatibility" information
to the drop event. Imagine you are producing an application that lets you assemble a
"virtual outfit" by dragging-and-dropping items of clothing. We could use metadata
to make sure that only items of clothing from the "summer" range can be combined,
by including range information as part of the drag data. There are many different
applications for the metadata facility, but because it's just an arbitrary object, it really
is up to you to decide how it can be used.

Although there is overhead associated with the use of Ext.dd.Registry, we've
shown that it also has important benefits which, depending on the needs of your
application, could outweigh the hassle of writing extra registration code.

Extreme drag-and-drop
One of the great things about drag-and-drop in Ext JS is that you can use it with
many of the supplied Ext Components without having to delve into the guts of how
they work. We're going to examine the use of drag-and-drop to create a master-detail
layout with an Ext.DataView and an Ext.FormPanel. This way, we can demonstrate
the integration of drag-and-drop with commonly-used components. Much of what
we're going to cover will be familiar to you from our previous example, but the
application of that knowledge will be slightly different.

We're going to be working with some very simple HTML:

<div id="people"></div>
<div id="detail"></div>

The people <div> will contain our DataView, listing a group of people pulled from a
store. The detail <div> will contain the form that we can drag items onto.

DataView dragging
The first step is to create our Ext.DataView, and enable the dragging of its nodes.
The code to initialize the view looks like this:

var personView = new Ext.DataView({
 tpl: '<tpl for=".">' +
 '<div class="person">' +
 '<h1>{name}</h1>' +
 '<div></div>' +

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[213]

 '</div>' +
 '</tpl>',
 itemSelector: 'div.person',
 store: personStore
});
personView.render('people');

You'll notice that the implementation of the personStore isn't shown, but it needs
to have an ID, name, image, city, and country items within its records in order to
support what we're going to do. Note that within our template, we're showing a
header containing the name of the person and an image representing them.

Based on our experience with list items, we can set up a DragZone for the DataView
container, and register the <div> elements with a class, person, using the Ext.
dd.Registry. If you try this approach, you'll see why it's not the right one for this
particular application—it simply doesn't work! The person nodes can't be dragged
around as you'd expect.

The reason for this lies with the Ext.dd.Registry. As the children of a DragZone
need to be registered with the Ext.dd.Registry, before they can be dragged
around, we would need to ensure that every possible child—in our case the <h1>
and tags—is registered. This is clearly not a very practical solution, and so we
must take a different approach.

Dealing with drag data
We need to deal with this issue on a slightly higher level. Rather than dealing with
each individual child node, we will look at overriding the default behavior of Ext.
dd.DragZone in order to achieve our goal.

The getDragData method of the DragZone class is called whenever a mousedown
occurs within the DragZone container. This means that we can use it to listen for the
start of a drag event no matter which child node is clicked. In our circumstances,
we'll examine the target of the mousedown event and navigate up through the DOM
until we find the person node that represents the item we really want to use in our
drag operation. So the code for setting up our DragZone would look like this:

new Ext.dd.DragZone(personView.getEl(), {
 getDragData : function(e) {
 var container = e.getTarget('div.person', 5, true);

 return {
 ddel : container
 }
 }
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[214]

As mentioned earlier, we get the person container node from the mousedown event,
and we use it to populate the ddel property of the object that is returned from
getDragData. Earlier in the chapter, when dealing with dropping a node onto a
DropZone, we looked at the dragData.ddel property to find the node that was being
dropped. This is the same data, but from the other point of view—this is how it
gets populated.

Now we've got our DataView working as we expected, but there are a couple of
interesting additions that we can make at this point. Let's examine those now.

Proxies and metadata
When we specified the ddel property in getDragData, we were essentially
populating the proxy that was going to follow the mouse pointer as we dragged our
node around. This is a useful consideration. Consider the following code:

return {
 ddel : container.down('h1').dom
}

Now, instead of our proxy appearing as the full node, it'll only appear as the h1 tag
within our node. When we've talked about proxies before, we've mentioned that
dragging a cut-down version of the full item can be a very useful approach, and this
is how it can be achieved when using DragZones.

We also have the option of passing extra data into the drag by using other properties
of dragData. In fact, any information that we add to the object will be available when
the item is dropped. Here's what we're going to do in our example code:

return {
 ddel : container.down('h1').dom,
 record : personView.getRecord(container.dom)
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[215]

We can actually pass the record associated with the item that was clicked as a data
item in our drag operation. This is going to come in very handy when we come to
populate our FormPanel.

Dropping in the details
This is the other side of the coin—handling the drop action that is triggered when we
release a dragged node from our DataView. The concepts behind this will be familiar
from our previous examples. We need to create a DropTarget from the FormPanel
and then override its notifyDrop method to dictate what will happen when the drop
action occurs.

Let's take a look at the code for our FormPanel:

var detailForm = new Ext.form.FormPanel({
 width: 250,
 height: 80,
 defaultType: 'textfield',
 items: [
 { fieldLabel: 'Name', name:'name' },
 { fieldLabel: 'City', name:'city' },
 { fieldLabel: 'Country', name:'country' }
]
});

This is all pretty standard stuff, but note that the names of the form fields match up
with the names of the fields in our data record that was used to populate the drag
node. We can now set up the DropTarget:

new Ext.dd.DropTarget(detailForm.body.dom, {
 notifyDrop : function(source, e, data){

 var record = source.dragData.record;
 detailForm.getForm().loadRecord(record);

 return true;
 }
});

Note that we can grab the full record straight from the dragData on the drag source,
and load it into the form. That's the strength of being able to put any data we like
into dragData, and here it shows how we can populate the form with a minimum
amount of code.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[216]

Drag-drop groups
We started off our tour of Ext.dd by looking at how individual nodes could be
moved around the screen and placed in designated containers. From there, we
described the methods used to enable dragging for many nodes at once, and how
these could be dropped within containers with child nodes.

When you're dealing with lots of draggable elements, there's a third facility that can
be used to make sure that your nodes behave in the way you'd expect: drag-drop
groups. DragSource, DragZone, DropTarget, and DropZone accept the configuration
option ddGroup that in turn accepts a string identifier indicating which group you'd
like to assign your instance to.

But what does this configuration option actually do, in practical terms, and what
new features does it provide for your applications? Well, strictly speaking, it means
that a drag-drop class instance will only be able to interact with other drag-droponly be able to interact with other drag-dropbe able to interact with other drag-drop
instances in the same group, but that's a rather dry way of explaining it. Let's look at
a real-world use case.

Nursing our drag-drop to health
Imagine that you have a screen in your application with four separate containers,
each of which is specified as both DragZone and DropZone. Without drag-drop
groups, the default behavior here would be that the user could drag from any one of
these defined areas to any of the other three.

In many cases, you're likely to want to limit these kinds of interactions. Let's say that
containers one and two represent today and tomorrow's appointments for a doctor,
and containers three and four are appointments for a nurse. Appointments for the
doctor can't be transferred to the nurse, and ones for the nurse can't be given to the
doctor. So the application needs to implement this restriction.

We could do this very easily by specifying a ddGroup of "doctor" for containers one
and two, and ddGroup of "nurse" for containers three and four. This would mean that
an attempt to drag a nurse appointment into a doctor container would fail, as the
nurse drag-drop objects are not allowed to interact with items outside their own
drag-and-drop groups.

This kind of advanced functionality becomes essential when you're writing
applications that make extensive use of drag-and-drop. We don't need to write
code to check whether the drop target is correct, as drag-drop groups take care of
this for us.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[217]

It's all in the details
We've had a good overview of the main classes within the Ext.dd package now.
So it's time to start looking at some of the interesting configuration options,
properties, methods, and events that allow us to tweak the behavior of the
drag-and-drop classes.

Configuration
The "big four" of Ext.dd—DragSource, DragZone, DropTarget, and DropZone—are
notable within the Ext JS framework for being important classes that don't really
offer much in the way of configuration options. That's because, despite being
important, they're all relatively simple to set up: designate a linked node and
away you go. That said, we've already covered one option that all of these classes
support—ddGroup—and there are a couple more common options available.

The dropAllowed and dropNotAllowed options are both strings that dictate the CSS
classes to be passed to the drag source when the respective conditions are true. For
example, if the item is hovering over an invalid drop target, then the class specified
by dropNotAllowed will be used.

DropTarget and DropZone have the overClass option in common. This allows
you to change the CSS class applied to the drop target element when a drag source
moves over it. This is blank by default, and so is a useful method of augmenting the
graphical cue provided by the status proxy.

It's all under control
The drag-and-drop support within Ext JS is structured a little differently to the rest of
the framework. Typically, to add in your own behavior, you will handle events that a
class fires off, as we've seen when discussing the TreePanel and other components.
With Ext.dd, there are very few events to handle. Instead, a number of abstract
methods are provided for the developer to override.

Ext JS describes these methods as "abstract methods", a concept rarely
seen in Javascript as it is not strictly supported. Here, the term simply
refers to an empty implementation that needs to be replaced by the
developer in order to achieve the desired functionality.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[218]

We've already seen how the notifyDrop and onNodeDrop methods for DropZone
need to be overridden to complete the drop process, but there are plenty of other
abstract methods that we can hook in to. In fact, even for the drop action, there are a
number of similar-sounding methods available for use in certain situations:

notifyDrop

onContainerDrop

onNodeDrop

On the face of it, all of these could apply to the same scenario: handling the action
performed when an item is dropped on a target. The trick is that the first three are
actually related. On DropZone, notifyDrop isn't actually abstract; instead, it simply
establishes whether onNodeDrop or onContainerDrop will be called. It's these two
methods that need to be overridden if you want to perform a drop action.

Managing our movement
The Ext.dd package includes a DragDropMgr class, which is generally intended
for use as an internal helper for the framework itself. However, there are a few
interesting points to note about the class. Let's briefly review the way that this
manager can fit into your own applications.

Global properties
As DragDropMgr is used to track all of the drag-and-drop manipulations that occur,
we can use it to globally change the way those manipulations are handled. For
example, the clickPixelThresh property can be changed to set the minimum
number of pixels that the mouse needs to move before a drag is initiated. This can be
useful in situations where your drag targets also accept a click event—you may wish
to increase this value to prevent accidental drags.

Similarly, the clickTimeThresh, normally set to 1000 milliseconds or 1 second,
dictates the delay time between clicking an element and starting the drag. This could
be decreased to make the start of the process seem more responsive, or increased if
it's interfering with other actions.

We can also fine-tune the way in which the drop action is handled. By default, the
drag-and-drop mode is set to POINT, where the position of the mouse pointer is used
to determine whether the object being dragged is within the drop target. We can
change this behavior to INTERSECT mode:

Ext.dd.DragDropMgr.mode = Ext.dd.DragDropMgr.INTERSECT;

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[219]

This means that the edges of the drag source and drop target are used to establish
interaction. If the two items overlap them, then the drop target is considered valid.
This can be handy if the items you wish to drag are going to be large as it could
be easier for the user to simply make the edges touch rather than move the mouse
pointer directly over the target.

These properties are only likely to be used in edge-cases, but would come in handy
as part of our toolkit.

Scroll management
One very slick part of the drag-and-drop puzzle that can be handled automatically
is scrolling a container while trying to drag an item into an off-screen region. The
Ext.dd.ScrollManager means that you can either drag items off bounds from the
document body, or cause an element with scrollbars to shift as you drag the elements
within it. Setting this facility up is pretty simple:

Ext.dd.ScrollManager.register('myContainer');

With this code, we've set up the myContainer element to be scroll-managed. Note
that the scrolls occur in short bursts as you reach the edges of the container. We
can tweak the behavior of the scroll as well, by setting the ddScrollConfig of the
element to be registered.

var el = Ext.get('myContainer');
 el.ddScrollConfig = {};
Ext.dd.ScrollManager.register(el);

The ddScrollConfig consists of a configuration object containing a number of
options. The bursts of scrolling are animated by default, and it can be disabled by
setting animate to false, or can have its duration changed by setting animDuration
to a value other than the default of 0.4 seconds:

el.ddScrollConfig = {
 animDuration: 0.2 // anim takes 0.2 seconds to complete
};

We can increase the frequency of scroll bursts by setting the frequency to a
millisecond value, and change the amount of pixels by which to scroll by using
the increment option. We can also control the width of the trigger area on both the
horizontal and the vertical sides by using the vthresh and hthresh options, which
are both specified as pixel numbers.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[220]

Although the Ext.dd.ScrollManager performs a simple purpose and does so with
very little code, the utility of this class should not be underestimated. Setting up this
functionality manually would be taxing, and it is such a crucial part of drag–and-drop
that without ScrollManager, we'd be hand-coding it in every application we write.
So while Ext.dd.ScrollManager is a fairly simple utility class, it's the one that
makes many common drag-and-drop scenarios a great deal easier to develop.

Dragging within components
As we've seen previously, there are a couple of components that offer drag-and-drop
support completely out of the box. It's important to remember that these features
exist. Given our new drag-and-drop knowledge, we could implement them from
scratch. Instead, we'll quickly review the main Ext components that have this facility
baked in.

TreePanel
The default Ext.TreePanel not only enables drag-and-drop via the provided
configuration option, but exposes a number of events, such as beforenodedrop, that
allow us to hook our own functionality into the component.

By using AJAX requests, we can persist the results of our drag-and-drop actions
to the server for retrieval later. If you're using multiple TreePanels, you can even
drag-and-drop between them, and restrict the direction of movement using the
enableDrag and enableDrop configuration options.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 11

[221]

GridPanel
The Ext.grid.GridPanel also provides drag-and-drop support out of the box with
the use of the enableDragDrop configuration option. Setting this to true will allow
you to begin dragging rows out of your grid. But you would still need to provide a
custom DropTarget for the row destination. This could even be another GridPanel,
but it means that you'll have to leverage the knowledge you gained earlier in this
chapter to really put grid drag-and-drop to good use.

The custom Ext.grid.DragZone is also provided to facilitate these actions, giving
you a shortcut to both the data being dragged and the grid that holds it. This class
means that there's a bit less heavy lifting required when you want to drag rows
within your application.

Using it in the real world
There are many cases where drag-and-drop is actually a barrier for the user-such
as when adding an action that takes longer to complete than the more standard
approach. Why drag-and-drop something when clicking it could be just as effective?
The visual cue of the drag-and-drop status proxy may look great in a screenshot, but
in a real-world situation there may be a more logical approach.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Drag-and-Drop

[222]

That said, the visual element of drag-and-drop is still its most important feature.
There is no better way of organizing a list or a tree of information than by pulling it
around the screen using the mouse. When completing tasks like these, a graphical
representation of what's going on will not only help your users to get the job
done more quickly, but, when backed by Ext JS, could also turn out to be the least
development-intensive approach as well.

Ext.dd is a package that doesn't supply any widgets of its own. Instead it supports
other segments of the framework and works as a behind-the-scenes facilitator of
exciting end user functionality. As such, it can be a little difficult to come to grips
with it, especially as it provides a variety of approaches to solve similar issues.

In this chapter, we've covered all of the major pieces of the Ext JS drag-and-drop
puzzle. So, when you do come up with a problem that can be tackled using
drag-and-drop, you can use DragZones, DropTargets, and StatusProxies to
achieve the look and feel that your application requires.

Summary
It feels as if our knowledge of drag-and-drop on the Web has come pretty far from
our understanding in the earlier chapters. We started off by discussing some of the
typical demonstrations of drag-and-drop, which were developed to show off the
Web 2.0 functionality. Some of those demonstrations suffered from a lack of real
utility, but they were undeniably compelling. We showed how to create a few 'fancy
but pointless' effects of our own to get a grasp of the underlying concepts of the
Ext.dd package, and then quickly expanded our knowledge to harness the
drag-and-drop classes that allow our applications to take advantage of this feature.

The wide range of in-built support that Ext provides is only part of the story,
albeit a very important part. The TreePanel, for example, certainly wouldn't be
as impressive a component were it not for its ability to rearrange nodes within
a hierarchy using simple drag-and-drop. But the other part of our tale is just as
interesting—the ways in which we can customize that built-in functionality and then
replace, extend, and implement our own solutions which would enable the next level
of desktop-like interactivity.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It's All about the Data
Ext JS is an extremely powerful, cross-browser library, providing any developer
with a beautiful, consistent set of tools for laying out browser-based applications.
But there's a lot more here than just pretty boxes and grids. As the title says, it's all
about the data! An application without data is really nothing more than an interactive
static page, and our users are going to want to manipulate real information. One of
the wonders of web applications is that they've taken computing full circle, back to
the days of the client/server application model. Ext JS's AJAXified objects provide
us with the means to work with real-time data straight from the server, and in this
chapter we'll cover the many different ways you can retrieve from and post data to
your Ext JS based applications.

Understanding data formats
We have dozens of component objects available to us within Ext JS, and most of
them can take dynamic data from the server. It's all in knowing what kind of data a
component can take, and what formats are acceptable.

Basic remote panel data
You've probably noticed that many components are basically just a box. Tab Panels,
Accordion Panels, and the content area of a window are all just large boxes (a <div>
element), or panels. Each of these unique objects has its own methods and properties,
yet each of them extends the Ext.Panel object.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[224]

Applying dynamic data to a basic panel is super simple, because it takes the simplest
of formats: straight text or HTML. Our first example will load a simple HTML page
into a panel. First, we'll need the rendering page:

Example 1: ch12ex1.html

… <div id="mainContent">
 <div id="chap12_ex01"></div>
 </div>
…

Here, we have shown what will go inside the <body> tag of our example HTML
page. Next, we'll need a server-side template to call for content:

Example 1: chapter_12\example1ajax.html

William Sheakespeare: <i>Poet Lauraette</i>

The last thing we'll need is the actual script to create our example Panel:

Example 1: scripts\chapter12_01.js

Ext.onReady(function(){
 var example1 = new Ext.Panel({
 applyTo:'chap12_ex01',
 title:'Chapter 12: Example 1',
 width:250,
 height:250,
 frame:true,
 autoLoad:{
 url:'example1ajax.html'
 }
 });
});

Calling the ch12ex1.html template in the browser will run this basic script. Let's
look over the code to see what we're doing:

1. We wait until the DOM is rendered (Ext.onReady() function).

2. We create new Ext.Panel object, rendered to the chap12_ex01 element (a
div on the rendered page).

3. We load in the contents of the external URL example1ajax.html.

It is very simple to pull in an HTML template as content for a panel item. But we
would really like dynamic data. Let's build on this example, and pull in data from
an application server. We can use the same autoLoad attribute to call an application
server processing page to return data.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[225]

Author's note:

Ext JS is a client-side scripting library and, as such, you can use any
server-side programming language that you feel comfortable with. You
may have noticed that some earlier examples in this book are coded in
PHP. Examples within this chapter require the Adobe ColdFusion server
to process the dynamic data, and require you to download and install the
free Developer's Edition to run the examples. We're using ColdFusion, at
this point, to illustrate two different points:

1) That any server-side processor can feed data to Ext JS.

2) That not every application server, or remote application, will
return data in a standard format. Our examples of Custom Data
Readers, later in this chapterwill iterate this point further., later in this chapterwill iterate this point further.will iterate this point further.

The free Adobe ColdFusion Developer's Edition server is available at
http://www.adobe.com. Review the sample README.txt file for more
detailed instructions on accessing the example files for this chapter.

For Example 2, we'll change our <div> id to chap12_ex02, and use the chapter12_
02.js file to load the data using a different approach, which now reads as follows:

Example 2: scripts\chapter12_02.js

 var example2 = new Ext.Panel({
 applyTo:'chap12_ex02',
 title:'Chapter 12: Example 2',
 width:250,
 height:250,
 frame:true,
 autoLoad:{
 url:'Chapter12Example.cfc',
 params:{
 method:'example1',
 returnFormat:'plain',
 id:1289
 }
 }
 });

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[226]

You'll notice that the URL is now calling an Adobe ColdFusion Component(CFC),
passing in some parameters to get its results. We have a very basic CFC, which runs
a small query based on the passed parameters to generate the content that is passed
back through the AJAX call.

Example 2: chapter_12\Chapter12Example.cfc

<cfcomponent output="false">
 <cffunction name="example2" access="remote" output="false"
 returntype="string">
 <cfargument name="id" type="numeric" required="true" />
 <cfset var output = "" />
 <cfset var q = "" />

 <cftry>
 <cfquery name="q" datasource="chapter12">
 SELECT firstName,
 lastName,
 occupation
 FROM People
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#ARGUMENTS.id#" />
 </cfquery>
 <cfcatch type="database">
 <!--- Place Error Handling Here --->
 </cfcatch>
 </cftry>

 <cfif IsDefined("q.recordcount") and q.recordcount>
 <cfsavecontent variable="output"><cfoutput>
 #q.firstName# #q.lastName#: #q.occupation#

 </cfoutput></cfsavecontent>
 </cfif>
 <cfreturn output />
 </cffunction>
</cfcomponent>

As the purpose of this book isn't to teach you a server-side language, let's break this
down in the simplest way. The CFC takes an argument of ID, which is passed into
a query of the People table. If a record is returned from the query, a basic string is
returned in a predetermined format: FirstName LastName: Occupation. The AJAX
call (autoLoad) is passing several parameters: the method to run within the CFC,
the format type to return (plain text, in this case), and the method arguments (in this
case id).

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[227]

Gotchas with HTML data
You must remember that you should call data only via AJAX from the domain of your
site. Attempting to reference data from a site outside of your domain will error out at
the browser level, as it's considered to be cross-site scripting. Cross-site scripting is a
means of delivering malicious scripts to an unsuspecting user, generally from outside
of the site which they're visiting. Most modern browsers now have built-in facilities to
prevent this type of attack. Ext JS does provide facilities for bypassing this restriction,
via the Ext.data.ScriptTagProxy, but this should only be used if you are confident
of the security of the data you are requesting, and its effect on your application.

Other formats
Ext JS has the capability to consume external data in a variety of formats:

Format Example

Plain Text Eric Clapton is a consummate guitarist

HTML Jimi Hendrix is considered, by some, to have been one of the finest
blues guitarists that ever lived

JSON var theBeatles = {
 'members': 4,
 'band': [
 {'id':1,'first_name':'John',
 'last_name':'Lennon'},

 {'id':2,'first_name':'Paul',
 'last_name':'McCartney'},

 {'id',3,'first_name':'George',
 'last_name':'Harrison'},
 {'id':4,'first_name':'Ringo',
 'last_name':'Starr'}
]

 };

XML <band>
 <members>4</members>
 <member>
 <firstname>Jimmy</firstname>
 <lastname>Paige</lastname>
 </member>
 <member>
 <firstname>Robert</firstname>
 <lastname>Plant</lastname>
 </member>
 ...

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[228]

Format Example

JavaScript
Array

var PinkFloyd = [
 ['1','David','Gilmour'],
 ['2','Roger','Waters'],
 ['3','Richard','Wright'],
 ['4','Nick','Mason']
]

The format that you choose may be decided according to the Ext JS object you are
using. Many developers like to use XML, as many databases (MS SQL, Oracle,
MySQL, PostgreSQL, and DB2 to name a few)can return it natively, and manycan return it natively, and many, and many
RESTful web services use it. Although this is a good thing, especially when working
with varying external applications, XML can be very verbose at times. Data calls that
return small sets of data can quickly clog up the bit stream because of the verbosity
of the XML syntax. Another consideration with XML, is the browser engine. An XML
data set that looks fine to Mozilla Firefox may be rejected by Internet Explorer, and
Internet Explorer's XML parsing engine is slow, as well. JSON, or JavaScript Object
Notation, data packages tend to be much smaller, taking up less bandwidth. If the
object you're using can accept it, a simple array can be even smaller, although you
will lose the descriptive nature that the JSON or XML syntaxes provide.

The data store object
Most Ext JS objects (and even panels, with some additional work) take data
as Records, or Nodes. Records are typically stored within a data store object. Think
of a Store as being similar to a spreadsheet, and each Record as being a row within
the spreadsheet.

The data package contains many objects for interacting with data. You have several
different Store types:

JsonStore: Store object specifically for working with JSON data

SimpleStore: Store object for working with arrays and XML data

GroupingStore: Store object that holds 'grouped' datasets

Any Store will require some kind of Reader object to parse the inbound data, and
again the data package has several:

ArrayReader: For working with JavaScript arrays

JsonReader: For working with JSON datasets

XmlReader: For working with XML datasets

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[229]

The TreePanel object doesn't use a traditional data Store, but has its
own specialized store called a TreeLoader, which is passed into the

configuration through the loader config option. The TreeLoader
accepts simple arrays of definition objects, much like those expected by an
ArrayReader. See the Ext JS API (http://extjs.com/deploy/dev/
docs/) for more information.

Defining data
Store objects are easily configured, requiring the source of the data and a description
of the expected records. Our applications know to expect data, but we have to
tell them what the data is supposed to look like. Let's say, for instance, that our
application manages media assets for our site. We would have a server-side object
that queries a folder in our file system and returns information on the files that the
folder contains. The data returned might look something like this:

{
 files: [
 {name: 'beatles.jpg', path:'/images/', size:46.5, lastmod:
 '12/21/2001'},
 {name: 'led_zepplin.jpg', path:'/images/', size:43.2,
 lastmod: '2001-12-21 00:00:00'},
 {name: 'the_doors.jpg', path: '/images/', size:24.6, lastmod:
 '2001-12-21 00:00:00'},
 {name: 'jimi_hendrix.jpg', path: '/images/', size:64.3,
 lastmod: '2001-12-21 00:00:00'}
]
}

This is a small JSON dataset. Its root is files followed by an array of objects. Now
we have to define this data for our application:

var recordObj = new Ext.data.Record.create([{
 name: 'Name',
 mapping: 'name'
},{
 name: 'FilePath',
 mapping: 'path'
},{
 name: 'FileSize',
 mapping: 'size',
 type: 'float'

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[230]

},{
 name: 'LastModified',
 mapping: 'lastmod',
 type: 'date',
 dateFormat: 'm/d/Y'
}]);

We've applied a name that each field will be referenced by within our application,
mapping it to a variable within a dataset object. Many variables will automatically
be typed, but you can force (cast) the 'type' of a variable for greater definition and
easier manipulation.

The various variable types are:

auto (the default, which implies no conversion)

string

int

float

boolean

date

We've also applied special string formatting to our date object, to have our output
the way we want.

Dates are typically passed as strings, which usually have to be cast into
Date objects for proper manipulation. By specifying a date type, Ext JS
will handle the conversion using the dateFormat we define. The Ext
JS documentation for the Date object provides an extensive format list,
which we can use to define the hundreds of Date string permutations we
may come across in our code.

More on mapping our data
In the previous example, we covered the definition of a simple JSON object. The
same technique is used for XML objects, with the only difference being how
to map a Record field to a specific node. That's where the mapping config option
comes in. This option can take a DOM path to the node within the XML. Take the
following example:

<band>
 <members>4</members>
 <member>
 <firstname>Jimmy</firstname>

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[231]

 <lastname>Paige</lastname>
 </member>
 <member>
 <firstname>Robert</firstname>
 <lastname>Plant</lastname>
 </member>
 ...

To create a mapping of the first_name node you would have the config look
like this:

mapping:'member > first_name'

JavaScript arrays are easier, as they don't require mapping, other than defining each
field in the same order it would be seen in the array:

var PinkFloyd = [
 ['1','David','Gilmour'],
 ['2','Roger','Waters'],
 ['3','Richard','Wright'],
 ['4','Nick','Mason']
]

Note here that we won't create() a Record object, but just use the fields config
option of the Store.

fields:[
 {name:'id'},
 {name:'first_name'},
 {name:'last_name'}
]

Pulling data into the store
It is almost as easy to retrieve data from the server as it was to populate that Panel
object earlier, and we can do so using a very similar syntax.

Example 3: scripts\chapter12_03.js

var recordObj = new Ext.data.Record.create([{
 name: 'NAME',
 mapping: 'name'
 },{
 name: 'DIRECTORY',
 mapping: 'path'
 },{
 name: 'SIZE',
 mapping: 'size',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[232]

 type: 'float'
 },{
 name: 'DATELASTMODIFIED',
 mapping: 'lastmod',
 type: 'date',
 dateFormat: 'm/d/Y'
 }]);

 var ourStore = new Ext.data.JsonStore({
 url:'Chapter12Example.cfc',
 baseParams:{
 method: 'getFileInfo',
 returnFormat:'JSON',
 startPath: '/images/'
 },
 root:'files',
 id:'name',
 fields: recordObj,
 listeners:{
 beforeload:{
 fn: function(store, options){
 if (options.startPath && (options.startPath.length > 0)){
 store.baseParams.startPath = fieldVal;
 }
 },
 scope: this
 }
 }
 });

 ourStore.load();

This ties all of our pieces together to create our data Store object. First, we use the
url config option to define the location from where we will get our data. Then, we
set the initial set of parameters to pass on the load request. Finally, it may be that
we want to conditionally pass different parameter values for each request. For this,
we can define a special 'listener' to pass new information. In this case, whenever the
load() method is called, if the startPath property is passed into the method as
an argument, before the Store retrieves the data it will change the startPath base
parameter to match the value passed in.

Where's the screenshot?

Ok, that's a valid question. A data Store, by itself, has no visible
output in the browser display. This is why tools like Firefox with the
Firebug plug-in, or the Aptana development IDE can be so important
when doing JavaScript development. These tools can allow you to direct
processing output to special windows, to monitor what's going on within
your application.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[233]

Using a DataReader to map data
Some applications can natively return data in XML, or even JSON, but it might not
always be in the format Ext JS is expecting. As an example, the JsonStore, with its
built-in JsonReader, expects an incoming dataset in the following format:

{
 'rootName': [
 {
 'variableName1': 'First record',
 'variableName2': '0'
 },{
 'variableName1': 'Second record',
 'variableName2': '3.5'
 }
]
}

This (JSON) object has a rootName property, which is the name of the root of the
dataset, containing an array of objects. Each of these objects has the same attributes.
The attribute names are in quotes. Values are typically in quotes, with the exception
of numbers which may or may not be in quotes.

So, if a server-side call returns data in this expected format, then the base JsonReader
included within the JsonStore will automatically parse the received datasets
to populate the Store object. But what happens if the server-side application
uses a slightly different format? As an example, the Adobe ColdFusion 8 server
can automatically return JSON datasets for remote requests, translating any of
ColdFusion's native data types into JSON data. But ColdFusion's JSON formatting is
typically different, especially when dealing with query data (which is what a dataset
would usually be created from). Here's an example of a JSON dataset being returned
from a ColdFusion query object:

{
 "COLUMNS":["NAME","SIZE","TYPE","DATELASTMODIFIED","ATTRIBUTES",
 "MODE","DIRECTORY"],
 "DATA":[
 ["IMG1.jpg",582360,"File","June, 13 2003
 23:50:08","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG2.JPG",1108490,"File","June, 13 2003
 23:50:52","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG3.JPG",1136108,"File","June, 13 2003
 23:51:02","","","H:\\wwwroot\\ExtBook\\images"],
 ["IMG4.JPG",1538506,"File","June, 13 2003
 23:51:12","","","H:\\wwwroot\\ExtBook\\images"]
]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[234]

All of the data we need is here, but the format can't be properly parsed by the base
JsonReader. So what do we do now?

Using a custom DataReader
Ext JS's built-in classes provide outstanding ease of use 'out-of-the-box', but (as we
can see) sometimes we need something a little special, possibly due to a different
implementation for a specific application server (such as ColdFusion), or possibly
due to an external application API (Flickr for example). We could probably
implement something on the server-side to put our data in the necessary format, but
this creates unnecessary overheads on our server-side platform. Why not just use
the client to handle these minor transformations? This helps distribute the load in
our applications, and makes more effective use of all of the resources that we have
on hand.

Ext JS provides us with the facilities for creating custom DataReaders for mapping
our data, as well as simple means (the reader config option) for defining these
readers in our store.

In our current exercise, we're lucky in that we don't have to write our own
DataReader. Because the Adobe ColdFusion server platform is so widely used, the
Ext JS community has already produced a custom reader just for this task. A simple
search of the Ext JS Forums (http://extjs.com/forum/) will help you find many
custom readers for data in a variety of formats. Just take the time to verify (read)
the code prior to use, because it is is being provided by a third party. By using the
CFJsonReader, with a few minor modifications to our script we can easily read the
JSON data format being returned by ColdFusion.

First, let's convert our Record object into a simple array, which will become a
model of our records. Include a script tag in your calling template to include the
CFJsonReader.js file, prior to the script tag for your custom script. Then we'll make
the following adjustments to our custom script:

var recordModel = [
 {name:'file_name',mapping:'NAME'},
 {name:'file_size',mapping:'SIZE'},
 {name:'type',mapping:'TYPE'},
 {name:'lastmod',mapping:'DATELASTMODIFIED'},
 {name:'file_attributes',mapping:'ATTRIBUTES'},
 {name:'mode',mapping:'MODE'},
 {name:'directory',mapping:'DIRECTORY'}
];

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[235]

Now, we'll define our new DataReader as a CFJsonStore object:

var ourReader = new Ext.data.CFJsonReader(recordModel,
 {id: 'NAME', root: 'DATA'});

Next, we'll change our data Store from being a JsonStore to being the base Store
object type, and apply our reader config option to ourReader:

var ourStore = new Ext.data.Store({
 ...
 reader: ourReader

We also remove the fields, id, and root properties from the store definition, as
these are now all handled from within the reader's definition.

The last thing we'll do is apply another custom listener to our script, so that we can
verify whether the dataset is properly loaded. Let's modify our listeners config
option, so that we can attach a function to the Store's load event listener:

listeners:{
 beforeload:{
 fn: function(store, options){
 if (options.startPath && (options.startPath.length > 0)){
 store.baseParams.startPath = fieldVal;
 }
 },
 scope:this
 },
 load:{
 fn: function(store, records, options){
 console.log(records);
 },
 scope: this
 }
}

If you're using Internet Explorer for development, then this line of code will break,
as the console.log() method isn't natively supported in that environment (you can
include additional scripts to use the console.log() method in IE, like the one found
at (url: http://www.moxleystratton.com/article/ie-console)). Firefox,
with the Firebug plugin, however will now give you some output once the data hashowever will now give you some output once the data haswill now give you some output once the data has
been retrieved, parsed, and loaded into the data Store, so that we can see that the
data is now in our Store.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[236]

A word about events

Many Ext JS objects have events that are fired when certain actions are
taken upon them, or when they reach a certain state. An event-driven
application, unlike a procedural programming model, can listen for
changes in the application, such as the receipt of data or the change of a
Record's value. Ext JS provides an extensive API, giving us the ability to
apply custom event listeners to key actions within the application. For
more information, review the object' information within the
Ext JS API: http://extjs.com/deploy/dev/docs/.

Our final script might now look like this:

 var recordModel = [
 {name:'file_name',mapping:'NAME'},
 {name:'file_size',mapping:'SIZE'},
 {name:'type',mapping:'TYPE'},
 {name:'lastmod',mapping:'DATELASTMODIFIED'},
 {name:'file_attributes',mapping:'ATTRIBUTES'},
 {name:'mode',mapping:'MODE'},
 {name:'directory',mapping:'DIRECTORY'}
];

 var ourReader = new Ext.data.CFJsonReader(recordModel,{id:'NAME',ro
ot:'DATA'});

 var ourStore = new Ext.data.Store({
 url:'Chapter12Example.cfc',
 baseParams:{
 method: 'getFileInfoByPath',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/images/'
 },
 reader: ourReader,
 listeners:{
 beforeload:{
 fn: function(store, options){
 if (options.startPath && (options.startPath.length > 0)){
 store.baseParams.startPath = options.startPath;
 }
 },
 scope:this
 },

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[237]

 load: {
 fn: function(store,records,options){
 console.log(records);
 }
 },
 scope:this
 }
 });

 ourStore.load();

This now wraps up our code pieces, defining what our data will look like,
configuring our custom reader, and setting up our data Store to pull in our JSON
data. The load listener will display the Records retrieved from the server that are
now in our Store.

Getting what you want: Finding data
Now that we have data, we'll typically need to manipulate it. Once we've loaded our
data Store with Records, the entire dataset remains resident in the browser cache,
ready for manipulation or replacement. This data is persistent until we move away
from the page or destroy the dataset or the data Store.

Ext JS provides many different options for dealing with our data, all of which are
documented within the API. Here, we'll explore some of the most common things
to do.

Finding data by field value
The first thing we might want to do is find a specific Record. Let's say we
needed to know which Record from our previous examples contains the picturefrom our previous examples contains the picturecontains the picture
of Jimi Hendrix:

var jimiPicIndex = ourStore.find('NAME','Jimi',0,false,false);

This method would return the index of the first record that had Jimi as part of the
value of the NAME field. It would start its search from the first record(0), as it is in
JavaScript array notation), look for the string from the beginning of the field's value
(using true here will search for the string in any location of the NAME field within any
record), and perform a case-insensitive search.

Finding data by record index
Having the index is nice; at least we know which Record it is now. But we also need
to retrieve the Record:

var ourImg = ourStore.getAt(jimiPicIndex);

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[238]

The getAt() method of the Store object will get a Record at a specific index position
within the Store.

Finding data by record ID
The best way to look for a unique record is by ID. If you already know the ID of your
record, this process just becomes easier. We used the NAME field as our ID, so let's find
the record for that same record:

var ourImg = ourStore.getById('jimi_hendrix.jpg');

So, now we can find a Record by partial value within a field, get a Record by its
specific index, or retrieve a Record by its ID value.

Getting what you want: Filtering data
Sometimes, you only need a specific subset of data from your Store. Your Store
contains a complete dataset (for caching and easy retrieval), but you need it filtered
to a specific set of Records. As an example, the cfdirectory tag we used in our
ColdFusion server-side call can return an entire directory listing, including all
subdirectories. After retrieving the data, it may be that we only need the names of
the files within the startPath that we posted. For this, we can filter our client-side
cached dataset to get only the Records of type, File:

ourStore.filter('TYPE','File',false,false);

This filters our dataset using the TYPE field. The dataset will now only contain
Records that have a TYPE field, with a value of File (matched from the beginning,
and case-insensitive).

After working with our filtered dataset, there will come a time when we want our
original dataset back. When we filtered the dataset, the other Records didn't go
away. They're still sitting in cache, to the side, waiting to be recalled. Rather than
query the server again, we can simply clear our filter:

ourStore.clearFilter();

Remote filtering: The why and the how
Client-side filtering is great, reducing our trips to the server. Sometimes, however,
our record set is just too large to pull in at once. A great example of this is a paging
grid. Many times we'll only be pulling in 25 Records at a time. The client-side
filtering methods are fine if we only want to filter the resident dataset, but most of
the time we'll want a filter applied to all of our data.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[239]

Sorting data on remote calls is pretty easy, as we can set the Store's remoteSort
property to true. So, if our Store was attached to a grid object, clicking on a column
heading to sort the display would automatically pass the value in its AJAX request.

Filtering data on remote requests is a bit harder. Basically, we would pass parameters
through the Store's load event, and act on those arguments in our server-side method.

So, the first thing we'll need is some server-side code for handling our filtering and
sorting. We'll return to our ColdFusion component to add a new method:

Example 3: Chapter_12\Chapter12Example.cfc

 <!---
 / METHOD: getDirectoryContents
 /
 / @param startPath:string
 / @param recurse:boolean (optional)
 / @param fileFilter:string (optional)
 / @param dirFilter:string (optional - File|Dir)
 / @param sortField:string (optional -
 NAME|SIZE|TYPE|DATELASTMODIFIED|ATTRIBUTES|MODE|DIRECTORY)
 / @param sortDirection:string (option - ASC|DESC
 [defaults to ASC])
 / @return retQ:query
 --->
<cffunction name="getDirectoryContents" access="remote"
 output="false" returntype="query">
 <cfargument name="startPath" required="true" type="string" />
 <cfargument name="recurse" required="false" type="boolean"
 default="false" />
 <cfargument name="sortDirection" required="false" type="string"
 default="ASC" />
 <!--- Set some function local variables --->
 <cfset var q = "" />
 <cfset var retQ = "" />
 <cfset var attrArgs = {} />
 <cfset var ourDir = ExpandPath(ARGUMENTS.startPath) />
 <!--- Create some lists of valid arguments --->
 <cfset var filterList = "File,Dir" />
 <cfset var sortDirList = "ASC,DESC" />
 <cfset var columnList =
 "NAME,SIZE,TYPE,DATELASTMODIFIED,ATTRIBUTES,MODE,DIRECTORY" />
 <cftry>
 <cfset attrArgs.recurse = ARGUMENTS.recurse />
 <!--- Verify the directory exists before continuing --->
 <cfif DirectoryExists(ourDir)>

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[240]

 <cfset attrArgs.directory = ourDir />
 <cfelse>
 <cfthrow type="Custom" errorcode="Our_Custom_Error" message="The
directory you are trying to reach does not exist." />
 </cfif>
 <!--- Conditionally apply some optional filtering and sorting
 --->
 <cfif IsDefined("ARGUMENTS.fileFilter")>
 <cfset attrArgs.filter = ARGUMENTS.fileFilter />
 </cfif>
 <cfif IsDefined("ARGUMENTS.sortField")>
 <cfif ListFindNoCase(columnList,ARGUMENTS.sortField)>
 <cfset attrArgs.sort = ARGUMENTS.sortField & " " &
 ARGUMENTS.sortDirection />
 <cfelse>
 <cfthrow type="custom" errorcode="Our_Custom_Error"
 message="You have chosen an invalid sort field.
 Please use one of the following: " & columnList />
 </cfif>
 </cfif>
 <cfdirectory action="list" name="q"
 attributeCollection="#attrArgs#" />
 <!--- If there are files and/or folders,
 and you want to sort by TYPE --->
 <cfif q.recordcount and IsDefined("ARGUMENTS.dirFilter")>
 <cfif ListFindNoCase(filterList,ARGUMENTS.dirFilter)>
 <cfquery name="retQ" dbtype="query">
 SELECT #columnList#
 FROM q
 WHERE TYPE = <cfqueryparam cfsqltype=" cf_sql_varchar"
 value="#ARGUMENTS.dirFilter#" maxlength="4" />
 </cfquery>
 <cfelse>
 <cfthrow type="Custom" errorcode="Our_Custom_Error"
 message="You have passed an invalid dirFilter.
 The only accepted values are File and Dir." />
 </cfif>
 <cfelse>
 <cfset retQ = q />
 </cfif>
 <cfcatch type="any">
 <!--- Place Error Handler Here --->
 </cfcatch>
 </cftry>
 <cfreturn retQ />
</cffunction>

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[241]

This might look complicated, but it really isn't! Again, our mission here isn't to
learn ColdFusion, but it is important to have some understanding of what your
server-side process is doing. What we have here is a method that takes some optional
parameters related to sorting and filtering via an HTTP POST, statement. We userelated to sorting and filtering via an HTTP POST, statement. We use via an HTTP POST, statement. We use
the same cfdirectory tag to query the file system for a list of files and folders. The
difference here is that we now conditionally apply some additional attributes to the
tag, so that we can filter on a specific file extension, or sort by a particular column
of the query. We also have a Query-of-Query statement to query our returned
recordset if we want to filter further by the record TYPE, which is a filtering
mechanism not built into the cfdirectory tag. Lastly, there's also some custom error
handling to ensure that valid arguments are being passed into the method.

We'll make a few modifications to our previous Store script as well. First, we'll need
a few methods that can be called to remotely filter our recordset:

filterStoreByType = function (type){
 ourStore.load({dirFilter:type});
}

filterStoreByFileType = function (fileType){
 ourStore.load({fileFilter:fileType});
}

clearFilters = function (){
 ourStore.baseParams = new cloneConfig(initialBaseParams);
 ourStore.load();
}

We have methods here for filtering our Store by TYPE, for filtering by file extension,
and for clearing the filters. The values passed into these methods are mapped
to the proper remote method argument names. Our Store's beforeload listener
automatically applies these arguments to the baseParams prior to making the AJAX
call back to the server. The important thing to remember here is that each added
parameter stays in baseParams, until the filters are cleared.

It's also important to note that the load() method can take four arguments: params,
callback (a method to perform on load), scope (the scope with which to call the
callback), and add (to add the load to the already-existing dataset). In the format
used above, the object used as an argument for the load() method is assumed to
be the params argument, because no others are passed. If you are using all of the
arguments (or at least the first three), they would have to be within an object.

ourStore.load({{dirFilter:type},someMethodToCall,this,false});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[242]

The clearFilter() method does not work with remote filtering, so we need to have
a way to recall our initial baseParams when we need to clear our filters, and get our
original dataset back. For this, we first abstract our baseParams configuration:

var initialBaseParams = {
 method: 'getDirectoryContents',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/testdocs/'
};

We then need a way to clone the config in our actual Store configuration. If we
passed the initialBaseParams into the baseParams config option directly, and then
filtered our dataset, the filter would be added to the initialBaseParams variable, as
the variable gets passed by reference. Because we want to be able to recall our actual
beginning baseParams, we'll need to clone the initialBaseParams object. The clone
gets set as the baseParams config option. Filters don't touch our original object, and
we can recall them whenever we need to clearFilter().

For this, we'll need a simple method of cloning a JavaScript object:

cloneConfig = function (config) {
 for (i in config) {
 if (typeof config[i] == 'object') {
 this[i] = new cloneConfig(config[i]);
 }
 else
 this[i] = config[i];
 }
}

We can then change our baseParams attribute in our Store configuration:

baseParams: new cloneConfig(initialBaseParams),

We used the same function within our clearFilters() method, to reset
our baseParams to their initial configuration. Here is what our entire script
looks like now:

Example 4: chapter12_04.js

cloneConfig = function (config) {
 for (i in config) {
 if (typeof config[i] == 'object') {
 this[i] = new cloneConfig(config[i]);
 }

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[243]

 else
 this[i] = config[i];
 }
}

Ext.onReady(function(){
 var recordModel = [
 {name:'file_name',mapping:'NAME'},
 {name:'file_size',mapping:'SIZE'},
 {name:'type',mapping:'TYPE'},
 {name:'lastmod',mapping:'DATELASTMODIFIED'},
 {name:'file_attributes',mapping:'ATTRIBUTES'},
 {name:'mode',mapping:'MODE'},
 {name:'directory',mapping:'DIRECTORY'}
];

 var ourReader = new Ext.data.CFJsonReader({id:'NAME',root:'DATA'},
 recordModel);

 var initialBaseParams = {
 method: 'getDirectoryContents',
 returnFormat: 'JSON',
 queryFormat: 'column',
 startPath: '/testdocs/'
 };

 var ourStore = new Ext.data.Store({
 url:'Chapter12Example.cfc',
 baseParams: new cloneConfig(initialBaseParams),
 reader: ourReader,
 fields: recordModel,
 listeners:{
 beforeload:{
 fn: function(store, options){
 for(var i in options){
 if(options[i].length > 0){
 store.baseParams[i] = options[i];
 }
 }
 },
 scope:this
 },
 load: {
 fn: function(store,records,options){
 console.log(records);
 }

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[244]

 },
 scope:this
 }
 });

 ourStore.load({recurse:true});

 filterStoreByType = function (type){
 ourStore.load({dirFilter:type});
 }

 filterStoreByFileType = function (fileType){
 ourStore.load({fileFilter:fileType});
 }

 clearFilters = function (){
 ourStore.baseParams = new cloneConfig(initialBaseParams);
 ourStore.load();
 }
});

To test our changes, we can put some links on our HTML page to call the methods
that we've created for filtering data, which we can then monitor in Firebug.

Example 4: ch12ex4.html

<div id="chap12_ex04">
 <a onclick="filterStoreByType('File')"
 href="javascript:void(0)">Filter by 'File's

 <a onclick="filterStoreByFileType('*.doc')"
 href="javascript:void(0)">Filter by '.doc File's

 Clear Filters

</div>

After the page has loaded, we see the console logging the initial recordset being
loaded into the Store. Clicking our first link will remove all of the directory Records
through filtering. Clicking our second link takes it a step further, and filters out any
files other than those ending in .doc. The last link resets the filters to the original
baseParams and reloads the initial recordset.

Dealing with Recordset changes
One of great things about Ext JS data Stores is change management. Our applications
might attack changing Records in a variety of ways, from editable data Grids to
simple Forms, but making changes really only means something when we act on it.
We might only change our display, but we are more than likely to send changes back
to the server.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[245]

One of the easiest things to do is to apply an update event listener to our Store
object. We've applied two other listeners in the past: the beforeload and load
listeners. Now, let's apply an update listener to our script.

listeners:{
 beforeload:{
 fn: function(store, options){
 for(var i in options){
 if(options[i].length > 0){
 store.baseParams[i] = options[i];
 }
 }
 },
 scope:this
 },
 load: {
 fn: function(store, records, options){
 console.log(records);
 },
 scope: this
 },
 update: {
 fn: function(store, record, operation){
 switch (operation){
 case Ext.record.EDIT:
 // Do something with the edited record
 break;
 case Ext.record.REJECT:
 // Do something with the rejected record
 break;
 case Ext.record.COMMIT:
 // Do something with the committed record
 break;
 }
 },
 scope:this
 }
}

When a Record is updated, the update event fires in the Store, passing several
objects into the event. The first is the Store itself, which is good for reference. The
second is the Record that's been updated. The last object is the state of the Record
that was updated. Here, we have laid out a quick switch/case statement to trigger
different actions according to the state of the Record. We can add code into the action
block for the Ext.record.EDIT state to automatically send every edit to the server
for immediate Record revision.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[246]

One other option that we can address is the Ext.record.COMMIT state. It is
sometimes better to let the user affect many different changes, to many different
records, and then send all the updates at once.

ourStore.commitChanges();

This will collect all of the edited Records, flag them by using Ext.record.COMMIT,
and then the update event would fire and affect each Record. Our last operation
state is perfect for processing this situation, for which we can add additional
client-side validation, or AJAX validation, or whatever our process might call for.

The Ext.record.REJECT state is generally set directly by the data Store, whereby
the Store rejects any changes made to the Record, and will revert the Record's field
values back to their original (or last committed) state. This might occur if a value of
the wrong data type is passed into a field.

Many objects take a Store
The beauty of the Store object is in its many uses. So many objects, within the Ext JS
library, can consume a Store as part of their configuration, automatically mapping
data in many cases.

Store in a ComboBox
For example, the ComboBox object can take a Store, or any of its subclasses, as a data
provider for its values:

var combo = new Ext.form.ComboBox({
 store: states,
 displayField: 'state',
 valueField: 'abbreviation',
 typeAhead: true,
 mode: 'remote',
 triggerAction: 'all',
 emptyText: 'Select a state...',
 selectOnFocus: true,
 applyTo: 'stateCombo'
});

This ComboBox takes a Store object called states, and maps its state field to the
display, while mapping the abbreviation field to its underlying selected value.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 12

[247]

Store in a DataView
The DataView object is one of the most powerful objects within Ext. This object can
take a Store object, let us apply a Template or XTemplate to each Record (which
the DataView refers to as a Node), and have each item render within the DataView,
contiguously, wrapping items as they run out of space. The DataView opens up
some very interesting ways to visually produce contact lists, image galleries, and file
system explorers, and opens up our applications to be able to exchange data among a
variety of objects through custom drag-and-drop functionality.

Stores in Grids
We've seen examples of applying a data Store to a Grid in a previous chapter
(Chapter 5) of this book. There are several different types of Grids (Editor, Grouping,
Property, and Basic Grids), but all of them take Store objects as input, and the
applicable ColumnModel, to coordinate their data display.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

It’s All About The Data

[248]

The Grid objects and the ComboBox are probably the most prevalent uses of Store
objects, with the Grid and the DataView being the two primary means of displaying
multiple Records of data. The Tree object takes a special data source called a
TreeLoader. The TreeLoader is actually part of the Tree package of classes, and
does not extend the base Store object, although it operates in much the same way.
Rather than Record objects, the TreeLoader takes an array of objects, which it then
converts into Nodes. The structure to its incoming data is something like this:

var dataset = [{
 id: 1,
 text: 'Node 1',
 leaf:: false
},{
 id: 2,
 text: 'Node 2',
 leaf: true
}];

When a leaf is true, then it is an expandable item, which will query the server
for further data when passing the node data. A leaf:false statement says that the
Node has no children.

Summary
In this chapter, we've learned how to pull dynamic, server-side data into our
applications. Ext JS's Store objects, with their versatility and mappable syntax, are
easily-configured datasources for a lot of Ext JS objects. In this chapter, we've bound
simple external data to a Panel object, gone over the various data formats that Ext
JS can consume, and seen a basic overview of the data Store object and some of its
more important subclasses.

Getting into the meat of things, we learned how to define our data using the Record
object, after which we learned how to populate our Store with Records from a remote
data source. We also learned about the purpose behind DataReaders, the different
ones available to you, and how to configure a custom DataReader.

Pulling it all together, we got busy learning Store manipulation techniques such
as finding Records by field values, indexes, or IDs. We also touched on filtering our
Stores to get a working subset of data Records. We also talked about dealing with
local data changes via the update event listener.

Finally, we covered some of the other Ext JS objects that use the Store, opening the
doors to external data within multiple facets of our applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code for Reuse: Extending

Ext JS
In this chapter, we'll discuss how we can create our own custom components
by extending the Ext JS library. We'll talk about how we can create our own
namespaces, differentiating our custom components from others. We'll also discuss
some other core object-oriented concepts (just enough to understand what we need
here) and the concept of Event-Driven application architecture.

Object-oriented JavaScript
Over the last several years, we've seen a drastic shift with regards to client-side
scripting in browser-based web applications. JavaScript has become the defacto
standard in client-side scripting, with support for it built into every major
browser available.

The issue has always been in each browser's implementation of the Document
Object Model. Microsoft's Internet Explorer, having taken the majority share of. Microsoft's Internet Explorer, having taken the majority share of
the browser marketplace, helped to gather support for a modern Document Objectgather support for a modern Document Object
Model, to which all other browsers had to adapt. However, after the release of
Internet Explorer 6, Microsoft halted new development of their browser for several
years, other than to provide security fixes. Added to this was Microsoft's play to
try and create new standards. Rather than implement JavaScript, Internet Explorer
actually implemented JScript, which ran JavaScript files, but had a slightly different
implementation that never garnered momentum (other than in Internet Explorer),
possibly because it did not adhere to the ECMAScript standard. This created several
issues. The World Wide Web Consortium (W3C) had created a standard for the
Document Object Model, which companies like Mozilla and Opera adhered to and
furthered. Yet Internet Explorer (the dominant browser) was stagnant.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[250]

These events led to very hard times for client-side developers, as a great deal of
time and effort went into creating client-side code that was cross-browser compliant.
Netscape and Internet Explorer had been waging the browser war over several
versions, slowly growing more divergent in their standards acceptance, with
cross-browser development consistently becoming more of a challenge. The
landscape had changed, in that a large degree of client-side development had
become relegated to basic form validation and image rollovers, because few
developers were interested in investing the time and effort necessary to write
large, cross-browser compliant, client-side applications.

Enter Web 2.0. The buzzword of the day was AJAX, or Asynchronous JavaScript
And XML. AJAX wasn't a new technology, but its use had been fairly minimal and
obscure. Developers with a deep knowledge of JavaScript, looking to create greater
and more dynamic web sites, had begun to implement the technology as a way of
reinvigorating the client-side movement, creating richer and more interactive
user experiences.

With this renewed interest in client-side scripted applications, but the same issues
existing around cross-browser compatibility, several cross-browser JavaScript
libraries (Dojo, Prototype, Yahoo UI, and so on) had begun life, in response to
minimizing the previous woes involved in cross-browser, client-side development.
The developers of these libraries, with their knowledge of JavaScript, had kept
pace with the changes in this language as well. JavaScript had travelled well beyond
the confines of a solely procedural scripting language, with full support for
object-oriented development. In developing their libraries, these developers took
full advantage of an object-oriented style of development that JavaScript's
prototype-based model allowed, creating small objects of functionality that could
build upon one another to provide extensive resources of re-usable code.

Author's note

In the coming pages, I will often use the words object and class
interchangeably, because it seems a little easier to understand.
Technically, JavaScript is a classless language, and our objects are built
with JavaScript's prototype-based programming model.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[251]

Object-oriented programming with Ext JS
Ext JS is a perfect example of this shift. The Ext JS library is an extremely extensive
collection of packages of classes of re-usable code: small pieces of functionality that
can be taken on their own, or combined to create some truly fantastic client-side
magic. An additional part of its beauty is the ability to extend the library further,
creating our own custom components as extensions of those already there. This
gives us the ability to create our own re-usable pieces of code. We can write our own
objects, as extensions of the library. This means that we don't have to write all of our
functionality on our own, as much of this work has already been done for us. We
expand upon the foundation, providing our own custom functionality.

Inheritance
To gain a full understanding of what we need to do, we have to understand one of
the key concepts of object-oriented programming—inheritance.

As we write our own components, these components will usually inherit some other
component of Ext JS, extending that component's functionality by providing our
own properties and overriding the component's existing methods. We are creating
new classes from an existing Ext JS class to determine whether the method that has
been called is that of our new class, the method of the extended (parent) class, or a
combination of the two.

Break it down and make it simple
Confused yet? It's a lot to take in. Let's break this down into a basic example that
may clarify a few things. Say we are writing a Customer Resource Management
application for a company. This company has salespeople, who have clients (and
client contacts), and the company also has vendors that they utilize, who also have
contacts. Here we've identified three similar objects within our application. if we
take these objects down to the base level, we notice that each one of these objects is a
Person (the Clients and Vendors would more clearly be Companies):

Salesperson

Client Contact

Vendor Contact

Each one of these Person objects will share some basic attributes and methods,
because each person has a name, an email address, a phone number, and an
address. We'll create a quick class diagram to visually represent the Person object:

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[252]

Author's note

Class diagrams, and UML diagramming in general, are a great way to
visually represent different programming constructs. A full explanation
is outside the purview of this text, but I highly recommend that you
become familiar with them. Our diagrams here show the class name, the
attributes, and methods of the class.

Note that the Person object has four attributes: name, emailAddress, phoneNumber,
and address. Also note that the address attribute is, in itself, another object. We've
included some simple methods for the object as well, to get and set our attributes.

Each one of these objects also has its own object-specific properties such as a
salesPersonID, a clientContactID, or a vendorContactID.

Note that in our diagram of the SalesPerson object, you do not see any of the
Person-specific properties and methods. Because SalesPerson extends (inherits) the
Person object, all of the properties and methods of the Person object become a part
of the SalesPerson object as well. We can now create a SalesPerson.

var sp = new SalesPerson();

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[253]

This creates a new instance of the SalesPerson object, with all of the attributes and
methods of the SalesPerson object, including those of the parent Person object,
by extension.

Sounds cool, but what does it mean?
By default, the SalesPerson object, being an extension of Person, allows you to set
that SalesPerson's name as:

SalesPerson.setName('Zig Ziggler')

You don't have to reference the methods, or the attributes, by calling on the
object's (SalesPerson) parent object (Person) directly because, through inheritance,
SalesPerson is a Person.

Now, what was this overriding stuff?
Through inheritance, all of the methods and attributes of a parent object become the
child's as well. However, there will be times when you may want the child object's
method to be different from that of its parent. Case in point: let's say our Person
object had its own validate() method, which has validated all of the attributes
and returned its own error array, but your SalesPerson object has some additional
attributes to validate as well. By defining a validate() method within the
SalesPerson object, you are overriding the validate() method of its Person
parent object.

validate: function() {
 // Some validation code here
}

But, in this case, you would want total attribute validation; both the internal
object-specific properties, as well as those of the parent object. So here, you would
also need to call the validate() method of the parent object:

validate: function() {
 var errorArr = ourObjects.salesperson.superclass.validate.
call(this);
 // The salesperson specific validate stuff, appending the errorArr
 return errorArr;
}

These are the basic pieces of OO that we need to understand so that we can begin to
create our own custom classes with Ext JS. Well, almost…

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[254]

Understanding packages, classes, and

namespaces
There are a few final pieces that of the object-oriented puzzle we need, in order towe need, in order to, in order to
keep a solid grasp of our goals. We've talked about how Ext JS is a large collection
of objects extending other objects, but it's also important to understand a few other
pieces of basic OO terminology, and how they help in keeping things organized.

Packages
A package is a collection of classes that share something in common. For instance,
the Ext.data package is a collection of classes for dealing with data, such as the
different types of data Stores, Readers, and Records. The Ext.grid package is a
collection of classes for the various grid objects, including all of the different grid
types and selection models. Likewise, the Ext.form package contains classes for
building forms, to include all of the classes of the different field types.

Classes
A class is what we call a specific JavaScript object, defining that object's attributes
and methods. Going back to our previous examples, Person and SalesPerson
would both be written as class objects, and both would probably be part of the
same package.

Namespaces
Classes are a part of packages, and packages generally have their own namespace.
Namespaces are containers of logically grouped packages and class objects. As an
example, the Ext JS library falls into the Ext namespace. Forms within Ext JS fall
into the Ext.forms namespace, where forms is a package of the various classes
used to make up forms. It's a hierarchal relationship, using dot notation to separate
the namespace from the package from the class. Variables from one namespace
must be passed into another namespace, so applying a namespace helps to
encapsulate information within itself. Ext.grid, Ext.form, and Ext.data are all
custom namespaces.

What's next?
Now that we have our terminology down, and a basic understanding of these core
object-oriented concepts, we can finally get down to applying them within the
context of creating Ext JS custom components.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[255]

Ok, what do we extend?
Typically, we'll be writing an application and will see ourselves writing the same
basic piece over and over again. Or, we may be lucky enough to identify it early
enough that we can just choose the best piece and move forward right away. It
usually comes down to deciding which Ext JS component is the best one to extend.

Let's revisit our previous scenario, a Customer Resource Management system. We
know that we have several Person objects within our application. From a display
perspective, we will probably need something to display a person's contact details.

There are several different components for the display of information, and we must
choose the right one. A grid object would work, but a tabular display across so many
different values might clutter our application, and in this scenario, we probably only
need to see the details of one person at a time. A PropertyGrid is a little different
from a standard grid, but we're just going to output a name and an address. We
really don't need the user to see the field names so much as the data itself. We can
pretty much eliminate the DataView as well, for the same reasons as rejecting the
grid. We really need only one record at a time.

This brings us to a form or a Panel. Forms imply editing of information, so for a
display-only application you really come back to a Panel. Panel objects are extremely
versatile objects, being the core of many other objects within Ext JS. The body of a
Window object is a Panel. The different pieces of an Accordian are Panel objects. The
bodies of the tabs in a TabPanel are Panel objects. Creating a custom component that
extends the Panel object opens the doors to a variety of different display areas within
an Ext JS application.

Creating a custom namespace
We want to create our custom components within their own custom namespace for
encapsulation, quick reference, and to help us organize our code. It may be that our
packages or class may be named the same as other packages and classes already
within Ext JS. A custom namespace prevents conflicts from occurring between classes
of the same name, as long as each is defined within its own separate namespace. A
common naming convention for user-defined objects is to use the Ext.ux namespace.

Ext.namespace('Ext.ux');

Because we're going to be creating a collection of display Panels for our CRM
application, we'll really set our namespace apart from the rest.

Ext.namespace('CRM.panels');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[256]

We need to place this line at the top of each class definition template.

Our first custom class
First, let's take a look at a fairly simple script that takes a single record of information
and lays it out in a Panel on the screen.

Example 1: ch13ex1.js

 var userData = [

 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',EMAIL:'john@beatles.com',
PASSWORD:'apple1',ADDRESSTYPE:'Home (Mailing)',STREET1:'117 Abbey Road
',STREET2:'',STREET3:'',CITY:'New York',STATE:'NY',ZIP:'12345',PHONETY
PE:'Cell',PHONE:'123-456-7890'},
 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',ADDRESSTYPE:'Work
(Mailing)',STREET1:'108 Penny Lane',STREET2:'',STREET3:'',
CITY:'Los Angeles',STATE:'CA',ZIP:'67890',PHONETYPE:'Home',
PHONE:'456-789-0123'},
 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space
Way',STREET2:'',STREET3:'',CITY:'Billings',STATE:'MT',
ZIP:'98765',PHONETYPE:'Office',PHONE:'890-123-4567'},
 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',
STATE:'CA',ZIP:'43210',PHONETYPE:'Home',PHONE:'567-890-1234'}
];

 var userDetail = new Ext.Panel({
 applyTo: 'chap13_ex01',
 width: 350,
 height: 250,
 title: 'Chapter 13 Example 1',
 data: userData[0],
 tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[257]

 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
/>{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),
 listeners:{
 render:{
 fn: function(el){
 this.tpl.overwrite(this.body,this.data);
 }
 }
 }
 });

What we have here is a simple array of data objects, and a Panel definition. We're
passing a single data item into the Panel's configuration, defining an XTemplate
for the record's display, and applying a listener which will apply the data to the
XTemplate when the Panel is rendered.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[258]

Turning this into a reusable component is very easy, as the majority of our
code will just be moved into our custom class definition. First, we'll create a
new class template, ContactDetails.js, and define its initial class declaration
as extending the Ext.Panel class. Ext JS actually provides custom methods for
extending components.

Example 2: ContactDetails.js

Ext.namespace('CRM.panels');

CRM.panels.ContactDetails = Ext.extend(Ext.Panel,{
 // The panel definition goes here
});

Our next step is to begin defining the custom properties and methods of our
component. We begin with the default properties that are specific to our component.
Some of these properties may be overridden in our object configuration, but these
defaults allow us to only pass in what we might need to change for our
individual application.

width: 350,
height: 250,
data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
},
tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[259]

 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),

Pit stop!

Does anything look familiar here? Yes, it should, especially after looking at
the 'records' within userData. A class is an object, just like each 'record'
in the userData array is an object. At its most base level, an object is a
collection of name/value pairs. The only true difference is that a class will
also have functions as the value of an attribute name of the object, and the
object can be referenced by its class (the name of the class). Each of these
name/value pairs forms the constructor of the ContactDetails class.

Overriding methods
Continuing to build our first custom class, we get into overriding methods. As
we have previously mentioned, we can override a method of our parent class by
defining a method of the same name in the child class. A key component of the Panel
class is the initComponent() method, which (as the name suggests) initializes the
Panel component. Most methods will never need to be overridden, but sometimes,
we'll need to override a specific method to add to, or change, the default behavior of
a component.

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
},

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[260]

Author's note

Ext JS uses superclass as the programmatic reference to the object's
parent class object, as CRM.panels.ContactDetails is a subclass of
it's parent (superclass) Ext.Panel.

With our component, we needed a way to apply a new XTemplate to our
component, should one be passed into our ContactDetails class. Because a
developer can pass in the template configuration via the tpl argument, instead of an
actual XTemplate object, it is important to validate that input and adjust accordingly.
Our first action is to call the initComponent() method of our parent Panel class, and
then adjust the value of the tpl argument as needed.

Understanding the order of events
In our previous example (Example 1), we used the render event to apply our
XTemplate to our Panel object. In our custom component, we take the same tack, by
writing an overriding method for the onRender() method.

onRender: function(ct, position) {
 CRM.panels.ContactDetails.superclass.onRender.call
 (this, ct, position);
 if (this.data) {
 this.update(this.data);
 }
},

Here, we've called the onRender() method of our parent Panel (super) class. After
that, we verify that we have a value for our data attribute, before calling the custom
update() method of our component.

update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
}

The update() method takes an argument of data (a record object from our array),
applies that argument to the component's data attribute, and then applies the
component's XTemplate to the 'body' of the component. This is a custom method
of the component, not an overridden method of the parent Panel class. What's
important to our discussion is the need for this method.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[261]

When can we do what?
Our XTemplate does not get immediately applied to our component, as it isn't able
to overwrite the Panel body until the Panel body has actually been rendered. This is
what we mean by 'order of events', and can initially be very confusing, until you put
a little thought into it. For instance, say we had dynamically tried to apply a custom
ID argument as part of our constructor:

id: 'ContactDetails_' + this.data.ID,

This would have broken our component. Why? Because this.data is also an item
within our constructor, and doesn't actually exist until the component is instantiated
into memory. The same thing would have happened, if we had tried to apply our
XTemplate within the initComponent() method:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 this.tpl.overwrite(this.body, this.data);
},

This would have failed when initComponent() begins the process of creating the
component. The component, at this stage, still isn't part of the browser's Document
Object Model, so there isn't any 'body' for the XTemplate to be applied to yet. Getting
a handle on the 'order of events' is one of the biggest challenges in learning Ext JS, if
you don't know about it, and the order of events may be different with different Ext
JS classes as well.

What is an event-driven application?
Now we get down to the real juice. One huge barrier to cross, when transitioning
from a procedural programming style into object-oriented development, is
understanding the event-driven application model. Not all OO programs are
event-driven, but the paradigm is definitely shifting in that direction, and Ext JS is
no exception. Basically, the flow of an application is determined by sensing some
change of state or user interaction, called an event. When the event occurs, the
application broadcasts that the event has taken place. Another piece of the application
(a listener, also known as an observer) is listening for the event broadcast. When it sees
that the event has been broadcast, it then performs some other action.

Our ContactDetails class is no different. As an extension of the Panel class, it
automatically contains all of the events and event listeners that are a part of the Panel
class. An event, render, was previously defined. The process of building the display
of the Panel fires off a 'broadcast' of the render event.

this.fireEvent('render');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[262]

The Ext.Panel object has already defined an event listener for the render event.
Once the render event has been handled, it calls the onRender() method.

this.addListener('render',this.onRender,this,
 {ct:this.ct,position:this.position});

An event has been reached, which is then broadcast. An event listener is listening
for that broadcast. Upon hearing the broadcast, it executes additional pre-configured
actions that have been defined for that event. Understanding this process plays a
key part in how we develop event-driven applications, and our own applications
with Ext JS.

Some specific
application

change or user
interraction

occurs
(fires event broadcast)

preconfigured
listener

(or observer) 'hears'
that the event has

happened
(calls associated
event methods)

Method called
according to the

event that
occurred

Creating our own custom events
We may just as easily apply our own custom events within our Ext JS
applications. We can either register new events, that an end developer can then
add listeners to, or we can add our own listeners to kick off other methods within
our custom component.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[263]

By way of example, let's create a new update event within our custom component.
We'll adjust our initComponent() method to register our new event:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
},

This new code is all it takes to register our new event. We'll also go ahead and
register a new, internal, event listener, which we'll use to call a new method that
we'll write in a moment:

initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
 this.addListener({
 update:{
 fn: this.onUpdate,
 scope: this
 }
 });
},

What this states is that whenever the update event is broadcast, our application will
turn around and call the onUpdate() method of our ContactDetails component.

onUpdate: function(data){
 console.log('in onUpdate');
}

The onUpdate() method, in this case, only outputs a short message to the debugging
console, which you can see if you are debugging your application in Firefox with the
Firebug plugin (console is not supported in Internet Explorer). The final step is having
the update event broadcast. We already have an update() method, so it would make
sense for us to broadcast the update once it's completed:

update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 this.fireEvent('update', this.data);
},

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[264]

Here we broadcast our update event by calling the Ext JS's fireEvent() method,
and passing along our data as the argument to any method listening for the update
event. We can have any number of event listeners configured for a particular event,
either internal to the component, or externally within a script referencing our
custom component.

Our first custom component: Complete
Here's the final component we've been constructing. At this point in time, we don't
really need the custom update event. We'll leave it in, as it may be useful later, and
we'll just remove the onUpdate() method for now.

Example 2: ContactDetails.js

Ext.namespace('CRM.panels');

CRM.panels.ContactDetails = Ext.extend(Ext.Panel,{
 width: 350,
 height: 250,
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
 },
 tpl: new Ext.XTemplate([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
',
 '{ADDRESSTYPE} Address
',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[265]

 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
/>{CITY}, {STATE} {ZIP}'
]),
 initComponent: function(){
 CRM.panels.ContactDetails.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 this.addEvents('update');
 },

 onRender: function(ct, position) {
 CRM.panels.ContactDetails.superclass.onRender.call
 (this, ct, position);
 if (this.data) {
 this.update(this.data);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 this.fireEvent('update', this.data);
 }
});

With our new custom component, we now have a new way of calling it into our
applications as well.

Example 2: ch13ex2.js

 var userData = [
 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',
EMAIL:'john@beatles.com',PASSWORD:'apple1',
ADDRESSTYPE:'Home (Mailing)',
STREET1:'117 Abbey Road',STREET2:'',STREET3:'',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[266]

CITY:'New York',STATE:'NY',ZIP:'12345',PHONETYPE:'Cell',
PHONE:'123-456-7890'},

 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',
ADDRESSTYPE:'Work (Mailing)',
STREET1:'108 Penny Lane',STREET2:'',
STREET3:'',CITY:'Los Angeles',STATE:'CA',ZIP:'67890',
PHONETYPE:'Home',PHONE:'456-789-0123'},

 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space Way',STREET2:'',STREE
T3:'',CITY:'Billings',STATE:'MT',ZIP:'98765',
PHONETYPE:'Office',PHONE:'890-123-4567'},

 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',STATE:'CA',ZIP:'43210',PHONETYPE:'
Home',PHONE:'567-890-1234'}
];

 var userDetail = new CRM.panels.ContactDetails({
 applyTo: 'chap13_ex01',
 title: 'Chapter 13 Example 1',
 data: userData[0]
 });

 updateContact = function(event,el,data){
 userDetail.update(data.data);
 }

 xt.get('actionLink').on('click',updateContact,this,
 {data:userData[1]});

We've taken an anchor element, with an id of actionLink, from our calling page,
and given it an onclick event that updates the data of our ContactDetails object,
userDetail. Clicking on the Update Data link on the page changes the contact
details from John over to Paul.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[267]

What's next? Breaking it down
Ok, we've now created our first custom component. That was fairly painless. But,
looking back at what we've done, it looks as if we've pushed ourselves into a small
corner again. As it stands, every aspect of our application that requires contact
information would have to display the name, email address, phone number, and
address of our contact, every time. What happens if we required only the address?
Or just the name, or email, or the phone number?

Well, this is where we refactor, creating even more custom components. For our
purposes, we'll quickly break this down into two components: one for UserDetail,
and one for AddressDetail.

Example 3: UserDetail.js

Ext.namespace('CRM.panels');

CRM.panels.UserDetail = Ext.extend(Ext.Panel,{
 width: 350,
 height: 125,
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',
 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[268]

 PHONE: ''
 },
 split: false,
 tpl: new Ext.Template([
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{FIRSTNAME} {LASTNAME}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="emailEdit_{ID}" class="iconLnk" align="Edit
Email Address" border="0" />{EMAIL}
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="phoneEdit_{ID}" class="iconLnk" align="Edit
Phone" border="0" />{PHONE} ({PHONETYPE})
'
]),
 initComponent: function(){
 CRM.panels.UserDetail.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 },
 onRender: function(ct, position) {
 CRM.panels.UserDetail.superclass.onRender.call
 (this, ct, position);
 if (this.data) {
 this.update(this.data);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 }
});

Ext.reg('userdetail',CRM.panels.UserDetail);

Example 3: AddressDetail.js

Ext.namespace('CRM.panels');

CRM.panels.AddressDetail = Ext.extend(Ext.Panel,{
 width:350,
 height:125,
 data: {
 ID: 0,
 FIRSTNAME: '',
 LASTNAME: '',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[269]

 EMAIL: '',
 ADDRESSTYPE: 'Home (mailing)',
 STREET1: '',
 STREET2: '',
 STREET3: '',
 CITY: '',
 STATE: '',
 ZIP: '',
 PHONETYPE: 'Home',
 PHONE: ''
 },
 split: false,
 tpl: new Ext.XTemplate([
 '{ADDRESSTYPE} Address
',
 '<img src="/resources/images/icons/silk/database_edit.gif"
width="16" height="16" id="addrEdit_{ID}" class="iconLnk" align="Edit
Address" border="0" />{STREET1}
',
 '<tpl if="STREET2.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET2}
',
 '</tpl>',
 '<tpl if="STREET3.length > 0">',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{STREET3}
',
 '</tpl>',
 '<img src="/resources/images/s.gif" width="21" height="16"
 />{CITY}, {STATE} {ZIP}'
]),
 initComponent: function(){
 CRM.panels.AddressDetail.superclass.initComponent.call(this);
 if (typeof this.tpl === 'string') {
 this.tpl = new Ext.XTemplate(this.tpl);
 }
 },
 onRender: function(ct, position) {
 CRM.panels.UserDetail.superclass.onRender.call
 (this, ct, position);
 if (this.data) {
 this.update(this.data);
 }
 },
 update: function(data) {
 this.data = data;
 this.tpl.overwrite(this.body, this.data);
 }
});
Ext.reg('addrdetail',CRM.panels.AddressDetail);

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[270]

By breaking these into two separate components, we can now use either piece in any
area of our application, independently.

Example 3: ch13ex3.js

 var userData = [

 {ID:1,FIRSTNAME:'John',LASTNAME:'Lennon',EMAIL:'john@beatles.com'
,PASSWORD:'apple1',ADDRESSTYPE:'Home (Mailing)',STREET1:'117 Abbey Roa
d',STREET2:'',STREET3:'',CITY:'New York',
STATE:'NY',ZIP:'12345',PHONETYPE:'Cell',PHONE:'123-456-7890'},

 {ID:2,FIRSTNAME:'Paul',LASTNAME:'McCartney',
EMAIL:'paul@beatles.com',PASSWORD:'linda',
ADDRESSTYPE:'Work (Mailing)',STREET1:'108 Penny Lane',STREET2:'',STREE
T3:'',CITY:'Los Angeles',STATE:'CA',
ZIP:'67890',PHONETYPE:'Home',PHONE:'456-789-0123'},

 {ID:3,FIRSTNAME:'George',LASTNAME:'Harrison',
EMAIL:'george@beatles.com',PASSWORD:'timebandit',
ADDRESSTYPE:'Home (Shipping)',STREET1:'302 Space Way',
STREET2:'',STREET3:'',CITY:'Billings',STATE:'MT',ZIP:'98765',
PHONETYPE:'Office',PHONE:'890-123-4567'},

 {ID:4,FIRSTNAME:'Ringo',LASTNAME:'Starr',
EMAIL:'bignose@beatles.com',PASSWORD:'barbie',
ADDRESSTYPE:'Home (Mailing)',STREET1:'789 Zildizhan Pl',
STREET2:'',STREET3:'',CITY:'Malibu',STATE:'CA',ZIP:'43210',
PHONETYPE:'Home',PHONE:'567-890-1234'}
];

 var userDetail = new CRM.panels.UserDetail({
 applyTo: 'chap13_ex03a',
 title: 'User Detail',
 data: userData[0]
 });

 var addrDetail = new CRM.panels.AddressDetail({
 applyTo: 'chap13_ex03b',
 title: 'Address Detail',
 data: userData[0]
 })

 updateContact = function(event,el,data){
 userDetail.update(data.data);
 addrDetail.update(data.data);
 }

 Ext.get('actionLink').on('click',updateContact,this,
 {data:userData[1]});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 13

[271]

Best Practice

Ok, looking at our two custom components, it's fairly obvious that they
are essentially the same object with different XTemplates applied, and
it would probably be best for them to have their own parent class of
overloaded, template-applying methods, and just be repositories of the
XTemplate defaults and our xtypes. But, for our examples, we're going
to try and keep it simple for now.

Using xtype: The benefits of lazy

instantiation
In our previous example, a new line was added to the bottom of each class file:

Ext.reg('userdetail',CRM.panels.UserDetail);

What we've done here is register our new custom component as an xtype. Well,
what does that mean exactly? An xtype is a component container element, registered
with the Ext JS library, for lazy object instantiation. What this means is that we can
use the xtype as a quick object identifier, when laying out our applications, and that
these types of objects are only loaded into browser memory when they are actually
used. This can greatly improve the overall performance of our application, especially
when a view may contain many objects. We'll use xtype wherever possible while
writing object configuration, so that objects that might not immediately be displayedimmediately be displayedbe displayed
won't take up valuable memory resources. Next, we'll look at this in practice.

Using our custom components within

other objects
Now that we've created our custom components, we can add them to any other
container object within Ext JS. We can now use our xtype to refer to the component
type, for lazy instantiation, and we can get all of the benefits of modular design. Let's
apply our two new components with a border layout, for side-by-side viewing.

Example 4: ch14ex4.js

 var ContactDetail = new Ext.Panel({
 title: 'Contact Details',
 applyTo: 'chap13_ex04',
 width: 400,
 height: 125,
 layout: 'border',

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Code For Reuse: Extending Ext JS

[272]

 frame: true,
 items:[{
 region: 'west',
 xtype: 'userdetail',
 width: 200,
 data: userData[0]
 },{
 region: 'center',
 xtype: 'addrdetail',
 width: 200,
 data: userData[0]
 }]
 });

We have identified the West and center regions of our BorderLayout as belonging to
the UserDetail and AddressDetail class types respectively. If this layout were part
of a window object, these two classes wouldn't even be loaded into memory until the
window was shown, helping to reduce browser memory usage.

Summary
Extending the various classes of the Ext JS library is one way to place ourselves
on a fast track to Rapid Application Development, by allowing us to easily create
modular, re-usable components. Within this chapter, we've discovered some of the
most powerful aspects of the Ext JS library.

We had a brief overview of object-oriented development with JavaScript, and then
covered how object-oriented program design applies to the Ext JS library. We spent
a little time covering some of the basics of object-oriented programming such as
inheritance, method overriding, and some basic terminology.

We then began applying some of these concepts within Ext JS such as defining
custom namespaces, creating custom components, and overriding methods of our
object's parent (super) class.

We followed up by giving a small explanation of event-driven application
architecture, and applied that by writing a custom event and listener for our
custom component.

Finally, we covered xtypes and the importance of lazy instantiation on application
performance, and then modified our code to use xtypes for our new custom
components to add them into other Ext JS object containers.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What

Else Can You Do?
Throughout this book, we've gone over some of the core components of Ext JS:
Windows and Dialogs, Grids, Trees, Data Stores, and more. This is some of the
flashiest, coolest, and most consistent stuff on the Web today, for taking a drab
old HTML display and giving it the sizzle and pop such a dynamic development
platform deserves. But we've still only scratched the surface of what's available
within the complete Ext JS library.

So much to work with
The Ext JS site (http://www.extjs.com) provides a wealth of information for
those learning to develop with Ext JS. A quick view of the Samples and Demos
area of this site will show us quite a bit of what we've covered in this book, but a
thorough examination of the source code will show us some things that we may not
immediately have known were available. These are the pieces that aren't necessarilyhave known were available. These are the pieces that aren't necessarily
apparent, such as a panel or a grid, but these little things ultimately hold it all
together and truly allow us to create robust applications.

Form widgets
What's a widget? Well, a widget is a tiny piece or component of functionality, say
(for instance) a slider or a progress bar. Most applications are made up of forms, so
it's no accident that Ext JS includes some form widgets that we can't get with straightwith straightstraight
HTML. TextFields and Checkboxes and Radio buttons are standard fare, but Ext JS
sweetens the pot by going to the next level, providing us with components that we're
used to seeing in most desktop applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[274]

DateField
The DateField is a perfect example. Handling dates within most HTML forms can be
a chore, but Ext JS provides a very basic component for handling dates:

Example 1: ch14ex1.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'DateField Example',
 applyTo:'chap14_ex01',
 layout:'form',
 labelAlign:'top',
 width:210,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'datefield',
 fieldLabel:'Date of Birth',
 name:'dob',
 width:190,
 allowBlank:false
 }]
 });
});

What we have here is a basic FormPanel layout, that puts our DateField into proper
context and allow for certain necessary attributes (like putting our label above the
field). Within the layout we have a single DateField component. On initial load, it
looks like a basic TextField, with the exception of the trigger to the right. Clicking
the trigger shows the beauty of Ext JS's consistent component "look-and-feel",trigger shows the beauty of Ext JS's consistent component "look-and-feel", shows the beauty of Ext JS's consistent component "look-and-feel",
displaying an attractive calendar layout for the selection of a date. You can select
a day, move from month-to-month, or even click on the month itself to choose a
different month and year.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[275]

Apart from its rich display, the DateField also provides a rich set of attributes for
specialized customization, including the ability to determine different accepted date
formats, and the ability to disable entire blocks of days. The component will also
automatically validate manually-entered data.

TimeField
Dealing with time can be more difficult than dealing with dates, but Ext JS,
again, provides a component to assist us. The TimeField is, ultimately, a basic
ComboBox that will automatically show a set of time, in increments that we want,
for quick selection:

Example 2: ch14ex2.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'DateField Example',
 applyTo:'chap14_ex02',
 layout:'form',
 labelAlign:'top',
 width:210,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'timefield',
 fieldLabel:'Time',
 minValue: '9:00 AM',
 maxValue: '6:00 PM',
 increment: 30
 }]
 });
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[276]

As in our last example, this simple FormLayout contains one item, in this case the
TimeField. Click on the trigger, and we get our options, defined by our code as
times between 9 AM and 6 PM in increments of 30 minutes. Other configuration
options allow you to define multiple accepted time formats, and also implement
custom validation. Basic validation is provided by default.

NumberField
The NumberField doesn't look very special—it's just a basic 'text' field. What makes
it special is how it allows us to 'dummy-proof' our Ext JS applications. Client-side
data validation is essential for ensuring data integrity prior to sending values to the
server, allowing us to prevent errors from our remote procedure calls. Components
such as this one simplify that process for us. The NumberField provides automatic
keystroke filtering and validation to allow the entry of only numeric data, allowing
us to specify whether it can take negative numbers or float values, and even specify
how many decimal places are accepted.

CheckboxGroups and RadioGroups
Ext JS 2.2 brought two new form controls: the CheckboxGroup and the RadioGroup.
These controls allow us to 'group' sets of checkbox or radio buttons, providing them
with custom formatting and special, group-level validation capabilities. For example,
say we have a form with two checkboxes for the users to select their gender. By
placing these within a CheckboxGroup, we can apply our validation to the group so
that at least one option is selected when the form is submitted. We can apply many
more complex validation rules as well, depending upon the scenario. See the Ext JS
API for more details.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[277]

HtmlEditor
Ext JS includes a nice, limited, WYSIWYG HtmlEditor, to drop right into your forms:

Example 3: chapter14_03.js

Ext.onReady(function(){
 var formPanel = new Ext.form.FormPanel({
 title:'HtmlEditor Example',
 applyTo:'chap14_ex03',
 layout:'form',
 labelAlign:'top',
 width:600,
 autoHeight:true,
 frame:true,
 items:[{
 xtype:'htmleditor',
 id:'bio',
 fieldLabel:'Blog Entry',
 height:200,
 anchor:'98%'
 }]
 });
});

Here we dropped the HtmlEditor into our FormLayout for a quick demonstration.
The HtmlEditor is applied to a basic text area, in much the same way as other
WYSIWYG editors, say FCKEditor or TinyMCE. We have the ability to enable
or disable the various menu buttons related to formatting, as well as call various
methods (like those to get or set the text of the editor, its position, and so on), or
apply event listeners, just like the other components of Ext JS.

We get the same, consistent Ext JS look and feel, while giving our users the ability to
format their own content directly from within our applications. In this image, note that
the HtmlEditor uses Ext JS's built in ColorPalette component for selecting colors.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[278]

Data formatting
We all know that we don't always receive data in the format in which we want it to
be displayed. Ext JS provides many different components specifically for address
such issues. First among these is the Format object in the Ext.util package, which
gives us a wide variety of functions for everything from creating the US currency
format for a number to methods for stripping scripts and HTML from strings. The
Ext JS library also extends several native JavaScript objects and provides us with
additional methods for manipulating them. Specifically, the String, Number, and
Date objects have all been extended. You can now strip off unnecessary whitespace,
constrain numbers to a minimum and maximum value, and even create Date objects
from a variety of format options.

Basic string formatting
The String object has been extended to provide several formatting options,
including the format() method. This simple method allows you to return a
formatted string of text, with the first parameter being the string to return, and all
other parameters (as many as you like) being bound to pieces of the string, using
a basic form of binding expression, whereby curly braces surround a variable
reference. Typical binding expressions, used by Ext JS, would contain a dot-notated
variable reference surrounded by curly braces (that is, {this.firstName}), but this
instance will bind values to the arguments that will follow using their array order:

Example 4: chapter14_04.js

Ext.onReady(function(){
 var cls = "Band";
 var member = {
 firstName: 'Eric',
 lastName: 'Clapton',
 position: 'Lead Guitarist'
 };

 var pnl = new Ext.Panel({
 applyTo: 'chap14_ex04',
 width: 200,
 height: 100,
 bodyStyle: 'padding:5px',
 title: 'Band Member',
 html: String.format('<div class=\'{0}\'>{2}, {1}: {3}</div>',
 cls, member.firstName, member.lastName, member.position)
 });
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[279]

This small block of code displays a simple Panel element, which calls the formatting
function to build the HTML of the Panel. The format() method's arguments are
applied to different parts of the string that we are building.

Formatting dates
The Date object has also been extended to provide additional formatting and parsing
capabilities. The API provides a complete listing of the date part identifiers that can
be used when parsing a string into a Date object, or when outputting a Date object in
the desired format:

Example 5: chapter14_05.js

Ext.onReady(function(){
 var cls = "Band";
 var member = {
 firstName: 'Eric',
 lastName: 'Clapton',
 position: 'Lead Guitarist',
 birthDate: new Date('03/30/1945')
 };

 var pnl = new Ext.Panel({
 applyTo: 'chap14_ex05',
 width: 200,
 height: 100,
 bodyStyle: 'padding:5px',
 title: 'Band Member',
 html: String.format('<div class=\'{0}\'>{2}, {1}: {3}
DOB:
{4}</div>', cls, member.firstName, member.lastName, member.position,
member.birthDate.format('F j, Y'))
 });
});

We've extended our previous example to add Eric's birthday. We've created a new
Date object, as part of the Member object, and then used the format() method of the
Date object to format our date for display.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[280]

Other formatting
The Ext.util package provides many different classes and methods for formatting
various types of data, including many for working with strings, dates, and
numbers. A good example is the usMoney() method:

var annualSalary = 123456.345;
Ext.util.Format.usMoney(annualSalary);

This will return a pre-formatted US currency string of $123,456.35. This can come
in very handy when working with e-commerce applications. This is only one of the
many methods within the classes of the Ext.util package.

Author's note

Currently, as far as working with currency is concerned there is only a
usMoney() method in the Format class. But, with Ext JS's extensible
architecture, it would be possible to create methods for formatting other
foreign currencies. A quick search of the Ext JS forums will pull up
several posts on creating formatting methods for other currency types.

Another common function is the ability to strip HTML from a string. Say we have a
simple comment form on our page, and want to ensure that the user doesn't include
any HTML in the input, so that our data isn't polluted before going to the server.
Ext JS includes a simple method for stripping out HTML from any string:

var firstName = 'jimi';
var adj = Ext.util.Format.stripTags(firstName);

We may also want to make sure that a particular input, say a name, is capitalized
before we pass it back to the server:

var adj2 = Ext.util.Format.capitalize(adj);

We may also want to apply a default value to a variable in case one does not
exist already:

var adj3 = Ext.util.Format.defaultValue(favoriteBlog,
 'Cutter\'s Crossing');

These are just a few of the many formatting methods that are available within the
Ext JS library. A thorough review of the API will provide you with a full
understanding of everything that is available.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[281]

Managing application state
Core to any application (especially an event-driven application) is maintaining and
controlling 'state'. This can encompass many different things, from keeping user
preferences on grid sorting, to managing multiple Windows or layout areas on the
screen, and even being able to use the Back button in the browser and have it change
your application without reloading the wrong page. Luckily, Ext JS provides several
Manager objects for handling many of these exact scenarios.

Basic 'state'
The Ext.state.Manager class is automatically checked, and utilized, by every
state-aware component within Ext JS. With one simple line of code we can set this
manager in place, and with little or no additional work, our application's view state
is automatically registered.

To put this in perspective, suppose that we have a rather large application, spanning
many different HTML documents. Ext JS plays a part in the application, because
we've implemented a data grid for displaying users. While we work on our grid,
it may be necessary to change the sort order from the default LastName column to
an unlikely column, say the UserName column. Now let's say we had to go into an
inventory editor for a moment. If we use the Manager, when we return to the user
editor our grid will automatically come up sorted again by Username, as that was
the last state change that we made:

Ext.state.Manager.setProvider(new Ext.state.CookieProvider());

This line creates our state Manager, setting the provider to a CookieProvider.
What this means is that the application state is saved to a value within a cookie on
the client machine, which in turn is read to re-enable the state upon returning to a
state-aware component.

Side Note

The CookieProvider also provides a simple API for the general
management of client-side cookies for our sites, and can be used as a
standalone class for referencing and manipulating cookie objects.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[282]

How do I get that window?
Many Ext JS applications will be confined to a single HTML page, and might
commonly come down to a collection of Ext JS Window objects on the screen. But
what happens if a user is in one window, and we want to show them another
window that is already open, without closing the one they've been working
on? By default, all Ext JS windows are created, and registered, within the
global WindowGroup. We can easily control the state of these windows by using
the WindowMgr class. This manager class allows us to grab any window of a
WindowGroup, and bring it to the front, send it to the back, or even hide all of the
windows in the group.

Using the back button in Ext JS applications
One common problem among Rich Internet Applications is handling the Back
button of the browser. Say we have a large Ext JS based application with Tabs, Grids,
and Accordions. A user, navigating our application by using these components,
might hit their Back button to go back to their last action, or screen, or panel. This is
expected behavior in most Internet applications, because most Internet applications
go from one HTML page to another.

But most Rich Internet Applications, like those built with Ext JS, are usually a
collection of different states within the same HTML page, and the Back button
would typically take a user out of our application and back to the last viewed HTML
page. Thankfully, Ext JS 2.2 (the latest library update, as of this writing) introduced
the History class, giving us the ability to control how the browser history is used,
and how the browser's Back button would be handled within our applications.

Manage this

There are several other Manager classes within Ext JS. The
StoreMgr provides easy access to our various data Store objects. The
ComponentMgr allows us to quickly retrieve specific components to act
upon. The EventMgr allows us to control events within Ext JS objects.
A good review of the Ext JS API will give us more information on these
Manager objects and their many uses.

Accessing the DOM
Custom library adapters allow for the use of Ext JS with other libraries, say JQuery
or Prototype. But Ext JS provides its own internal libraries for DOM manipulation
as well.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[283]

Finding DOM elements
The first task when manipulating the DOM(Document Object Model) is to find
what we're looking for. The DomQuery class provides us with several methods for this
purpose, including returning entire groups of DOM nodes that meet specific criteria,
or selecting a single node by its selector. We can even start the search from a specific
node in the page. There are several different selector types that can be used when
searching for a specific element:

base Element Selectors

Attribute Selectors

Pseudo Classes

CSS Value Selectors

What's more, we can chain together a series of selectors to find the exact element
we're searching for:

var myEl = Ext.DomQuery.selectNode
 ('a.iconLnk[@href*="cutterscrossing"]:first');

This will return the first anchor element with a class name of iconLnk that contains
'cutterscrossing' within its href attribute:

a: Is an anchor element

.selectNode: Is a class of selectNode

[@href *= "cutterscrossing"]: Is an href attribute containing
'cutterscrossing' somewhere within its value

:first: Is only the first element matching the criteria

Manipulating the DOM
The DomHelper class allows us to manipulate the DOM of the rendered page on the
fly. Whether we want to add a new element below a collection of others, remove a
specific element, or even overwrite the body content of an element, the DomHelper
class contains the methods that can accomplish the task:

Ext.DomHelper.insertAfter(ourGrid, newForm);

This line will place the newForm object directly after ourGrid in the current page's
DOM. You could just as easily use insertBefore() to place the form before the grid.
You could even use insertHtml() to insert a block of HTML into the DOM with a
particular relation to a specific DOM element. A thorough review of the API will give
you a complete view of the power of the DomHelper class.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[284]

Working with styles
The DomHelper class also provides a simple method for setting the style of an
individual element, through the use of the applyStyles() method. But sometimes
we may need to change the style sheet of our entire document. For this, Ext JS
has the Ext.util.CSS class, which allows us to create a new stylesheet that will
automatically be appended to the Head of our document, remove entire stylesheets,
or swap one stylesheet for another. We can even act upon their entire set of rules:

Ext.util.CSS.swapStyleSheet('defaultDisplay','print.css');

This little script will swap out the current stylesheet, which is identified by the link
tag's id attribute, and replace it with the print.css stylesheet.

Ext JS for the desktop: Adobe AIR
One of the great things about being a web application developer is that we have the
opportunity to write truly cross-platform applications. The traditional model for this
has always been writing browser-based applications that work primarily under a
client/server paradigm, with the browser as the client and a web application server
as the server.

But desktop applications have a lot of their own benefits, including access to their
own local file systems (something you cannot do with web-based applications,
because of security concerns). The biggest issue with building desktop applications
is writing them for all of Windows, Unix/Linux, and the Mac. None of these systems
share common display libraries or file access systems, so writing a cross-platform
application would require writing separate versions of the code to accommodate
each system. There are languages that provide cross-platform virtual machines,
which give this kind of access to the system resources, but they require learning
languages that may be of outside the average web developer's toolbox.

Adobe came up with an interesting idea. How could they let people develop
cross-platform applications using web-based technologies such as HTML,
JavaScript, AJAX, and Flash?

With their purchase of Macromedia, Adobe gained the rights to the Flash player and
the Flash application platform. The Flash player is distributed on 97% of the user
desktops as a plug-in for every major browser. They also gained access to a new
technology called Flex, which is a framework and compiler that allows developers
(rather than designers) to script Flash based applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[285]

But, part of what they truly gained was an understanding of how to create a
cross-platform application delivery engine. So, they built upon their new-found
knowledge, and set out to create the Adobe Integrated Runtime, better known as
AIR. AIR is a desktop engine for rendering content written in HTML, JavaScript,
and/or Flash (and more), which allows local access to the client system's resources,
regardless of the operating system. Built upon the open source WebKit platform,
which is the same platform used by Apple in their Safari web browser, AIR has
access to the local file system and storage, while maintaining Internet awareness,
thereby creating a bridge between offline process and online content. AIR even
provides access to local databases created with SQLLite. SQLLite is a server-less
library for delivering databases, with its own transactional SQL database, engine thatthat
can be directly embedded into an application..

Adobe and Ext JS already have a great relationship, because Adobe contracted
Ext JS so that it could use the Ext JS component library as the foundation of the
AJAX-based components generated by ColdFusion Markup Language, which is
processed on Adobe's popular ColdFusion application server. And Considering the
cross-platform nature of AIR, it was befitting that some of the first HTML/JavaScript
sample applications were written in another cross-platform library, Ext JS. The tasks
sample application is included with the Ext JS download, and is an excellent primer
on how to write HTML and JavaScript applications for AIR.

Ext JS 2.1 was released on the same day that Adobe AIR was officially released, and
included an entire package of components dedicated to developing Ext JS-based AIR
applications. The classes of the Ext.air package interact with AIR's own classes for
interacting with the runtime and the desktop. Aptana, a popular JavaScript editor
and Eclipse plugin, added support for creating AIR applications directly as projects
from within its IDE (Aptana already supported Ext JS development), with simple
wizards to help get you started, as well as for packaging completed AIR applications.

To make life easier, the base Ext JS class provides an isAir Boolean property that
can be used to conditionally run applications concurrently on the web and within
an AIR application, utilizing the same codebase. The Ext.air package includes
special packages for managing application state, including the NativeWindowGroup
and FileProvider classes (AIR's answer to the WindowGroup and CookieProvider
classes). There are even classes for controlling sound and system menus.

More information:

For more information on developing Adobe AIR applications, visit the
AIR and AJAX Developer Center (http://www.adobe.com/devnet/
air/ajax/). For details look at AIR/Ext JS integration, study the 'tasks'
sample application, included in the complete Ext JS download. There's
also the Ext.air for Adobe AIR topic within the Ext JS Forums.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[286]

Ext JS community extensions
Chapter 13 of this book discussed how developers can write their own custom
extensions to Ext JS. Being an open source project, the Ext JS community is very
active in contributing new components to extend existing functionality, and
sometimes these components even go on to become a part of the framework.

Many custom extensions are found directly in the forums area of the Ext JS website,
as posts from members who have come up with solutions to a problem they had
identified. There is, however, a section of the Learning Center area of the site that is
dedicated to showcasing custom extensions. Here are a few fan favorites:

DatePickerPlus
Building on the DateField class, the DatePickerPlus provides multi-calendar
displays, allowing a user to select a range of dates. There are multiple configuration
options available, and the level of control available to the developer is
very comprehensive.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[287]

PowerWizard
The PowerWizard class allows us to create powerful, multi-step 'wizard-like'
processes, with field (and multi-field) validation and decision trees, as well as data
persistence between frames.

TinyMCE
Yes, for those times when the HtmlEditor just isn't enough, someone wrote a custom
extension to wrap the TinyMCE WYSIWYG editor into the Ext JS applications.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[288]

SwfUploadPanel
How many times would it have been nice to be able to upload more than one file
at a time through our web application interface? Someone converted the popular
SwfUpload project into a custom Ext JS component, allowing multi-file uploads from
within our application.

ColorPicker
The built-in ColorPalette component can seem rather limiting, only showing a
few of the colors available for web display. For this reason, there is the ColorPicker
giving the user the option of selecting any color they wish.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[289]

These are just a few of the outstanding community contributions to the library.
There are many more available through the Community Extensions section of
the Learning Center area of the Ext JS website, as well as throughout the Forums
(Checkout the Ext: User Extensions and Plugins topic for more).

Additional resources
Knowing where to find good information is the biggest trick to learning anything
new. Although this book is a good resource, there is a wealth of information
available on the Internet, especially on the Ext JS site (http://www.extjs.com).

Samples and demos
The Samples and Demos area of the Ext JS site (http://extjs.com/deploy/dev/
examples/samples.html) will likely be the first real exposure that anyone has to
the power of the Ext JS library. These small samples are broken down into various
categories, providing us with solid examples of how to use many of the components
of Ext JS. With easily-accessible source code, we can see exactly what it takes to write
this type of functionality for our own applications.

Ext JS API
The Ext JS interactive API (http://extjs.com/deploy/dev/docs/) is an
outstanding resource, giving us access to the underlying properties, methods,
and events that are available within each class of Ext JS. Peppered throughout are
additional code samples to illustrate their use. The Ext JS team even provides a
desktop AIR version of this API browser, so that we can have it available offline.

Side note:

The Ext JS team also supports the older 1.1 framework, which is what
runs the underlying AJAX components of the Adobe ColdFusion 8
server. The samples and demos for the 1.1 framework are actually
included in the 1.1 API browser (http://extjs.com/deploy/
ext-1.1.1/docs/), which is available through the Learning Center
area of the website (http://extjs.com/learn/).

Ext JS forums
The Forums for Ext JS (http://extjs.com/forum/) show what an active
community there is, developing the Ext JS library. With over 40,000 threads and
more than 200,000 posts, this is the place to ask questions. Topics range from the very
easy to the ultra-advanced, and members of the core Ext JS development team are
frequent contributors.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Power of Ext JS: What Else Can You Do?

[290]

Step-by-step tutorials
Step-by-Step Tutorials(http://extjs.com/learn/Tutorials) can be found
within the Learning Center, with content ranging from simple component usage to
advanced project development. Some of these tutorials come directly from the Ext JS
development team, but many are contributed by members of the Ext JS community.

Community manual
One can also find the Ext JS Community Manual within the Learning Center. This
wiki-style development manual is maintained by the Ext JS community itself, and
contains topics relating to most of the aspects of Ext JS development.

Spket IDE
We can find resources for Ext JS all over the Internet. One good example is from
Spket Studios (http://www.spket.com/), makers of the Spket IDE. This free
IDE comes as a plug-in for the Eclipse development platform. With a few simple
steps, Spket can provide complete code introspection for our Ext JS classes and
extensions, as well as in-depth code assistance. It even has a built-in theme builder to
automatically create new skins for your components.

Aptana Studio
Aptana Studio is quickly becoming a major contender in the web-based IDE market.
Even the free version provides code introspection and assistance with multiple
JavaScript libraries, built-in wizards for creating Adobe AIR applications, built-in
debugging tools, and much more.

Google
Yes, Google (or any other search engine) is a fantastic resource, because there are
thousands of articles, tutorials, and blog posts available. A quick search on "Ext JS"
brings up over a million possible matches, and that's growing every day.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 14

[291]

Summary
In this chapter we've discussed some of the lesser known pieces of the Ext JS library.
We briefly covered some of the form components not found in traditional HTML,
such as the DateField and the HtmlEditor. We also learned about the various
classes available for formatting data for the desired output, as well as those classes
needed for managing application state and manipulating the Document Object
Model. We also briefly talked about creating Ext JS desktop applications with
Adobe AIR.

Finally, we also talked about the various resources that are out there for continuing
to learn about Ext JS development. We talked about the community extensions,
the brilliant samples, and API browser, as well as the forums, tutorials, and the
community manual. We even touched on some IDE's for doing Ext JS development.

Where do we go from here?
It is our hope that, with this brief introduction to the Ext JS JavaScript component
library and framework, we've given our readers a good foundation upon which
some truly amazing things can be built some truly amazing things. Ext JS providescan be built some truly amazing things. Ext JS provides
such an immense wealth of user interactivity within web applications, possibly to a
degree never achieved before. With its deep, consistent, and rich component set, its
full-featured and intuitive API, and its constant development and growth, Ext JS has
the potential to truly springboard web (and even desktop) applications beyond the
traditional paradigms, by providing users with an experience well beyond the web
applications of the past.

Our imagination is the only limit to what we can hope to have in the future.

Charles F. Kettering

US electrical engineer and inventor (1876 - 1958)

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Index

A

accordion, layouts
about 128
movie form, adding 131
nesting, in tab 128, 129
toolbar, adding 129-131

adapters, Ext
about 18
using 18, 20

Adobe AIR 285

Adobe Integrated Run time. See Adobe AIR
AJAX 12
Asynchronous JavaScript and XML.

See AJAX

B

built-in features, Ext
client-side sorting 86
column, reordering 86, 87
columns, hidden 86
columns, visible 86

button, toolbars
creating 63
handlers 67, 68
icon buttons 67
split button 64

buttons, form 53

C

cell renderers
about 82
data, formatting 82
graphics, generating 84
HTML, generating 84

lookup data stores, creating 83
two columns, combining 84

classes 254
ComboBox, form

about 47
database-driven 47-50

component config 59
config object

about 28, 29
new way 28, 29
old way 28
tips 26, 29

content, loading on menu item click 68, 69
custom class, creating 256-259
custom component, creating 264-266
custom events, creating 262-264

D

data, filtering
about 238
remote, filtering 238-244

data, finding
about 237
by field value 237
by record ID 238
by record index 237

data, formatting
about 278
date, formatting 279
other formatting 280, 281
string, formatting 278

data displaying, GridPanel
about 74, 75
data, adding to data store 75, 76
data, defining for data store 76, 77

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[294]

data store, setting up 75
data types, specifying 78

data formats
about 223
HTML data 227
other formats 227, 228
remote panel data 223-226

DataReader, using
custom DataReader, using 234-237
to map data 233, 234

data saving to server, editable grids
afteredit event, options 114
data, deleting from server 114, 115
new rows, saving 115, 116
updates, sending to server 112, 113

data store objects
about 228
data, defining 229, 230
data, mapping 230
data, retrieving from server 231

dialog
about 160
button constants 165
Ext.MessageBox 160
Ext.Msg 160-162
Ext.Msg.progress 163
Ext.Msg.show 164
Ext.Msg.updateProgress 163
icon constants 164
Msg.alert 161
Msg.prompt 162
opening 159, 160

DOM
accessing 282
elements, finding 283
manipulating 283, 284
styles, working with 284

drag-and-drop, Ext JS
about 212
DataView dragging 212, 213
DragData, dealing with 213, 214
DragDropMgr class 218, 219
DropTarget 205-208
DropTarget.notifyDrop method 208
Ext.DataView 212, 213
Ext.dd.DragSource 206, 207
Ext.dd.DragTarget class 207, 208

Ext.dd.DragZone 209
Ext.dd.DropTarget 215
Ext.dd.DropZone 209
Ext.dd.Registry 210-212
Ext.dd.ScrollManager 219
Ext.dd.StatusProxy class 206, 207
Ext.grid.GridPanel 221
Ext.TreePanel 220
FormPanel 215
metadata 214
onNodeDrop method 210, 211
proxies 214, 215

drag-drop groups 216
DragSource 217
DragTarget 217
DragZone 216

E

editable grids
afteredit event, listening to 107
cells, editing 104
ComboBox, editing 106
data, saving to server 112
data value, editing 105, 106
dirty cell 107
field types, editing 104
field types, standard types 105
grid rows, removing from

data store 109, 110
row, adding to grid 110-112
uses 101, 102
working with 102-104

event-driven application 261, 262

Ext See also Ext JS
about 9-12
and AJAX 12
built-in features 85
cross browser DOM

(Document Object Model) 12
data, saving to server 112
downloading 13
editable grids, uses 101
EditorGridPanel 101
event-driven interfaces 12
example 10
functions 25

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[295]

grid 74
GridPanel 101
online community 22
panels 119
regions 121
SDK (Software development Kit) file 13, 14
using, in pages 14
viewport 119, 120

Ext.Button 61
Ext.dd 206
Ext.Element

about 183, 197
animations 197
Ext.Components, using with 198
Ext.Element.animate 198
methods 197

Ext.Fx
about 184
anchor position string 192
blocking method, StopFx 196
chaining method 195
concurrency 196
duration, method 192
easing, configuration option 194, 195
fading 185, 186
fading, Ext.Fx.fadeIn 185
fading, Ext.Fx.fadeOut 185
framing, Ext.Fx.frame 186
ghosting, Ext.Fx.ghost 186, 187
highlighting 187
highlighting, Ext.Fx.highlight 188
puffing 188
puffing, Ext.Fx.puff 188
queuing method 196
remove, configuration option 193
scaling, Ext.Fx.scale 189
shifting method, Ext.Fx.shift 190, 191
sliding, Ext.Fx.slideIn 189, 190
sliding, Ext.Fx.slideOut 189, 190
switchOff, method 193
switchOff method, Ext.Fx.switchOff 190
useDisplay, configuration option 193
utility methods 196

Ext.Fx.scale 189
Ext.get function 33
Ext.layout package 168, 169
Ext.LoadMask 198, 199

Ext.Msg.show function 25
Ext.onReady function 25
Ext.QuickTips 201, 202
Ext.Toolbar 61
Ext.ToolTip 201, 202
Ext.tree

AsyncTreeNode 138
DefaultSelectionModel 138
JSON 141
JSON, extra data 142
JSON, ID 141
MultiSelectionModel 138
RootTreeNodeUI 138
TreeDragZone 138
TreeDropZone 138
TreeEditor 138
TreeFilter 138
TreeLoader 138
TreeNode 138
TreeNodeUI 138
TreePanel 138, 143, 156
TreeSorter 138
XML 142, 143

Ext.Window class 159, 160
Ext files

about 14, 15
working 15

Ext functions
Ext.Msg.show 25
Ext.onReady 25

Ext JS
Adobe AIR 285
anchor position string 192
community, extensions 286
data, filtering 238
data, finding 237
data formats 223
data mapping, DataReader used 233, 234
data store object 228
dialog 159
DOM, accessing 282
drag-and-drop 205
Ext.dd 206
Ext.Element 183
Ext.state.Manager class 281
Ext.tree 137
for desktop 284

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[296]

form 37
form widgets 273
Fxcellent functions 184
layouts 121, 122
LoadMask 198, 199
QuickTip 201, 202
Recordset changes, dealing with 244-246
store 246
tab panel 124
ToolTip 201
tree 137
WindowGroup 282
WindowMgr 282
windows 166

Ext JS community, extensions
ColorPicker 288, 289
DatePickerPlus 286
PowerWizard class 287
SwfUploadPanel 288
TinyMCE 287

Ext JS library, extending
about 255
classes 254
custom class, creating 256-259
custom component, creating 264-271
custom components, using within other

objects 271, 272
custom events, creating 262-264
custom namespace, creating 255
event-driven application 261, 262
events, order 260
lazy instantiation, benefits 271
namespaces 254
object-oriented JavaScript 249, 250
object-oriented programming 251
overriding methods 259, 260
packages 254
xtype, using 271

Ext JS site
about 273
resources 289

Ext JS site, resources
aptana studio 290
community manual 290
demos 289
Ext JS forums 289
Google 290

samples 289
Spket IDE 290
step-by-step tutorials 290

Ext JS tree. See Ext.tree
Ext library, using

example 15-18

F

form
buttons 53
ComboBox 47
core components 37
creating 38
custom validation 44, 45
error displaying. styles 43
fields 39, 40
loading, with data 56
radio button 46
server responses 54-56
submitting 53, 54
validating 40, 41
vtype, creating 44
vtypes validation 41-43
working 39

form, loading with data
static data load 56, 58

form field events
ComboBox events 51, 52
listening for 51

form fields 39, 40
forms fields, toolbars 69, 70
form widgets

about 273
CheckboxGroups 276
DateField 274, 275
HtmlEditor 277, 278
NumberField 276
RadioGroup 276
TimeField 275, 276

Fxcellent functions 184

G

grid
about 74
formatting 95, 96
programming 92

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[297]

server-side data, displaying 88
grid, formatting

about 95, 96
grid, paging 96-98
grouping 98
grouping store 98, 100

grid, programming
about 92
cell, working with 92
data, manipulating 94
grid, altering 94, 95
grid, manipulating 94
listener, adding to selection model 93, 94
selection models 92

GridPanel
data, displaying 74, 75
displaying 78, 79

GridPanel, displaying
about 78, 79
configuring 80, 81
working 80

grids, toolbars 70
grids column model

config options 81, 82
defining 81

H

HTMLEditor 50

J

JSON
working 30, 31

L

layouts
about 121, 122
accordion 128
advanced 132
regions, splitting 122, 123
split, options 123, 124
tab panel 124
tricks 132
widgets 127

layouts, advanced
icons, in tab 134, 135

manipulating 135, 136
nested layouts 132-134
tab, adding 136

LoadMask 198, 199
localization

about 20
english only 20
multiple languages 21
other language 21
scenarios 20

M

masking 45, 46
menu item click

content, loading 68, 69

N

namespaces 254

O

object-oriented JavaScript,
Ext JS library 249, 250

object-oriented programming
about 251
example 251-253
inheritance 251

object-oriented programming,
Ext JS library extending

about 251
object reference 58
online community, Ext 22
onReady function

about 23
spacer image 24
using 25, 26
widget 24, 25

onReady function, using 25, 26
overriding methods 259, 260

P

packages 254
panels 119
panels, toolbars 70

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[298]

Q

QuickTip 201, 202

R

radio button, form
adding, to form 46
check box 46

Recordset 244-246
regions 121
Rich Internet Applications

problems 282

S

SDK 13
server-side data displaying, grid

data loading from database,
PHP used 91, 92

movie database, loading from
JSON file 90, 91

movie database, loading from
XML file 88, 89

Software development Kit. See SDK
state, managing

back buttons, using 282
basic state 281
windows, handling 282

store
in ComboBox 246
in Dataview 247
in grids 247, 248

T

tab panel, layouts
about 124
adding 124, 125

TextArea 50
toolbars

about 61
button 61, 63
button handlers 67, 68
dividers 65
forms fields 69, 70
icon buttons 66, 67
in grids 71

in panels 71
in windows 70
item, allignment 65
menu 62, 63, 64
shortcuts 66
spacers 65
split button 61, 64

ToolTip 201
TreeNode, Ext.tree

event capture 155, 156
methods 154, 155
tweaking 152, 153

TreePanel, Ext.tree
about 143
AsyncTreeNode 139
collapseAll method 153
contextmenu event 148
drag-and-drop 143, 144
expandPath method 154
Ext.tree.TreeLoader class 139
filter function 150, 151
line options 152
menu, handling 149, 150
nodes, editing 146, 147
nodes, selecting 147, 148
nodes, sorting 145, 146
root node creating, Ext.tree.AsyncTreeNode

class used 139
StateManager 156, 157
tree creating, Ext.tree.TreePanel

class used 140
TreeNode, tweaking 152, 153
tweaks 151

V

viewport 120
vtypes validation, form 41-43

W

widgets, layouts
adding 126
grid, adding to tabpanel 126

windows
about 166
configuration options 169, 170
configuration options, desktopping 170

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

[299]

configuration options, framing 171, 172
events 173, 174
example 166, 167
Ext.layout.FormLayout 168
Ext.layout package 168, 169
Ext.Window class 159, 160, 166, 167
Ext.WindowGroup 160
Ext.WindowManager 160
managing 175
manipulating 172, 173
paneling 167, 168
paneling, layout 168, 169
state handling 174

windows, managing
about 175
customer service WindowGroups 179, 180
default window manager 175
example 175-179

windows, toolbars 70

X

xtypes 127

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Thank you for buying

Learning Ext JS

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Learning Ext JS, Packt will have given some of the money
received to the Ext JS project.

In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Learning Dojo
ISBN: 978-1-847192-68-4 Paperback: 230 pages

A practical, comprehensive tutorial to building
beautiful, scalable interactive interfaces for your Web
2.0 applications with Dijits

1. Learn real-world Dojo programming with
detailed examples and analysis of source
code

2. Comprehensive guide to available Dojo
widgets (dijits) and how to use them

3. Extend Dojo by creating your own dijits

Learning jQuery
ISBN: 978-1-847192-50-9 Paperback: 380 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. Create better, cross-platform JavaScript code

2. Learn detailed solutions to specific client-side
problems

3. For web designers who want to create
interactive elements for their designs

4. For developers who want to create the best user
interface for their web applications.

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

AJAX and PHP
ISBN: 190-4-811-82-5 Paperback: 275 pages

Enhance the user experience of your PHP website
using AJAX with this practical tutorial featuring
detailed case studies

1. Build a solid foundation for your next
generation of web applications

2. Use better JavaScript code to enable powerful
web features

3. Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with the smart
AJAX client

Learning the Yahoo! User

Interface library
ISBN: 978-1-847192-32-5 Paperback: 380 pages

Develop your next generation web applications with
the YUI JavaScript development library.

1. Improve your coding and productivity with
the YUI Library

2. Gain a thorough understanding of the YUI
tools

3. Learn from detailed examples for common
tasks

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

